

This is a version of a talk I gave at the Petroleum Technology Transfer
Council's workshop Open software for reproducible computational
geophysics, being held at the Bureau of Economic Geology's Houston
Research Center and organized skillfully by Karl Schleicher and Robert
Newsham of the University of Texas at Austin and BEG.

I have blogged a bit about this workshop at
http://www.agilegeoscience.com/journal/2011/6/16/open-seismic-
processing-and-dolphins.html (and the next post after that).

I was invited along because of my interest in, and writing about, open
source software. I rashly decided not to talk about that, but to take a
look at mobile computing platforms instead. You can find my two
previous talks about open source on the blog:
http://www.agilegeoscience.com/journal/2011/5/16/why-we-should-
embrace-openness.html.

I have removed the builds for this version of the talk. The slides and the
notes are shared under the terms of Creative Commons Attribution 3.0
unported, or CC-BY. Please respect those terms.

Until 20 April I was an iPhone user. Those phones are a great way to
explore mobile technology, because the user experience is so amazing
and everything is very easy. But of course the system is closed
(notwithstanding jailbreaking), and there are complexities with
developing native apps if you're a novice like me. Web apps are
simpler, but then there are other complexities...

But on 20 April my new Nexus S arrived. This is Google's second 'pure'
phone: no tweaks to the OS by the manufacturer or carrier, and fast
upgrades when new versions are released.

Like other modern smart phones, it's an amazing device and much
faster of course than my old iPhone 3G. But this isn't why I was excited
about it. I was excited about it because I had been dying to try out
Google's App Inventor software — a tool for non-programmers to build
mobile apps on their Android devices. I'll tell you a bit more about it
later.

My dreams came true! Less than a week after getting the phone, I'd
built three apps, one of which (volume*, here) was quite functional and
robust.

There's no going back now.

June 2011 Mobile geo-computing 3

Reasons to embrace mobile

useful

shareable

timely

availablefast

rapid advances

rich

webby
cheap

social

fun

tactile

light

easy to use

easy to make

futuristic

cool

So what? What's so great about mobile devices?

Well, here are some reasons I've heard. I'd subscribe to most of them
myself. When it comes to the workplace, I think it's worth building these
little apps because lots of people have these devices with them all the
time, in meetings, at coffee, on the train, etc. I like the idea that we can
put a little bit of science in the geoscientists pocket this way, and help
people follow through on ideas or questions right now. Not later when
you're back at your desk with Excel or whatever, but now the problem
doesn't seem as pertinent or urgent...

And it's fun to be able to wonder about something like an AVO
response, or volumetric scenario, and check it immediately and easily.
The back-of-the-digital-envelope is what I called it in a blog post
recently.

There are always doubters, of course. Sometimes you can see their
point if view: these devices are light and cheap and fun...

June 2011 Mobile geo-computing 4

Reasons not to embrace mobile

cheap

simplistic

too many devices

forgettableslow

too-rapid advances

gimmicky

insecure
unbusinesslike

social

fun

tactile

lightweight

fiddly to use

fiddly to make

toy-like

faddish

… but they're light, cheap and fun. They're not serious, not for
business, not for science. They're gimmicky toys. A fad.

“Put it away and stop fiddling at the table.”

From a developer's point of view, there are issues too: lots of devices,
display resolutions, a very rapid development cycle for the OS, tweaked
operating environments.

And everything has to be free.

June 2011 Mobile geo-computing 5

Components in 84 cm³

Comms
Quad-band GSM
WiFi
Bluetooth
NFC
GPS
!USB

Compute
1 GHz A8 Cortex
VPower GPU
512 MB mDDR
16GB flash NAND

Hardware
480 x 800 display
Vibrator
Gyroscope
Accelerometer
Compass
Proximity
Light
5 MP camera
VGA camera
Mic
Speaker

CCD reponse
Well into IR
Some UV

Nexus S teardown: iFixIt.com, licensed under CC-NC-SA

Spectrum: http://www.customs.gov.au/site/page5973.asp

So what's in these things? What are they made of?

You don't need me to tell you how incredible the technology is.

Around 8 or 10 sensors, depending on what you count. A GPS with
compass and gyroscope. Two cameras. 16 GB storage. Four
communications protocols. This thing can even make phone calls. To
Australia!

The cameras are pretty cool because their response spectra go well
into the infrared. Try pointing one at a remote control or warm object. I
have no idea what use this is, but it's awesome.

The really interesting parts are the compute power and the display.

The 1 GHz Hummingbird processor is a so-called 'system on a chip'.
It's a CPU and graphics chip in one. Note that these things are often
underclocked to save power. It only has half a Gig of RAM, but tablets
are appearing with 1 GB (eg Motorola Xoom, but not iPad yet).

These CPUs are getting pretty powerful...

Now, these data are highly suspect and the whole idea of measuring
compute performance in FLOPS is rejected by some people.

But if we can be at all consistent in how it's measured, which we can't,
maybe it's vaguely interesting to look at a trend over time.

The chart shows supercomputer performance over time. It looks a bit
like these mobile chips are progressing about four times more quickly
than supercomputers did. I have projected the trend brazenly into the
near future... We might hit a GFLOPS at the end of next year.

For reference, my iMac does about 40 GFLOPS or so. No doubt there
will be limitations like power consumption, etc, but there is progress
with batteries too...

Most new phones have a dual core chip. (Not quite accurate, as far as I
understand it, but most people seem to describe it this way). The new
iPad 2 chip, the A9, is quad core.

Certainly serious work can be done on these devices.

June 2011 Mobile geo-computing 7

Displays

iPhone 2G

Nexus S

iPhone 4
iPad

iPad 3?

Galaxy Tab

2007

2010

2011

2011

2012

Image: User Flooch at Wikimedia Commons – CC-BY-SA

The other big factor for serious work is the display, of course.

This is a noisy figure, but I've tried to show how these devices are
mapping to standard display sizes. In about the last year, these screens
have jumped from the very small end firmly into the middle range. The
industry leader in terms of technology is the iPad, which has a very high
pixel density and thus the sharpest image. I've yet to see a Galaxy Tab
10.1.

The next iPad is rumoured to have double the pixels in each dimension.
So by the end of next year, we may have a hand-held desktop-sized
display (in terms of pixels, not dimensions), running at a billion FLOPS.

Incredible.

But what can you actually do with this sort of technology?

June 2011 Mobile geo-computing 8

Highly creative apps

word lens

videosurf

These low-res images are proprietary
and used for illustrative purposes only;
I am claiming fair use for them

Most of the interaction with the device is through apps.

These two apps are interesting. Look at Word Lens. Point the camera
at a foreign language, and it translates what it sees. In real time. And
then it makes a new image of the translated words. In real time. It's an
augmented reality machine and it's brilliant.

Videosurf is equally amazing. Point it at some videofor a few seconds
and it does a reverse internet search, finding metadata about the
content: what the clip is, who's in it, what others are saying about it, etc.
If you've seen Shazam for music or TinEye for images (or now Google
Image Search), this is the same idea, but for video.

Notice how these apps, and now many others too, assume you are
online all the time. Even my little volumetric app needs to be online for
one function — to grab the oil price.

June 2011 Mobile geo-computing 9

Geek tools

Various low-res screen shots, claimed as fair use

These devices aren't just used for fun, obviously. There are sciencey,
geeky tools out there.

The Wolfram Alpha app is great. It offers more than the website
version, and is fun to play with and explore. When it came out it cost
$50 (!), and was in the top paid apps list for a while so people will pay
cool stuff... for a while. It costs $2 now.

The MATLAB app, before you get excited, is really just an interface for
your workstation... you can't actually build and run MATLAB programs
in there. It's free.

But there are even geekier tools out there too...

June 2011 Mobile geo-computing 10

Really geek tools

Frodo C64 Droid48 Ti86

Various low-res screen shots, claimed as fair use

...in case you ever need a Commodore 64 command line. Or an HP48
graphing calculator.

One thing that makes me a bit sad is the developer effort being
expended on these things. I mean, they're fun and everything, but... I
can't help wondering what would happen if these hours were spent on
something a little closer to the world of 'relevant and useful'.

You should see how many seismographs there are on the market!

June 2011 Mobile geo-computing 11

Really, really geek tools

Python, Lua, JRuby, Perl, JavaScript,
BeanShell, Tcl, shell

Prototyping

Sensor logging

Hacking

Scripting layer for Android SL4A

This is one for this audience: Android Scripting Layer. Build and run
scripts right on your phone. You can interface any of the phone's
functions. No need to build apps!

The tool already supports Python, JavaScript, Jruby, Perl, and shell...
and other languages too.

This sort of thing reflects the beauty of having an open platform.

This is the sort of thing you'd need if you were going to, say, send your
phone into space and monitor its systems to see how the GPS, comms,
and other sensors were coping with the altitude and location.

June 2011 Mobile geo-computing 12

Androids in spaaace.....

Danny Pier's Astdroid project
http://www.astdroid.com/

Danny Pier

So the Google team that did send a few phones into space did just that.
They blogged about it — it's worth reading.

http://googlemobile.blogspot.com/2010/12/android-in-spaaaace.html

I love how Google are always thinking about innovation, but also about
having fun with technology, and integrating with their other programs,
like here showing the phones' trajectories in Google Earth.

I can't show pictures from the Google space shot, because everything
is copyright, but here are some pictures from Danny Pier's wonderful
Astdroid project. I think he was the 'pilot' of the first phone in space
(well, on its own). I don't know if he used the Android Scripting Layer or
not.

June 2011 Mobile geo-computing 13

Android is open

Wikimedia Commons, user Kronox, licensed under CC-BY-SA

Java...

Java

C++

C

So Android is open... what does that mean exactly?

Well, most of the versions of the entire operating system are completely
open source and licensed under the Apache license, a permissive
license used for about 25% of the projects on Google Code.

And Android is built on top of the Linux kernel, licensed by the GPL of
course. Software is usually written in Java, and runs on the Dalvik
Virtual Machine, analogous to the Java Virtual Machine on PCs. (It's a
register-based architecture rather than stack-based and no, I don't
know what that means).

App Inventor apps, just like other apps, live up here in this top layer,
with whatever license you like. While they are not written in Java
exactly, they are converted to Java from the visual programming
environment you build them in.

There are alternatives to App Inventor of course. The developer has
lots of options for building apps on these devices. Many just write Java
in Eclipse, others use frameworks like these (slide).

Some are frustrated with the multi-platform problem. But these open
source frameworks exploit HTML5 and JavaScript to build device-
agnostic apps. I am just getting into these. It's amazing how they've
exploded over the last 3 years.

June 2011 Mobile geo-computing 15

Open source apps

Various low-res screen shots, claimed as fair use

There is also open software for iPhone and Android devices. Just like
regular softsare, you'll find them in SVN and other repositories, with all
sorts of licenses. Here are a couple of examples: a molecule visualizer
and a marine compass toy app.

I am still learning about how to license and publish code, and it may be
more complex with App Inventor 'code'.

For what it's worth, I have started a list of geoscience mobile apps in
my wiki, AgileWiki... You are free to add to it.

http://agileinterpretation.com/wiki/Mobile_geoscience_apps

June 2011 Mobile geo-computing 17

MIT Media Lab and Logo

Various low-res screen shots, claimed as fair use

So, what the heck is App Inventor?

It's based on the logo progamming langauge from MIT Media Lab. This
is sometimes referred to as Lisp without parentheses. There is an open
source version called OpenStarLogo. It has a graphical version called
StarLogoTNG (The Next Generation).

StarLogoTNG is closely related, though I'm not sure how exactly, to
OpenBlocks, a completely open source blocks-based programming
language. This is the foundation of MIT Scratch, a learning environment
for young programmers. These are ancestors of App Inventor, the
development of which was largely driven by Hal Abelson of MIT, whilst
on secondment to Google.

Another environment in this paradigm you might have seen is Lego
Mindstorms, which I think has some common ancestry here too.

These all look like toys to real programmers like this audience. But you
can build real, functional, software with these software applications.
Indeed, I personally have found the experience profoundly liberating
and exciting.

If you have a Google account, you can already just navigate to
appinventor.googlelabs.com and start using it. It runs in the browser
and stores all your projects in the cloud.

There are three components:

The screen viewer — shown here — where you build the app and
specify how it will look and the default parameters for the components

The blocks editor — which I'll show in a sec — where you build the
logic for the program, specifying what it will do

The device itself, which you tether all the way through development, so
that you can run the app on there. All changes are instantly live, so
testing is very easy, with no compiling or running.

You can run an emulator instead of running on the device. So you can
actually build these things without having an Android device of your
own.

This is the blocks editor. It looks a bit chaotic, and indeed that's my only
complaint: there's no way to make your code blocks more organized,
other than personal discipline.

Some of these blocks initialize variables (point), others define
procedures (the purple blocks). And these green blocks are event
handlers.

So for example, if I add a button to the viewer screen I showed you
before, then I get some event handlers in the blocks editor, like
newButton1.Clicked for example. There's no need to remember which
methods are available, because they all appear in a menu, and I select
the ones I want.

Another example, this time an expanded block — you see all the logic.
The math is clunky because you can only do operations in pairs. All
these variables are global — I gather some programmers don't like this,
but it's great for novices because you don't have to track which
methods 'know' about a parameter.

If you want to see one of these apps up close, you can visit
http://www.agilegeoscience.com/download and look for Elastic.zip. You
will need to upload this to App Inventor, where you can inspect the
'code'.

Here's how one of my apps looks on my phone (left) and in the
emulator. It's just a simple calculator for amplitude-vs-offset modeling.
The nifty thing here is the graph.

I was initially stumped by drawing a graph, and didn't really know where
to turn. Did I need to draw one with the raster tools? Maybe use a
package like agraphengine, but that's only for 'real' Android coding —
you can't have arbitrary code blocks in App Inventor yet.

Google to the rescue with their Charts web API. I can simply add an
image to my app, then instead of calling on an in-app file (a PNG or
JPG, say), I can provide a URL.

It's not pretty...

June 2011 Mobile geo-computing 22

The programmable web

http://chart.googleapis.com/chart?cht=lc&chd=t:-1|-1|-1&chds=-
1,1&chs=600x400&chf=bg,s,FFFFFF&chco=BBBBBB,FF0000,0000FF&chxr=0,0,90,10|1,0,100|
2,-1,1&chxt=x,x,y&chxl=1:|magnitude%20vs%20incidence%20angle|
&chxp=1,50&chxs=0N*f0*&chm=R,00FF00,0,0.72545,0.74545|
r,AAAAAA,0,0.495,0.505&chfd=0,x,0,90,0.1,0.10827-0.11312*(sin(x*0.0174533))%5E2|
1,x,0,90,0.1,0.01786-0.02044*(sin(x*0.0174533))%5E2-0.2075/
(cos(0.5*x*0.0174533%2B0.5*asin(sin(x*0.0174533)*1.09302)))%5E2-
0.15206*(sin(x*0.0174533))%5E2|2,x,0,90,0.1,0.06383-0.07305*(sin(x*0.0174533))
%5E2%2B0.04444/(cos(0.5*x*0.0174533%2B0.5*asin(sin(x*0.0174533)*1.09302)))%5E2-
0.09951*(sin(x*0.0174533))%5E2

...but a URL like this one returns a graph, as here.

Everything after chfd (right in the middle) is just the function definition:
one for the two-term Shuey equation, and two for the Aki-Richards
equation. So my charting problem is reduced to simply contructing this
URL as a text object, which is pretty easy.

Of course, it means the user has to be online, but that's increasingly
common, at least in cities and offices.

This maybe be trivial to you, but for me, this is a huge epiphany. Not
only is there an ecosystem of code snippets and code APIs, but now
this ecology of web APIs, communicating through simple URLs, is mid-
bogglingly inspiring to me. If you've heard of the mashable web, or the
programmable web, this is what that is.

One of my new projects is to build a web API of my own to serve up
synthetic gathers. Provide a wavelet type, scale, etc, maybe a
reflectivity series, and I can pass back a PNG of a gather... so now
maybe I can really do some quite hard, sciencey, things on the phone,
because the compute and rendering is happening somewhere else.

Once you know about these web APIs it starts you thinking about what
else you can do in the cloud. Quite a lot, it turns out. Of course, there's
massive storage in the cloud. I run my wiki on Amazon's Elastic
Compute EC2 service... which is basically just a Linux box in the sky.
Or 10 Linux boxes... or 100, or 1000: it's elastic!

Another service built on EC2 is Opani (shown). You can run Python,
MATLAB, Octave, R, etc. Prices are scalable too: $5/month plus 9
cents per job gets you unlimited storage on Amazon S3 (at their rates),
cloud processing at 10 cents per core hour. Awesome.

Really, if you can dream it up, there's probably already a way to do it
with a mobile device.

The only problematic piece is the large data we often use in
geophysics. Both moving it around, and the possible privacy issues
some might have with the idea of moving it around. I don't buy this
privacy point though... we already let service companies host our data
online, we email all sorts of things daily, and send data back ad forth
with JIPs. It's just a smokescreen objection and it will go away as
people get used to the idea. The practical issues are another matter.

June 2011 Mobile geo-computing 24

Projects

Meta-app launcher
Cheatsheets
Web API for forward model
Seismic attributes from photo
Networked sensors, arrays
2D model from photo
Optimization games

So where am I going with all this... I don't really know. I started this
exploration about two months ago, as a sort of professional hobbyist. I
am very excited about this technology, especially Android and App
Inventor, as a democratization of experiment-driven innovation.

We have a few projects on the go (shown)... I don't know which will
work out first, if any. We want to expose more of our popular
cheatsheets in apps, saving people from having to remember details. I
want to try building a web API to deliver gathers. I think it would be fun
to be able to take a photo of something and apply horizon attributes to
the picture. Or turn it into an impedance model and make a synthetic
from it. And there are lots of things you could try with a class of
geophysics students, like games, or building sensor arrays with cell
phones. So many possibilities!

My real message is this: don't underestimate the power of toy-like tools
to energize and inspire people. The next time you're thinking about an
interface for your high-science algorithms, think about using a visual
programming interface, so that 'ordinary geophysicists' can play with
your algorithms.

