
Scheduler Details

Tom Rondeau

www.trondeau.com

2013-09-26

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 1 / 56

The Flowgraph

Section 1

The Flowgraph

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 2 / 56

The Flowgraph

The �owgraph moves data from sources into sinks.

Example of data moving with rate changes.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 3 / 56

The Flowgraph

The �owgraph must check the bounds to satisfy

input/output requirements.

All input streams and output streams must satisfy the constraints.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 4 / 56

The Flowgraph

The boundary conditions can change with rate

changing blocks.

Decimators need enough input to calculate the decimated output.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 5 / 56

The Flowgraph

The conditions are independently established with

each block.

This block is asking for less than it can on the input.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 6 / 56

The general_work and work functions

Section 2

The general_work and work functions

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 7 / 56

The general_work and work functions

The input and output bu�ers

general_work / work have two vectors passed to it:

int

block::general_work(int noutput_items,

gr_vector_int &ninput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

int

block::work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

input_items is a vector of pointers to input bu�ers.

output_items is a vector of pointers to output bu�ers.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 8 / 56

The general_work and work functions

general_work has not input/output relationship

It's told the number of output and input items:

int

block::general_work(int noutput_items,

gr_vector_int &ninput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

noutput_items: minimum number of output available on all output
bu�ers.

ninput_items: vector of items available on all input bu�ers.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 9 / 56

The general_work and work functions

Number of input and output items?

noutput_items: how many output items work can produce

general_work: no guaranteed relationship between inputs and
outputs.

work: knowing noutput_items tells us ninput_items based
on the established relationship

gr::sync_block: ninput_items[i] = noutput_items

gr::sync_decimator: ninput_items[i] =

noutput_items*decimation()

gr::sync_interpolator: ninput_items[i] =

noutput_items/interpolation()

Because of the input/output relationship of a sync block, only
need to know one side

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 10 / 56

The general_work and work functions

work operates o� just noutputitems

From this number, we infer how many input items we have:

int

block::work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

noutput_items: minimum number of output available on all output
bu�ers.

ninput_items: calculated from noutput_items and type of sync block.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 11 / 56

Scheduler's job

Section 3

Scheduler's job

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 12 / 56

Scheduler's job

Overview

The scheduler handles the bu�er states, block requirements,
messages, and stream tags

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 13 / 56

Scheduler's job

Message Passing Layer
Send commands, metadata, and packets between blocks

Asynchronous messages from and to any block:

tb.msg_connect(Blk1, "out port", Blk0, "in port")

tb.msg_connect(Blk2, "out port", Sink, "in port")

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 14 / 56

Scheduler's job

Scheduler Handles the Asynchronous Message

Passing

Asynchronous Message Passing:

1 When a message is posted, it is placed in each subscribers queue.

2 Messages are handled before general_work is called.
3 The scheduler dispatches the messages:

1 Checks if there is a handler for the message type.
1 If there is no handler, a queue of max_nmsgs is held.
2 Oldest message is dropped if more than max_nmsgs in queue.
3 max_nmsgs is set in preferences �le in

[DEFAULT]:max_messages.

2 Pops the message o� the queue.
3 Dispatches the message by calling the block's handler.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 15 / 56

Scheduler's job

Stream tag layer
Adds a Control, Logic, and Metadata layer to data �ow

Tags carry key/value data associated with a speci�c sample.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 16 / 56

Scheduler's job

Stream tag layer
Adds a Control, Logic, and Metadata layer to data �ow

Tags are propagated downstream through each block.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 17 / 56

Scheduler's job

Stream tag layer
Adds a Control, Logic, and Metadata layer to data �ow

Tags are updated by data rate changes.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 18 / 56

Scheduler's job

Propagate tags downstream based on the

tag_propagation_policy

Tag propagation:

1 tag_propagation_policy typically set in block's constructor.
1 Defaults to block::TPP_ALL_TO_ALL.

2 Called after general_work.
3 If propagating:

1 Gets tags in window of last work function.
2 If relative_ratio is 1, copies all tags as is.
3 Otherwise, adjusts offset of tag based on relative_ratio.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 19 / 56

Scheduler's job

Review of propagation policies

block::TPP_ALL_TO_ALL block::TPP_ONE_TO_ONE

block::TPP_DONT

Tags are not propagated and are removed from the stream.

Can allow block to handle propagation on its own.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 20 / 56

Scheduler's job

Alignment
set_alignment(int multiple)

Set alignment in number of items.

Restricts number of items available to multiple of alignment.

Not guaranteed, but recovers quickly if unalignment unavoidable.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 21 / 56

Scheduler's job

Output Multiple
set_output_multiple(int multiple)

Set output multiple in number of items.

Restricts number of items available to set multiple.

Similar to alignment, but this is guaranteed.

If not enough for alignment, will wait until there is.

Cannot be set dynamically.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 22 / 56

Scheduler's job

Forecast
Overloaded function of the class

Tells scheduler how many input items are required for each output
item.

Given noutput_items, calculates ninput_items[i] for each
input stream.

Default: ninput_items[i]=noutput_items+history()-1;

Decim: ninput_items[i]=noutput_items*decimation()+history()-1;

Interp: ninput_items[i]=noutput_items/interpolation()+history()-1;

Use this to reduce the book-keeping checks in a block.

Can guaranteed ninput_items[i] > noutput_items

Don't have to check both conditions.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 23 / 56

Scheduler's job

History
sethistory(nitems+1)

History sets read pointer history() items back in time.

Makes sure we have valid data history() items beyond
noutput_items.

Used to allow causal signals between calls to work.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 24 / 56

Scheduler's job

Bu�er Size and Controlling Flow and Latency

Set of features that a�ect the bu�ers

set_max_noutput_items(int)

Caps the maximum noutput_items.

Will round down to nearest output multiple, if set.

Does not change the size of any bu�ers.

set_max_output_buffer(long)

Sets the maximum bu�er size for all output bu�ers.

Bu�er calculations are based on a number of factors, this limits

overall size.

On most systems, will round to nearest page size.

set_min_output_buffer(long)

Sets the minimum bu�er size for all output bu�ers.

On most systems, will round to nearest page size.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 25 / 56

Scheduler's job

Scheduler Manages the Data Stream Conditions

General tasks:

1 Calculate how many items are available on the input.

2 Calculate how much space is available on the output.

3 Determine restrictions: alignment, output_multiple, forecast
requirements, etc.

4 Adjust as necessary or abort and try again.

5 Call the general_work function and pass appropriate pointers
and number of items.

6 Take returned info from general_work to update the pointers
in the gr::buffer and gr::buffer_reader objects.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 26 / 56

Scheduler Flow Chart

Section 4

Scheduler Flow Chart

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 27 / 56

Scheduler Flow Chart

Scheduler Flow Chart: top_block.start()
Start in scheduler_tpb.cc

Initialize thread for each block:

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 28 / 56

Scheduler Flow Chart

Each block's thread runs the loop until done

Handles messages, state, and calls run_one_iteration:

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 29 / 56

Scheduler Flow Chart

run_one_iteration in block_executor.cc

Start of the iteration:

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 30 / 56

Scheduler Flow Chart

run_one_iteration::try_again

If block has inputs (sinks/blocks), handle input/output reqs.:

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 31 / 56

Scheduler Flow Chart

run_one_iteration::try_again: Fixed Rate

Fixed rate blocks have special restrictions:

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 32 / 56

Scheduler Flow Chart

run_one_iteration::try_again: Alignment

Works to keeps bu�ers aligned if possible:

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 33 / 56

Scheduler Flow Chart

run_one_iteration::try_again: Failure

If something goes wrong, try again, fail, or block and wait:

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 34 / 56

Scheduler Flow Chart

run_one_iteration::setup_call_to_work

Call work and do book-keeping:

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 35 / 56

Scheduler Flow Chart

run_one_iteration::were_done

When the �owgraph can't continue, end it:

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 36 / 56

Scheduler Flow Chart

�Get items_available for all inputs�

Gets di�erence between write pointers and read pointers for all inputs:

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 37 / 56

Scheduler Flow Chart

�Calc space on output bu�er�

Space available is the di�erence between write pointers to the �rst
read pointer. noutput_items is the minimum for all output bu�ers:

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 38 / 56

Scheduler Flow Chart

�call forecast, sets ninput_items_required"

Given noutput_items, forecast calculates the required number of
items available for each input.

void

sync_decimator::forecast(int noutput_items,

gr_vector_int &ninput_items_required)

{

unsigned ninputs = ninput_items_required.size();

for(unsigned i = 0; i < ninputs; i++)

ninput_items_required[i] = \

fixed_rate_noutput_to_ninput(noutput_items);

}

int

sync_decimator::fixed_rate_noutput_to_ninput(int noutput_items)

{

return noutput_items * decimation() + history() - 1;

}

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 39 / 56

Scheduler Flow Chart

�Do all inputs have nitems req.?�

Tests that items_available[i] >= ninput_items_required[i]

for all i.

If yes, run the setup_call_to_work section.

Otherwise, we're in a fail mode:

If we still have enough output space, goto try_again.

If the input is marked done, goto were_done.

If block requires more than is possible, goto were_done.

Otherwise, we're blocked so we exit and will start over on next

iteration.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 40 / 56

Bu�er Creation

Section 5

Bu�er Creation

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 41 / 56

Bu�er Creation

Bu�ers are handled almost completely behind the

scenes

Standard Creation

GNU Radio selects the best option for how to create bu�ers.

Allocated at the start of a page.

Length is a multiple of the page size.

Memory mapped second half for easy circular bu�er.

Guard pages one either side.

User controls

Minimum bu�er size.

Maximum bu�er size.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 42 / 56

Bu�er Creation

Circular bu�ers in memory

Shows guard pages and memory-mapped half

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 43 / 56

Bu�er Creation

Bu�er creation techniques

Controlled by the vmcircbuf classes

Selects from:

vmcircbuf_createfilemapping.h

vmcircbuf_sysv_shm.h

vmcircbuf_mmap_shm_open.h

vmcircbuf_mmap_tmpfile.h

Reads from a preference �le, if set.

Tests all factories, saves preferred to preference �le.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 44 / 56

Bu�er Creation

Bu�er creation: Create File Mapping

Generally used for MS Windows

size required to be a multiple of the page size.

Uses CreateFileMapping to get a handle to paging �le.

Allocates virtual memory of 2*size.

Uses VirtualAlloc to get first_tmp.

Map the paging �le to the �rst half of the virtual memory.

Uses MapViewOfFileEx with first_tmp as pointer base.

Map the paging �le to the second half of the virtual memory.

Uses MapViewOfFileEx with first_tmp+size as pointer base.

Both �rst and second half are mapped to the same paging �le.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 45 / 56

Bu�er Creation

Bu�er creation: Memory-mapped Temp File

Generally used for OSX

size required to be a multiple of the page size.

Creates a temp �le with permissions 0x0600.

Uses unlink to hide �le and remove it when program closes.

Sets length of temp �le to 2*size.

Uses ftruncate.

Map the �rst half of the �le to a pointer first_copy.

Uses mmap to point to start of temp �le.

Map the second half of the �le to a pointer second_copy.

Uses mmap to point to first_copy+size.

Resets temp �le to size with ftruncate.

Uses first_copy as the bu�er's base address.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 46 / 56

Bu�er Creation

Bu�er creation: System V Shared Memory

Generally used for Linux/POSIX

size required to be a multiple of the page size.

Uses shmget to get 2*size (plus guard pages) as schmid2.

Uses shmget to get size as shmid1.

Attach shmid1 to �rst half of schmid2 with shmat.

Attach shmid1 to second half of schmid2 with shmat.

Memory in both halves of shmid2 are mapped to the same
virtual space.

Keep guard pages as read-only.

Return memory in shcmid2+pagesize as bu�er base location.

Keeps 2*size allocated.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 47 / 56

Bu�er Creation

Bu�er creation: Memory-mapped Shared Memory

Alternative implementation for Linux/POSIX

size required to be a multiple of the page size.

Creates a shared memory segment with shm_open.

Sets length of memory segment to 2*size.

Uses ftruncate.

Map the �rst half of the �le to a pointer first_copy.

Uses mmap to point to start of memory segment.

Map the second half of the �le to a pointer second_copy.

Uses mmap to point to first_copy+size.

We should reset memory segment to size with ftruncate.

on OSX this isn't allowed, though; not actually compiled.

Uses first_copy as the bu�er's base address.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 48 / 56

Bu�er Creation

VM circular bu�er preference setting

Working VM Circular Bu�er technique is stored in a prefs �le

Handled by vmcircbuf_prefs class.

Path:
$HOME/.gnuradio/prefs/vmcircbuf_default_factory

Single line that speci�es the default factory function:

e.g., gr::vmcircbuf_sysv_shm_factory

If no �le, we �nd the best version and store it here.

Should only be created once on a machine when GNU Radio is
�rst run.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 49 / 56

Bu�er Creation

Building a gr::buffer

Bu�ers are built and attached at runtime

When start is called, �owgraph is �attened and connections
created.

gr::block_details are created and a gr::bu�er for each
output.

Bu�er size is calculated as the number of items to hold.

min/max restrictions applied, if set.

Connects inputs by attaching a gr::buffer_reader.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 50 / 56

Bu�er Creation

Calculating gr::buffer size

gr::flat_flowgraph::allocate_buffer

Takes in item_size.

Calculates number of items: nitems =
s_fixed_buffer_size*2/item_size.

s_fixed_buffer_size = 32768 bytes.

doubling the size to allow double bu�ering.

Checks that nitems is at least 2x output_multiple.

Checks max_output_buffer & min_output_buffer settings.

Both default to -1, which means no limit.

Checks that nitems is greater than
decimation*output_multiple+history.

Must have enough to read in all of this at one time.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 51 / 56

Bu�er Creation

Calculating gr::buffer size: granularity

gr::buffer::allocate_buffer handles the actual creation

Checks if we have the minimum number of items:

Based on system granularity (i.e., page size) and item size.

Rounds up to a multiple of this minimum number of items.

Rounding up based on item size may result in unusual bu�er
sizes.

We handle this; just sends a warning to the user.

Calls VM circular bu�er default factory function.

Sets d_base, the address in memory for the bu�er, from the
circular bu�er.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 52 / 56

Bu�er Creation

Controlling the size of bu�ers: min/max

User interface allows us to set min/max bu�er for all blocks

Methods of gr::block:

gr::block::set_min_output_buffer(port, length)

gr::block::set_max_output_buffer(port, length)

Methods to set all ports the same:

gr::block::set_min_output_buffer(length)

gr::block::set_max_output_buffer(length)

Will still round up to the nearest granularity of a bu�er.

Can only be set before runtime to have an e�ect.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 53 / 56

Wrap-up

Section 6

Wrap-up

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 54 / 56

Wrap-up

Review:

This presentation covered:

The responsibility of the scheduler.

And understanding of the user interaction with the scheduler.

The roles the scheduler plays in the three data streams:

Overview of the data stream, message passing, and tag streams.

Alignment, output multiple, forecast, and history.

Flow chart of the threaded loops each block runs.

Launching the thread body.

Handling messages.

calling run_one_iteration and its tasks.

In-depth look into how the scheduler makes its calculations.

Bu�er structure, calculations.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 55 / 56

Wrap-up

Purpose:

From the information in this presentation, you should be able to:

Better interact with the three data stream models

Use the features of the data �ow model (forecast, history, etc.)
to improve logic, performance

Understand how the bu�er system works

and how to extend or alter it for di�erent architectures

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 56 / 56

	The Flowgraph
	The general_work and work functions
	Scheduler's job
	Scheduler Flow Chart
	Buffer Creation
	Wrap-up

