Designing Anaylsis and Synthesis Filterbanks
in GNU Radio

Thomas W. Rondeau

University of Pennsylvania & Rondeau Research

Shelburne, VT
tom@trondeau.com

Index Terms—GNU Radio, software radio, SDR, dy-
namic spectrum access, DSA, filters, polyphase filter-
banks, analysis filterbanks, synthesis filterbanks, dsp

Abstract—

This paper provides a look at the polyphase analy-
sis and synthesis filterbanks and filter design tools in
GNU Radio. The filterbanks are two powerful blocks
for performing signal detection, collection, and analy-
sis operations that are of increasing interest to the cog-
nitive radio (CR) and dynamic spectrum access (DSA)
communities. We look at how to design and use the
filterbanks to channelize, synthesize, and reconstruct
signals. We use a few simple examples for explanatory
purposes but which are readily available to experiment
with and learn from. The processes, descriptions, and
tools used in this paper are designed to allow others to
adapt filtering and filterbank tools of GNU Radio for
other, more complex purposes and applications.

I. INTRODUCTION

Cognitive radio (CR) and dynamic spectrum ac-
cess (DSA) problems generally involve discovery and
then use or reuse of spectrum. After the identification
of available spectrum, the DSA system will seek to
transmit and receive in it. These spectrum opportuni-
ties, however, may be close to other users, and so we
risk receiving or creating adjacent channel interfer-
ence with other users. Even in the discovery process,
we desire efficient structures for isolating and testing
areas of spectrum. Polyphase analysis and synthesis
filterbanks are useful tools for these problems. And
while there is a nice body of literature about how the
filterbanks themselves work, the design of the filter
taps is still not as widely understood.

GNU Radio as a software radio platform provides a
number of tools to build, use, and analyze polyphase
filterbanks for use in DSA systems. We have the prin-
ciple tools necessary to construct analysis and syn-
thesis channelizers as well as a large suite of filter de-

Timothy J. O’Shea
The Hume Center
Virginia Tech
Arlington, VA
oshea@vt.edu

sign tools. Use of these, however, is not necessarily
straight-forward.

In this paper, we discuss the principles of using
the filterbank blocks, the FIR filter design tools, and
how to build the necessary prototype filters required
to effectively use polyphase filterbanks in GNU Ra-
dio. Design decisions for each step are explored to
enable further use of these tools and techniques.

As an extension to the filter design process, we will
also look into the process of building and using per-
fect reconstruction filters in GNU Radio. A recon-
struction filter allows us to channelize spectrum with
an analysis filterbank and then recombine any set of
channels with a synthesis filterbank with no loss of
signals split between channels. By combining the
analysis and synthesis filterbanks like this, we can
create arbitrary bandwidth channelizers.

A companion webpage' is available to download
the flowgraphs and filters discussed in this paper.

II. ASSUMPTIONS

As we cover the topics of polyphase analysis and
synthesis filterbanks in GNU Radio, we recognize
that they are fairly advanced topics in signal process-
ing. Using these tools requires quite a bit of knowl-
edge to appropriately set the parameters for an appli-
cation. Here, we will give a very basic understanding
of the theory and properties of the filterbank tools,
but we will mostly leave the real theoretical details to
other papers referenced through the text that discuss
these concepts in-depth. Instead, we want to provide
context about the use of these filterbanks in GNU Ra-
dio to help enable their use elsewhere. As such, we
assume a basic literacy of the GNU Radio?, such as
the what it is, what it does, and the basic principles of

"nttp://www.trondeau.com/examples/2014/1/
23/pfb-channelizers—and-synthesizers.html
?http://gnuradio.org

a flowgraph and a GNU Radio block. We also assume
a basic familiarity here with digital filtering [1].

When discussing specific GNU Radio blocks, we
mention the full C++ namespace of the block to make
it easy to find the entry in the GNU Radio Manual®.

We further assume that the radio front-end has suf-
ficient selectivity and dynamic range in its out-of-
band filtering and digitization to allow the desired sig-
nal to be negligibly distorted by hardware. Given this
condition, we can do the rest of our signal analysis,
recovery, and isolation using software filters.

With the highly dynamic nature of software filters,
we expect these rapidly reconfigurable and efficient
channelizer techniques to be widely applicable and an
appealing option in the development of next genera-
tion cognitive and dynamic spectrum radio systems.

ITI. POLYPHASE FILTERBANKS: ANALYSIS AND
SYNTHESIS FILTERS

We begin with the basic structures of the analysis
and synthesis filterbanks. The one is basically the in-
verse of the other. Both involve first the design and
then the partition of a prototype filter, where the parti-
tioning occurs over a bank of smaller filters, hence the
name filterbank. There is then the filtering of the sig-
nal through the bank of filters and combining the filter
output such that they separate or combine the signals
into the different channels, practically done using a
discrete Fourier transform. Details of the filterbank
structures can be found in [2]. Here, we focus on the
development and understanding of the prototype fil-
ter.

One of the fundamental concepts required when
understanding what is going on in the channelizer fil-
terbank is the ability to analyze the filters in terms of
phase. In Figure 1, we have created a prototype filter
and partitioned it among four filters (M = 4). The
partitioned filters are simply taking every M = 4 tap
starting at tap m where m is the channel number. We
can think of this as each of the channels is the same
filter with a phase delay of m%

A consequence of the partitioning process is that
we are down-sampling the filter. Each partitioned fil-
ter is now at 1/M the rate of the original filter. This
clues us in to both the nature of the operations being
performed as well as the design methods for making
the prototype filter. In the application of the filter-
bank, we successively insert samples into the filters,

3http://gnuradio.org/doc/doxygen

which means that each filter is processing a down-
sampled version of the signal. Because of the down-
sampling of the signal, we design the prototype filter
at the full signal sample rate. In a channelizing filter-
bank, the sample rate for the design process is the in-
put rate, and for a synthesis filterbank, we work with
the output sample rate. This value turns out to be the
highest sample rate the system will ever operate at.

Analysis, or channelizer, filterbanks bring in a wide
spectrum and split it into equally-space, equal band-
width channels. Think of splitting the US FM broad-
cast band from 88 to 108 MHz into the one hundred
200 kHz FM stations using a single filterbank. Each
station is 200 kHz wide and separated by 200 kHz for
each channel. Instead of filtering and moving from
its RF channel to baseband for each channel, we pro-
cess all one hundred channels at the same time in the
channelizer.

The channelization process uses the concept of
aliasing. While we generally work hard to avoid alias-
ing, in the channelizing filterbank, we are aliasing in
a very controlled way such that we can pull out the
individual channels. We know from sampling theory
that when we down-sample a signal by a factor of M
we also create M Nyquist zones that are aliased onto
baseband. We typically avoid the effects of aliasing
by removing energy from the parts of the spectrum
that will alias by using a low pass or band pass filter.
If we filter out enough of the signal, the aliased zones
will not fold in and distort our desired signal.

In the channelization process, we want those
aliases. Recall that the filterbanks use the same fil-
ter with a different phase. When filtering, each of the
aliased zones is processed by each arm of the filter-
bank, which has its own phase. At this point, the out-
put of each filterbank’s arms is a set of aliases from
the different channels. We can then despin by apply-
ing a correction factor for filter m of exp(j2mkm /M)
for a given aliased zone k. The correction factor is re-
lated to the phase difference between each of M filter
arms. If we despin with this function for a given k
over all arms of the filterbank and sum them together,
we constructively add the alias from that channel
while destructively canceling all other aliases from
the other channels. If we think about that correction
factor and summing all arms together over every arm
and every channel, we make the leap to see that this is
actually a discrete Fourier transform (DFT) operation
that we can efficiently implement using fast Fourier
transform (FFT) algorithms. This topic is given much
greater coverage with figures explaining the aliasing

® @ Channel 0
B B Channel 1
A A Channel 2
> > Channel 3

0 10 20 40 50

30
Tap Number

0 10 20 40 50

30
Tap Number

Fig. 1. Prototype filter partitioned into four filterbanks. Each filterbank filter is a phase-delayed version of the same filter.

in fred harris’ book on the subject [2].

The synthesis filter behaves the same way in re-
verse. It uses an FFT to spin the data properly for the
aliases to be separated and then filtered through the
filterbanks. The output samples are then successively
taken from the filterbanks.

Later, we will modify these structures to allow us
to handle signals where the sampling rate is twice the
channel bandwidth. The changes necessary to these
structures is important and complicated. The work
in [3], [4] explains the required changes.

IV. PROTOTYPE FILTER DESIGN IN GNU RADIO

In analysis and synthesis filterbanks, each channel
is 1/Mth the total bandwidth of the received or trans-
mitted, respectively, bandwidth. We either break the
signal apart in the channelizer or put them together in
the synthesizer. We do the same with the prototype
filter. By partitioning the filter, we split the original
filter into M pieces. So building the prototype means
building a filter capable of filtering a single channel
at the full bandwidth (i.e., the sample rate we receive
or transmit on) of all M channels. This is important
to understand that in a polyphase filterbank, the pro-
totype filter is designed at the total bandwidth of all
M channels.

GNU Radio has tools for building filters that we
will use to construct the prototype filter, including a
graphical program called gr_filter_design. In this ap-
plication, we set the type of filter we want, which will
be a windowed low pass FIR filter. We set the sample
rate, the end of the pass band, and the start of the stop
band along with the stop band attenuation (in dB).
The pass band and stop band parameters are speci-
fied in units relative to the sample rate. Using the real
sample rate of the full channel in samples per second,
we can also specify the pass band and stop band pa-
rameters in Hertz. An alternative approach is to set

TABLE I
CHANNELIZER PARAMETERS

Parameter Value

Type FIR

Style Low Pass
Window Hann Window
Sample Rate 20 MHz
Filter Gain 1

End of Pass Band 125 kHz

Start of Stop band 225 kHz

Stop Band Atten. 60 dB

these values using a normalized sample rate or 1 and
make the other parameters relative to this.

The other parameter we set for this type of filter is
the window type. In this section and in Figure 1, we
use a Hann window because its parameters are well
understood [1]. In latter parts of the paper, we found
it easier to build perfect reconstruction filters using
the Blackman-harris window [5].

Continuing with our broadcast FM example, we
know that the full spectrum bandwidth is 20 MHz and
each channel is 200 kHz. We make a lowpass filter
based on this. However, we will not design this filter
to have the full bandwidth of 200 kHz. The issue is
that in the process of channelizing, we will alias bands
together at the channel bandwidth, so filtering beyond
the channel boundaries ends up aliasing in pieces of
the neighboring channels. Instead, we will select pa-
rameters that will filter out the edges of our band with
a transition period that ends roughly with the channel.
The final parameters we select for this experiment are
shown in Table I.

We made the start of the stop band slightly beyond
the channel in order to give us a filter with a smaller
number of taps and knowing that any aliasing with
this will be negligible to the FM quality. Even still,

the resulting filter consists of 1091 taps, which seems
quite long. However, since we separate this filter
among a filterbank of 100 channels, each channel will
actually consist of only 11 taps (i.e., [1091/100]).
Computationally, these become very light-weight fil-
ters, especially if we can parallelize the computations.
A bigger concern may be memory usage, depend-
ing on the platform on which the filterbank is imple-
mented.

The synthesis filter design issues are the same as
the analysis filter. We can easily take in 100 channels
of frequency modulated audio and synthesize them
together to broadcast 100 channels of FM.

V. USING A POLYPHASE CHANNELIZER

In the next section, we will look more heavily into
using the synthesis filterbanks. Here, though, we con-
tinue with the channelizer example from the proto-
type filter we built in Table 1.

The GNU Radio flowgraph is shown in Fig-
ure 2. The signal is taken from a USRP?,
sampled at 20 Msps, and fed to the channel-
izer (gr::filter::pfb_channelizer_ccf) after some gain
adjustment (gr::analog::agc2_cc). In this flow-
graph, we take a single channel out for FM de-
modulation and simply discard the rest. We use
the Busports’ concept in the GNU Radio Com-
panion to handle the large number of connec-
tions. The FM demodulation is done with a
WBFM receive block (wfim_rcv Python block in
gr::analog), and this is followed up by a resampler
(gr::filter::pfb_arb_resampler_ccf) to get the sample
rates correct for the audio sink (gr::audio::sink). A
multiplier (gr::blocks::multiply_const_cc) is in there
for volume control.

Setting the receiver to a center frequency of
97.9 MHz, we channelize the entire FM broadcast
spectrum. The output of a slightly modified flow-
graph from Figure 2 where we plot the output of two
channels is shown in Figure 3. The input spectrum is
shown along with channels 5 and 10. We only show
the two channels here for space even though all 100
channels are available.

VI. DESIGNING RECONSTRUCTION FILTERS

For the FM example, and other signals that have
equal channel bandwidths and spacing, the standard

http://ettus.com
Shttp://gnuradio.org/redmine/projects/
gnuradio/wiki/Busports

UHD: USRP Source
Device Addr: addr=...168.10.2
Sync: PC Clock
Mb0: Clock Source: 0/B GPSDO
Mb0: Time Source: 0/B GPSDO
Samp Rate (Sps): 20M
ChO: Center Freq (Hz): 97.9M
ChO: Gain (dB): 15
ChO: Antenna: TX/RX

QT GUI Frequency Sink
Name: QT GUI Plot

FFT Size: 4.096k

Center Frequency (Hz): 0
Bandwidth (Hz): 20M

Null Sink

QT GUI Frequency Sink

Name: QT GUI Plot

FFT Size: 1.024k

Center Frequency (Hz): 0
idth (Hz): 20M

busO#

bus0#1

AGC2
Attack Rate: 100m
Decay Rate: 10m
Reference: 1
Gain: 1

Max Gain: 65.536k

Polyphase Channelizer | bus0#1
Taps: pfb_taps

Over Sample Ratio: 1
Attenuation: 60

Channel Map: 0, 1

Polypl Arbitrary
Resampling Rate: 882m WBFM Receive
out| Taps: in|-¢-jout| Quadrature Rate: 200k
Number of Filters: 32 Audio Decimation: 4

Stop-band Attenuation: 100

Multiply Const Audio Sink
Constant: 100m Sample Rate: 44.1k

Fig. 2. GNU Radio flowgraph for channelizing the FM broadcast
band and pulling out a single channel for FM demod.

analysis and synthesis filterbanks work well. But for
cases becoming more relevant in developing ideas of
DSA and cognitive radio, we may not have channels
of equal spacing or bandwidth. For these cases, we
need to modify the standard filterbank structures to
allow for arbitrary bandwidth signals. Again, much
of this work on the design of the filterbanks and the
prototype filters is already published. We require few
modifications on the filterbank designs, some modifi-
cations on how we partition the filters, and very spe-
cific design requirements of the prototype filter. Pa-
pers [3], [4] provide a good overview of the chan-
nelizer and synthesizer changes required to support
the reconstruction and [6] provides details on the re-
quired changes to handling the filter partitioning in
the updated synthesis filterbank.

First, the changes in the analysis and synthesis fil-
terbank comes from the need to be able to completely
stitch together two channels already split up by a
channelizer filterbank without any loss. That means
that, unlike before, we must design the filters such
that the roll-off of the filter hits —6 dB just at the
channel edge. Previously when channelizing, we de-
signed the filter to make sure that it was within the
bandwidth of the channel to prevent aliasing. Here,
we have a requirement that when combining adjacent
channels, the sum of the signals at the edges will re-
combine with the correct energy, which would intro-
duce adjacent channel aliasing that we need to avoid.

To overcome the aliasing problem, we redesign the
filterbanks to produce channels of the same band-
width but now at twice the sample rate. With this, we
move the adjacent channels far outside of our transi-
tion width of the filter, and so the signal remaining in
the adjacent channels is specifically designed to hold

20
40 -

60 |

Power (dB)

80 -

-100

™ Input Spectrum
= Minimum Power

= Maximum Power

T T
-10.000 -5.000

W Minimum Power

= Maximum Power

Power (dB)
L

-100 -

T T T 1
-50.00 0.00 50.00 100.00

Frequency (kHz)

T
-100.00

0.000
Frequency (MHz)

m Chan 5:98.9 MHz

T 1
5.000 10.000

m Chan 10: 99.9 MHz
W Minimum Power

= Maximum Power

Power (dB)

-100 o

T T T 1
-50.00 0.00 50.00 100.00

Frequency (kHz)

r
-100.00

Fig. 3. Channels 5 (98.9 MHz) and 10 (99.9 MHz) displayed out of all 100 channels of the input FM band spectrum centered at 97.9

MHz.

the part of the current channel that spills over into the
adjacent channel, but unaliased. From here, we can
see that synthesizing these two channels, using the
same prototype filter, will combine the signals such
that the edges of both channels add together to create
no loss between them.

Following from the channelizer now producing
channels at twice the sample rate, we must also
change the synthesis filterbanks to perform in a simi-
lar way. This structure takes in the channels at twice
the sample rate and produces a signal that combines
the channels now at twice the output sample rate.
That is, synthesize N channels of 2 f5 produces a sig-
nal at 2 fs V.

To show how the reconstruction works, we will
use an impulse as the input to the reconstruc-
tion filter, which is made up of a channelizer
(gr::filter::pfb_channelizer_ccf) and synthesis filter-
bank (gr::filter::pfb_synthesizer_ccf) connected di-
rectly to each other as shown in Figure 4. The pro-
totype filters for both filterbanks are the same except
for a gain factor of M /2 (M is the number of chan-
nels) of the synthesis taps so that the output signal is
at the same level as the input signals.

GNU Radio’s firdes filter design program lets us
fairly easily design the reconstruction filters we need.
The firdes tool has a low_pass_2 function to design
a low pass filter with the gain, bandwidth, transition
width, window function, and out-of-band attenuation
as design parameters. To hit the required 6 dB roll-off
at the channel’s edge, we just need to set the band-

PFB = PFB
Channelizer »| Synthesizer
X[n] — — vin]
) sps =2 “| sps=2 .
I chans =6 » chans =6 2 I

2/
6

Fig. 4. Diagram of the reconstruction filter to split a signal into
many pieces and reassemble them again.

width of our prototype filter equal to the bandwidth
of the channel as the tool defines this as the end of
the pass band. We then have the window, attenuation,
and transition band as degrees of freedom to tweak
our filter.

In our analysis here, we will look at six channels
with a sample rate of 2 kHz per channel. We lose
no generality in the approach, but these few num-
ber of channels allows use to plot and visualize the
process much easier than a large number of channels.
Given this, our filter design parameters are shown in
Table II.

Passing an impulse through this structure will re-
sult in an impulse out at the receiver at twice the sam-
ple rate. While this is an arbitrary example with a
clean, known signal, the important consequence of
this structure and the prototype filter design is that
the resulting signal has been segmented and put back
together with almost no change to the signal. The
output, shown in Figure 5, shows that the signal is at

TABLE II
IMPULSE CHANNELIZER PARAMETERS

Parameter Value

Sample Rate 12 kHz

Filter Gain 1* or 3**

End of Pass Band 1000 Hz

Start of Stop band 400 Hz

Stop Band Atten. 80 dB

Window Blackman-harris [5]

* channelizer

** synthesizer

Magnitude (dB)

-250.0 0 250.0
Frequency (kHz)

500.0

Magnitude (dB)

-500.0 0 500.0
Frequency (kHz)

1000.0

Fig. 5. Output of the reconstruction filter. Each channel filter is
displayed in the top figure while the reconstructed signal is shown
in the bottom figure.

twice the original sampling rate with very minor pass
band distortion due to the filters.

Next, we show a more complex example that indi-
cates better how this concept can be used. We stick
with the impulse as the input signal to give a clean
PSD of how the reconstruction produces perfect sig-
nals at the output. Instead of synthesizing all six chan-
nels back together, we use two synthesis filterbanks to
combine the first four and last two channels. The de-
sign is shown in Figure 6 and the results in Figure 7.
Not shown in these figures is the close-up of the re-
constructed pass band; however, the two, four, and
full six reconstructed channel examples all have the
same maximum ripple of 5 x 10~* dB. While the rip-
ple is dependent on the original filter, the results do
not change with the number of channels, making the
technique scalable to large numbers of channels.

In this example, the more general use of the recon-
struction filter becomes more obvious. Any signal can
be broken up and reconstructed with a set of filters of

> PFB |,
» Synthesizer yo[n]
PFB > sps=2 ’ 4 .
X[N] —*|channelizer »| chans =4 6 I
/.
. sps =2 PFB
chans =6 » Synthesizer[" yo[n]
» Sps=2 2
chans =2 ng s

2/
6

Fig. 6. Diagram of the reconstruction filter to split a signal into
many pieces and reassemble into a set of four and two channels.

-10
=20
-30
=50
-60
=70 “‘

oo -150.0 0 150.0
Frequency (kHz)

Magnitude (dB)
L
o

300.0

Magnitude (dB)
L
=] T
Magnitude (dB)
A
)

400.0 _5%0.0 -100.0 0 100.0
Frequency (kHz)

%90 2000 0 200.0
Frequency (kHz)

200.0

Fig. 7. Output of the reconstruction filter where an impulse is
segmented into two signals of four and two channels.

this style, which means that we can now more eas-
ily channelize signals of different bandwidths and at
different frequencies. One restriction comes into the
design process, though. To work at twice the sample
rate, both the channelizer and synthesizer must have
an even number of filters or channels. This may mean
using one more channel than required for some appli-
cations.

A. Channel Mappings

The GNU Radio channelizer and synthesis filter-
banks have the ability to control the location of the
output channels using a channel map, or permuta-
tion, through the set_channel_map function call. This
mechanism provides a mapping of where each input
channel will end up at the output of the filterbank. For
the channelizer, the default mapping is that channel
0 is the O Hz channel, or the middle of the incoming
frequency band. Channel numbers increase positively
in the spectrum and wrap around to the negative half
of the spectrum at M /2. For an even number of chan-

nels, the M /2 channel spans the positive and negative
edges of the spectrum.

The channel map function takes a vector of num-
bers that is specified by an input channel value that
will map to the output channel as the index of the ar-
ray. This setup gives us flexibility in where and how
to direct the channel positions, including being able
to direct the same channel to multiple outputs.

The synthesis filterbank does the same: the index
of the array is the output channel number and the
value at that index is the input channel. Figure 8
demonstrates this. Remember that the output of the
oversampling synthesis filterbank is at two times the
sampling rate, which gives us twice the number of
channels. By default, the channel mapping is from
channel 0 to M for M input channels. All of the in-
coming channels from the channelizer are mapped di-
rectly to the corresponding output index value. That
is why in the above graphs we saw the impulse cov-
ering the positive half of the spectrum; the other half
of the channels produced by the synthesis filterbank
had no input and therefore produce O on the output.
In Figure 8, we are using the mapping sequence [10,
11, 0, 1, 2, 3]. The channels are mapped in order of
their output from the channelizer, but we have used
this mapping technique to shift the entire spectrum
down by two channels.

B. Reconstructing FM

In this final example, we channelize part of the FM
broadcast band into ten 100 kHz channels, select six
of these to recombine, and demodulate the FM to au-
dio. The GNU Radio flowgraph is shown in Figure 9
that uses a USRP B200° to pull in a 1 MHz signal
centered at 101.3 MHz. There is a strong FM sta-
tion at 101.5 MHz. We channelize the signal into
ten channels using the parameters in Table III. The
first six of these channels, covering the positive half
of the spectrum, go into the synthesis filterbank. We
terminate the other four channels for this experiment.
The synthesizer parameters are shown in Table IV and
are nearly the same as for the channelizer. Instead,
though, this filter is designed at 600 ksps because we
are only combining six 100 kHz channels together.
The gain parameter is the half of the total number
of channels in the channelizer, which normalizes the
output. For convenience, we decimate the output by
two using a very inexpensive half-band decimating
filter. The rest of the flowgraph performs the FM de-
modulation and some signal processing to allow us

Shttp://ettus.com

TABLE III
FM CHANNELIZER PARAMETERS

Parameter Value

Sample Rate 1 MHz

Filter Gain 1

End of Pass Band 50 kHz

Start of Stop band 20 kHz

Stop Band Atten. 80 dB

Window Blackman-harris [5]
TABLE IV

FM SYNTHESIZER PARAMETERS

Parameter Value

Sample Rate 600 kHz

Filter Gain 5

End of Pass Band 50 kHz

Start of Stop band 20 kHz

Stop Band Atten. 80 dB

Window Blackman-harris [5]

to adjust the volume of the audio as well as resample
it to match the required rate of the audio subsystem,
just as we did above with the FM channelizer. And
the synthesizer filterbank’s channel map to set the re-
sulting signal at DC is [10, 11, 0, 1, 2, 3].

At different places in the flowgraph, we use fre-
quency sinks to visualize the PSD of the signal. Fig-
ure 10 shows the output of these instrumentation
tools, which shows the recovered signal with the stan-
dard FM in the middle as well as the HD radio side-
bands. On the input spectrum, we added the channel
boundaries of the ten channels to show how it was
split up in the channelizer. In this case, we only re-
quire five of the channels to reconstruct the signal, but
we use six to meet the requirement that the filterbanks
must work with an even number of channels.

VII. CONCLUSION

From the details of this paper, we should under-
stand the basics of how to design a polyphase filter-
bank prototype filter for analysis and synthesis filter-
banks. This information gives us the basic knowl-
edge of how to build filters with GNU Radio and use
them in the GNU Radio polyphase filterbank blocks.
We also discussed the added challenges of design-
ing filterbank filters that allow perfect reconstruction,
which we can used to break apart and then recombine
channels as we need to in such a way that any signals
on channel boundaries are reconstructed perfectly.

Fig. 8. Channel mapping in the synthesis filterbank using [10, 11, 0, 1, 2, 3] as a method of moving the spectrum down two channels.

5

0
|

\'_

~l
Channelizer channel sequence

10, 11, 0

A]

Synthesis filterbank output

UHD: USRP Source
Synec: PC Clock
Samp Rate (Sps): 1M
Cho: Center Freq (Hz): 101.3M
ChoO: Gain (dB): 35

QT GUI Frequency Sink
Name: QT GUI Plot

FFT Size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 1M

bus0#6

QT GUI Frequency Sink
Name: QT GUI Plot

FFT Size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 200k

QT GUI Frequency Sink
Name: QT GUI Plot

FFT Size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 600k

Polyphase Sy

Cho: Antenna: RX2 Channels: 6

Taps: pfb_synth_taps
2x Sample Rate: True
Channel Map: 10,1... 1, 2. 3

Decimating FIR Filter
Decimation: 2
Taps: 11.4529u...7m, 11.4529u

Ch li: bus0#6 I bus0#6

lyp
Taps: pfb_taps

Over Sample Ratio: 2
Attenuation: 80
Channel Map:

AGC2
Attack Rate: 100m
Decay Rate: 10m
Reference: 1
Gain: 1
Max Gain: 65.536k

WBFM Receive
Quadrature Rate: 600k
Audio Decimation: 20

bus1#4
—|—>bu50#4

Polyphase Arbitrary Resampler
Resampling Rate: 1.47

Taps: in
Number of Filters: 32
Stop-band Attenuation: 100

Null Sink

jout]

Audio Sink
Sample Rate: 44.1KHz

Fig. 9. GNU Radio flowgraph for channelizing and reconstructing a US broadcast FM radio station.
] W Input Spectrum
_I _‘ _‘ _I —I _I _I _l _1 -l_ -I B Minimum Power
=3 | | B Paximum Power
a0 J
)
=2
: -
W -50
; |
o
e
-60 | | |
70 | |
5l |7 18l 9lol1l2|3]|4a's
—— — — — | ol e et e et et) m— ——
0.400 0.200 0.000 0.200 0.400
Frequency [MHz)
" mDotan = Gutput Signal
4 -30
® Datal B Minimum Power
20 Data 2 0 B Maximum Pewer
= Datad
- -
g 40 =57 g
g 1 m Data s g .
a 50 u Minimum Power &
u Maximum Power -
10
] -8
T L T LI e T LI B LI L
100.00 50.00 0.00 5000 100,00 30000 -200.00 -100.00 000 10000 20000 300.00
Frequency (kHz) Frequency (kHz)

Fig. 10. Output of the reconstruction of the FM signal. This figure shows the input spectrum, the six highlighted channels sent to the
synthesis filterbank, and the output of the filterbank and decimate-by-2 filter.

The details of how the filterbanks work is the
subject of many other texts and papers referenced
throughout. GNU Radio provides one of the few areas
where the code, documentation, and examples exist
to allow us to study and understand all of the aspects,
features, and trade-offs of using these structures.

While this paper focused on the analysis and syn-
thesis filterbanks, the same filter design principles are
equally valid for any of the other polyphase filterbank
tools we have in GNU Radio. Included among these
are the arbitrary resampler and the clock timing syn-
chronization blocks. In both of these filterbanks, we
can set the quantization error by selecting the number
of filters we use, which is set to 32 by default. In the
terms used above, the number of channels is the num-
ber of filters in the filterbank. We then use the same
concepts of designing the prototype filter by under-
standing this simple shift in nomenclature.

REFERENCES

[1] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-
time Signal Processing (2Nd Ed.). Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1999.

[2] fred harris, Multirate Signal Processing For Communication
Systems. Upper Saddle River, NJ: Prentice Hall, 2004.

[3] E. Venosa, X. Chen, and fred harris, “Polyphase analysis fil-
ter bank down-converts unequal channel bandwidths with ar-
bitrary center frequencies - design i,” in SDR’10-WinnComm,
2010.

[4] X. Chen, E. Venosa, and fred harris, “Polyphase analysis fil-
ter bank up-converts unequal channel bandwidths with arbi-
trary center frequencies - design ii,” in SDR’10-WinnComm,
2010.

[5] f. j. harris, “On the use of windows for harmonic analysis
with the discrete fourier transforms,” in Proc. IEEE, vol. 66,
Jan. 1978.

[6] f.].harris, C. Dick, X. Chen, and E. Venosa, “Wideband 160-
channel polyphase filter bank cable tv channeliser,” in IET
Signal Processing, 2010.

