

An Approach to Digital Demodulation

Tom Rondeau

(tom@trondeau.com)

2014-08-13

Basics

"The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point."

- Claude Shannon, A Mathematical Theory of Communication

Sources and Sinks (quick review)

• Demonstration of using multiple sources to create a noisy sine wave and multiple sinks to view it in different domains.

Stop: 1

Step: 10m

FFT Size: 1.024k

Center Frequency (Hz): 0 Bandwidth (Hz): 32k

Sources and Sinks (quick review)

sources and sinks.grc - Output

• Showing PSD, spectrogram, and time domain of noisy signal.

Complex Numbers Review

"Am I to refuse to eat because I do not fully understand the mechanism of digestion?"

- Oliver Heaviside

Complex Numbers

- $z(t) = x(t)\cos(2\pi f(t)t + \phi(t)) + jy(t)\sin(2\pi f(t)t + \phi(t))$
- $z(t) = c(t)e^{-j2\pi f(t)t + \phi(t)}$
- Information can be encoded in c(t), f(t), and $\phi(t)$.

Complex Numbers: Polar Plots

Basic Tx/Rx

Modulating & Transmitting a Signa

Options Variable Variable Import Variable ID: mpsk stage1 ID: arity ID: sps Import: math ID: samp rate Generate Options: QT GUI Value: 4 Value: 4 Value: 32k PSK Mod Random Source Number of Constellation Points: 4 Minimum: 0 Multiply Const Grav Code: Yes Maximum: 256 Differential Encoding: Yes Constant: 1+1i Num Samples: 1M Samples/Symbol: 4 Repeat: Yes Excess BW: 350m OT GUI Time Sink Name: OT GUI Plot Throttle lumber of Points: 1.024k Sample Rate: 32k Sample Rate: 32k QT GUI Constellation Sink Name: OT GUI Plot Number of Points: 1.024k QT GUI Frequency Sink Name: OT GUI Plot FFT Size: 1.024k Center Frequency (Hz): 0 Bandwidth (Hz): 32k

• Using a pre-built PSK modulator block from GNU Radio.

Modulating & Transmitting a Signal

The Received Signal

 We can simulate a channel model with noise, frequency and timing offsets, and multipath.

The Received Signal

mpsk_stage2 output: Effects of noise, timing offset, and frequency

• Signal captured using a multipath channel with some AWGN noise and timing offset. No frequency offset was used.

Timing Recovery

"Some knowledge rises out of information, disorganized but nevertheless true."

- James Crumly, The Wrong Case

Timing Recovery

• We use a control loop algorithm to find the right sampling time to fix clock mismatches between the transmitter and receiver.

Timing Recovery

Timing recovery block also runs through the matched filter and down-samples to 1 sps

 Showing a no-noise situation to illustrate ISI (self-interference) issues in the received signal before timing recovery and matched filtering.

After Timing Recovery - With Noise

A shift in time is also a shift in phase. Try to find the right phase offset

Derivative filter gives us a error value that we can force towards (

If we find the right offset, the derivative goes to 0, the sampling is at the peak.

Using a bank of filters of equally-spaced phases, we can search for the nearest filter arm.

Multipath

"There is a quaintly modern notion that information will eventually equal knowledge, which is neatly balanced by the cliche that the more one learns, the less one knows."

- James Crumly, The Wrong Case

Multipath in Brief

Multipath result from signal bounces hitting the receiver at different times and with different phases

Effects of Multipath

• This simulation allows us to adjust the multipath channel as though we are adjusting a stereo's equalizer.

• Signal corrupted by multipath. Equalizer tries to invert the multipath so that the combination is a flat frequency response.

• Using the constant modulus algorithm (CMA) blind equalizer is used here to correct multipath distortion.

mpsk stage4.grc

 Note the similarity between the time-synchronized and filtered output with multipath and the ISI of the signal before the matched filter with no multipath.

Equalizer output of signal with noise

• Equalization working with noise.

Phase & Fine Frequency Lock

"That receiver had a faulty tracking-loop capacitor... Result: Voyager 2 effectively lost all contact with the mission controllers." Joel Davis, Flyby

Phase Offset Correction

• The transmitter and receiver work off different clocks, so there will be a frequency and phase offset. We need to correct for any small frequency and phase offsets.

ID: nfits | ID: rrc_taps

Variable

Waluer firstes mot raised

Default Value: 100m

Ston: 200m

Step: 10m

Default Value: 10m

Stop: 100m

Default Value: 62.8m

Stop: 1

Step: 10m

QT GUI Sink

Name: OT GUI Plot

FFT Size: 1.024k Center Frequency (Hz): 0 Bandwidth (Hz): 32k Undate Rate: 10

After Phase Offset Correction

mpsk stage5 output

• Left figure shows a rotate constellation. The Costas Loop block fixes the offset.

After Phase Offset Correction - With Noise

"We can get used to nine-tube screen-grid highboy Philco radios, although that really won't be necessary, inasmuch as the superheterodyne circuit has already been invented"

Philip K. Dick, Ubik

Frequency Lock Loop using band-edge filters

- Given the pulse shaping filter's excess bandwidth.
- Create a filter for each edge of the transmitted signal in frequency.
- The difference in the amount of energy between the two filters is proportional to the coarse frequency offset.

•
$$|h_L(t) * x(t)| - |h_u(t) * x(t)| \propto f$$

FLL Output: Ideal Tx/Rx Settings

FLL Output: Frequency Offset at near 0.05

Channel Models

Experimenting with PDPs

Frequency selective fading model shows effect on an impulse

Sample Output: UMTS Pedestrian A

Sample Output: UMTS Pedestrian B

Sample Output: PDP Collected from Chris Anderson (USNA)

Fading Model Applied to MPSK Sim

Fading Model Applied to MPSK SimuMTS Ped. A

OFDM Through a Fading Mode

Split the graph into Tx and Rx

Split the graph into Tx and Rx

