Scheduler Details

Tom Rondeau

www.trondeau.com

2013-09-26

Tom Rondeau (www.trondeau.com)

Scheduler Details 2013-09-26 1/56



The Flowgraph

Section 1

The Flowgraph

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 2/ 56



The Flowgraph
The flowgraph moves data from sources into sinks.

Example of data moving with rate changes.

N = 2048 N = 2048 N = 204
samples in | sync . |decim - samples out
rate: 320 kHz src0 | blko "1 blk0 > snk0 rate: 32 kHz
1 Dl10
srel ™= 2048

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 3 /56



The Flowgraph

The flowgraph must check the bounds to satisfy

input/output requirements.

All input streams and output streams must satisfy the constraints.

n_>= 2048 N = 2048 n, = 2048 N = 2048
src0 =TT "¢ - decim
o blk 0 blk O
r w itr r WF!U
ptr P “ ptr
rp[r Wplr
! )
srcl —»[ [T TTF——%7
—— N = 2048
n, >= 2048

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 4 / 56



The Flowgraph

The boundary conditions can change with rate

changing blocks.

Decimators need enough input to calculate the decimated output.

N =2048 n_>=10204+history N =204 n =204

oo LT (o't I I snko
bk 0 [ F1r blk 0 [~
S Di10 ™

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26



The Flowgraph

The conditions are independently established with

each block.

This block is asking for less than it can on the input.

N = 2048 n_>=10*100+history N=100 n =100

sync ! ) decim f 3
—>{ T o I snko
blk 0 Aol blk 0 L
ptr Dllo ptr

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 6 / 56



The general_work and work functions

Section 2

The general_work and work functions

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 7 / 56



The general_work and work functions

The input and output buffers

general _work / work have two vectors passed to it:

int

block: :general_work(int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

int

block: :work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

@ input_items is a vector of pointers to input buffers.

@ output_items is a vector of pointers to output buffers.

2013-09-26

Tom Rondeau (www.trondeau.com) Scheduler Details



The general_work and work functions

general _work has not input/output relationship

It's told the number of output and input items:

int

block: :general_work(int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

@ noutput_items: minimum number of output available on all output
buffers.

@ ninput_items: vector of items available on all input buffers.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26



The general_work and work functions
Number of input and output items?

noutput_items: how many output items work can produce

@ general_work: no guaranteed relationship between inputs and
outputs.
@ work: knowing noutput_items tells us ninput_items based
on the established relationship
o gr::sync_block: ninput_items[i] = noutput_items
o gr::sync_decimator: ninput_items[i] =
noutput_items*decimation()
e gr::sync_interpolator: ninput_items[i] =
noutput_items/interpolation()
@ Because of the input/output relationship of a sync block, only
need to know one side

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 10 / 56



The general_work and work functions

work operates off just noutputitems

From this number, we infer how many input items we have:

int
block: :work(int noutput_items,
gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

@ noutput_items: minimum number of output available on all output

buffers.
@ ninput_items: calculated from noutput_items and type of sync block.

Scheduler Details 2013-09-26 11 / 56

Tom Rondeau (www.trondeau.com)



Scheduler’s job

Section 3

Scheduler’s job

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 12 / 56



Scheduler’s job

Overview

The scheduler handles the buffer states, block requirements,
messages, and stream tags

- Call message
handlers
w w
*"“ Block f"
= Alignment
LLTTLITF> - ouputmutipe =»{TTTTTT]
? « Forecast
I'U’ptr l'l’ptr « History I'U’ptr
2
1ag | propagate
tags

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26




Scheduler’s job

Message Passing Layer

Send commands, metadata, and packets between blocks

Asynchronous messages from and to any block:

Source|— BIkO = Blkl —= Blk2 Sink
A i i A
.1 L4
Control Packet Data
message Unit

@ tb.msg_connect(Blkl, "out port", BlkO, "in port")

@ tb.msg_connect(Blk2, "out port", Sink, "in port")

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 14 / 56



Scheduler’s job

Scheduler Handles the Asynchronous Message
Passing

Asynchronous Message Passing:

© When a message is posted, it is placed in each subscribers queue.

@ Messages are handled before general_work is called.

© The scheduler dispatches the messages:
@ Checks if there is a handler for the message type.

@ If there is no handler, a queue of max_nmsgs is held.
@ Oldest message is dropped if more than max_nmsgs in queue.
© max_nmsgs is set in preferences file in

[DEFAULT]:max_ messages.

© Pops the message off the queue.
© Dispatches the message by calling the block’s handler.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 15 / 56



Scheduler’s job

Stream tag layer

Adds a Control, Logic, and Metadata layer to data flow

Tags carry key/value data associated with a specific sample.

relative_rate =1.0 relative_rate = 0.5
—>»| blkO [=»{o[1P[a[+[5[6]7}=» blk1 Fw{o[1[2[3[s[5[6[7}=m decO F=m{o]1[2[3[s[5[6]7]
Dl2
«offset =4
+key ="“test”
+value = true
«sreid = “bIk0”

Tom Rondeau (www.trondeau.com) Scheduler Details

2013-09-26

16 / 56



Scheduler’s job

Stream tag layer

Adds a Control, Logic, and Metadata layer to data flow

Tags are propagated downstream through each block.

relative_rate = 1.0

—> blk0 Pl1RREEEP

blk1

relative_rate = 0.5

»{o[1]2[3]a[s]e[7]

decO

of2]2[3[a]s]e[7]

offset = 4
+key = “test”
value = true
=srcid = “blk0”

tag

Dl2

Tom Rondeau (www.trondeau.com)

Scheduler Details

2013-09-26

17 / 56



Scheduler’s job

Stream tag layer

Adds a Control, Logic, and Metadata layer to data flow

Tags are updated by data rate changes.

relative rate = 1.0 relative_rate = 0.5
—» blkO [[2[3[s[s[e]7}m blkl F»{o[:[z[[4[s]6[7}-m decO Fm{o[2[3[4[s[s[7]
Dl2

tag
offset = 2
*key ="“test”
=value = true
=srcid = “blk0”

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 18 / 56



Scheduler’s job

Propagate tags downstream based on the

tag_propagation_policy

Tag propagation:

© tag_propagation_policy typically set in block’s constructor.
@ Defaults to block: : TPP_ALL_TO_ALL.

@ Called after general_work.

© If propagating:
©® Gets tags in window of last work function.

O If relative_ratio is 1, copies all tags as is.
© Otherwise, adjusts offset of tag based on relative_ratio.

4

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 19 / 56



Scheduler’s job
Review of propagation policies

block: :TPP_ALL_TO_ALL block: :TPP_ONE_TO_ONE
Input Output Input Output
buffers buffers buffers buffers
C
C

block: :TPP_DONT

@ Tags are not propagated and are removed from the stream.

@ Can allow block to handle propagation on its own.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 20 / 56



Scheduler’s job

Alignment

set_alignment (int multiple)

Set alignment in number of items.

ok o LT ' >
blk O r:ﬂ Wl blk 1 r:v Wl blk 2

a = alignment = 16 bytes = 4 floats
N = 2049 — (2049 % a) = 2048

@ Restricts number of items available to multiple of alignment.

@ Not guaranteed, but recovers quickly if unalignment unavoidable

Tom Rondeau (www.trondeau.com)

Scheduler Details

2013-09-26 21 / 56



Scheduler’s job

Output Multiple

set_output_multiple(int multiple)

Set output multiple in number of items.

n = N N ™ 2049
SYNC L TTTITT T S I >
blk 0 - blk1 [ ~F % blk 2

ptr pir
a =multiple=4
N = 2049 — (2049 % a) = 2048

@ Restricts number of items available to set multiple.
o Similar to alignment, but this is guaranteed.
@ If not enough for alignment, will wait until there is.

@ Cannot be set dynamically.

Tom Rondeau (www.trondeau.com) Scheduler Details

2013-09-26



Scheduler’s job

Forecast

Overloaded function of the class

Tells scheduler how many input items are required for each output
item.

@ Given noutput_items, calculates ninput_items[i] for each
input stream.
o Default: ninput_items[i]=noutput _items+history()-1;
o Decim: ninput_items[i]=noutput__items*decimation()-+history()-1;
o Interp: ninput_items[i]=noutput _items/interpolation()-+history()-1;

@ Use this to reduce the book-keeping checks in a block.
o Can guaranteed ninput_items[i] > noutput_items

o Don't have to check both conditions.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 23 / 56



Scheduler’s job

History

Sethistory (Nitems+1)

History sets read pointer history () items back in time.

noutput_items  history=4

—— N ——r—"

g IENNRRRNNENEEN

[[[]|=>

ptr

@ Makes sure we have valid data history() items beyond

noutput_items.

@ Used to allow causal signals between calls to work.

Tom Rondeau (www.trondeau.com) Scheduler Details

2013-09-26




Scheduler’s job

Buffer Size and Controlling Flow and Latency

Set of features that affect the buffers

@ set_max_noutput_items(int)

o Caps the maximum noutput_items.
o Will round down to nearest output multiple, if set.
e Does not change the size of any buffers.

@ set_max_output_buffer(long)
o Sets the maximum buffer size for all output buffers.
o Buffer calculations are based on a number of factors, this limits
overall size.
e On most systems, will round to nearest page size.
@ set_min_output_buffer(long)
o Sets the minimum buffer size for all output buffers.

e On most systems, will round to nearest page size.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 25 / 56



Scheduler Manages the Data Stream Conditions

General tasks:

Calculate how many items are available on the input.
Calculate how much space is available on the output.

Determine restrictions: alignment, output_multiple, forecast
requirements, etc.

Adjust as necessary or abort and try again.

Call the general_work function and pass appropriate pointers
and number of items.

© 00 00O

Take returned info from general_work to update the pointers
in the gr: :buffer and gr: :buffer_reader objects.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 26 / 56



Scheduler Flow Chart

Section 4

Scheduler Flow Chart

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 27 / 56



Scheduler Flow Chart

Scheduler Flow Chart: top_block.start()

Start in scheduler_tpb.cc

nitialize thread for each blo

scheduler tpb.cc

take in
flat flowgraph

tpb_container:

| start tpb_thread_body

!

topologically sort
all blocks,
get vector of blocks

!

Set all blocks 'done’
flag to False

!

For each block:

create tpb_container |--

thread

Legend
Code goto @
marker
Return @
Connector O
Conditiqnal @
expression

Expression /

Statement [operation]
Sets a variable

2013-09-26 28 / 56

Tom Rondeau

(www.trondeau.com)

Scheduler Details



Scheduler Flow Chart

Each block’s thread runs the loop until done

Handles messages, state, and calls run_one_iteration:

Set thread's
processor affinty

tpb thread body.cc

[iell previous and next biocks |
{that there is input data andior |
{output bufter space. ]

READY_NO_
ouTRUT

Handle queued
iessages

{tell previous blocks that there
{is output bufter space.

[bropagate 16 upsiream and
| downstream blocks we're done |

run_one_iteration()
(block_executor.cc)

wait for
put

wait for
output space|

[Waits for datalspace OR

anew!
| message to handle |

Scheduler Det



Scheduler Flow Chart

run_one_iteration in block executor.cc

Start of the iteration:

getgr:block =>m
getgrblock_detail => d

calc. space on round down to
outpuit buffer nearest output_muliple max_noutput_items. setup_call_to_work

calculate
noutput_items
- ound down to output_muliple
- cap to max_noutput_items.

Any input tems <\/*°

getitems_available
Qutput_multiple?

for allinputs

calc. space an
output buffer

were_done

getitems_available
for all inputs

Scheduler Det




Scheduler Flow Chart

run_one_iteration::try_again

If block has inputs (sinks/blocks), handle input/output regs.:

reqd_noutput_items > 0

noutput_items =
reqd_noutput_items.

reqd_noutput_items
<noutput_tems.

_noutput_items =
max(output_miltiple, max_noutput_items),

clamp noutput_items to
max_noutpul_items

maximum noutput_items
so1is also aligned

Gutput_muttipls
ot set

update unaligned state

foutput_items >
Quiput_multple?

foutput_items <
alignment req,

all forecast
sets ninput_items_requred

round noutput_items
were_done

to alignment
set aligned flag

doall getall pointers
inputs have to input bufters
nitems req?, — input_tems
fitems req >
max possible

nitems req

reset
alignment

31 /56

Scheduler Det




Scheduler Flow Chart

run_one_iteration::try_again: Fixed Rate

Fixed rate blocks have special restrictions:

reqd_noutput_items > 0
&

noutput_items =
reqd_noutput_items.

found down to
nearest output_multiple:

reqd_noutput_items
noutput_items

clamp noutput
max_noutput_items

maximum noutput_items
soi's also aligned

Guput_mutiple
ol set

update unaligned state

Foutput_items >
Quiput_multiple?

foutput_items >

st
alignment req,

all forecas
sets ninput_items_requred

round noutput_items
to alignment
set aligned flag

setup_call_to_work

1S

wa
A e
g, A .

nitems req

alignment

Scheduler Det




Scheduler Flow Chart

run_one_iteration::try_again: Alignment

Works to keeps buffers aligned if possible:

fixed_rate?

clamp noutput
max_noutput_items

all forecast
sets ninput_items_requred

found down to
nearest output_multiple:

update unaligned state

foutput_items >
alignment req,

round noutput_items
to alignment
set aligned flag

reqd_nout
n

reqd_noutput_items > 0
&

ftput_items

noutput_items =
reqd_noutput_items.

doall
inputs have
nitems req?

1S
10 input buffers
— input_items

setup_call_to_work

maximum noutput_items
soi's also aligned

N =

Foutput_items >
Quiput_multiple?

fitems req >
max possible
nitems req

alignment

Scheduler Det

33 / 56



Scheduler Flow Chart

run_one_iteration::try_again: Failure

If something goes wrong, try again, fail, or block and wait:

reqd_noutput_items > 0
& noutput_items =
reqd_noutput_items.

found down to
nearest output_multiple:

fixed_rate?

reqd_noutput_items
noutput_items

clamp noutput
max_noutput_items

maximum noutput_items
soi's also aligned

Guput_mutiple
ol set

alignmént req,

update unaligned state

foutput_items >
Quiput_multiple?

st

all forecas foutput_items >
sets ninput_items_requred

alignment req,

round noutput_items
to alignment
set aligned flag

doall 1S
inputs have 10 input buffers setup_call_to_work
nitems req? — input_items f
fitems req >

max possible
nitems req

alignment

Scheduler Det 34 / 56



Scheduler Flow Chart

run_one_iteration: :setup_call_to_work

Call work and do book-keeping:

setup_call_to_work

get all pointers
to output buffers
- output_items

call
start_perf_counters

call
n = general_work

call
end_perf_counters

Using Perf
Counters?

adjust alignment

were_done

propagate_tags

n'=
WORK_CALLED
~PRODUC

produced?

35 / 56

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26



Scheduler Flow Chart

run_one_1iteration: :were_done

the flowgraph can’t continue, end it:

were_done

set block done

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 36 / 56



Scheduler Flow Chart

"Get items_available for all inputs”

Gets difference between write pointers and read pointers for all inputs:

input_items[0] output_items[0]
» Block
o !
Z7771iiilnnnnnnn PATTILIITIITTTT]
r_ptr w_ptr r_ptr w_ptr

H_/

items_available[0] = w_ptr - r_ptr

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 37 / 56



Scheduler Flow Chart
“Calc space on output buffer”

Space available is the difference between write pointers to the first

read pointer. noutput_items is the minimum for all output buffers:

input_items[0] output_items[0]
» Block
o ,
Z7771inilnnnnnnn PATTTIIITTITTTIT]

r_ptr w_ptr r_ptr  w_ptr

-/ H_

noutput_items[0] = r_ptr - w_ptr

Tom Rondeau (www.trondeau.com)

Scheduler Details

2013-09-26 38 / 56



Scheduler Flow Chart

“call forecast, sets ninput_items_required"

Given noutput_items, forecast calculates the required number of
items available for each input.

void
sync_decimator: :forecast(int noutput_items,
gr_vector_int &ninput_items_required)

{

unsigned ninputs = ninput_items_required.size();

for(unsigned i = 0; i < ninputs; i++)

ninput_items_required[i] = \
fixed_rate_noutput_to_ninput(noutput_items);

int
sync_decimator::fixed_rate_noutput_to_ninput(int noutput_items)
{

return noutput_items * decimation() + history() - 1;

}

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26



Scheduler Flow Chart

“Do all inputs have nitems req.?"

Tests that items_available[i] >= ninput_items_required[i]
for all 1.

o If yes, run the setup_call_to_work section.

@ Otherwise, we're in a fail mode:
o If we still have enough output space, goto try_again.
o If the input is marked done, goto were_done.

If block requires more than is possible, goto were_done.

Otherwise, we're blocked so we exit and will start over on next
iteration.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 40 / 56



Buffer Creation

Section 5

Buffer Creation

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 41 / 56



Buffer Creation

Buffers are handled almost completely behind the

Scenes

Standard Creation

@ GNU Radio selects the best option for how to create buffers.

@ Allocated at the start of a page.

Length is a multiple of the page size.

Memory mapped second half for easy circular buffer.

Guard pages one either side.

@ Minimum buffer size.

@ Maximum buffer size.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26



Buffer Creation
Circular buffers in memory

Shows guard pages and memory-mapped half

allocated
guard space to GR guard
— — ~ -~
%AilllilininininnnnnnnanEnnnnnnnnnZ
— I
actual space allocated

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 43 / 56



Buffer Creation
Buffer creation techniques

Controlled by the vmcircbuf classes

@ Selects from:
o vmcircbuf_createfilemapping.h

o vmcircbuf_sysv_shm.h
o vmcircbuf_mmap_shm_open.h

o vmcircbuf_mmap_tmpfile.h

@ Reads from a preference file, if set.

@ Tests all factories, saves preferred to preference file.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26



Buffer Creation

Buffer creation: Create File Mapping

Generally used for MS Windows

@ size required to be a multiple of the page size.
o Uses CreateFileMapping to get a handle to paging file.

@ Allocates virtual memory of 2*size.
o Uses VirtualAlloc to get first_tmp.

@ Map the paging file to the first half of the virtual memory.
o Uses MapViewOfFileEx with first_tmp as pointer base.

@ Map the paging file to the second half of the virtual memory.
e Uses MapViewOfFileEx with first_tmp+size as pointer base.

@ Both first and second half are mapped to the same paging file.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 45 / 56



Buffer Creation

Buffer creation: Memory-mapped Temp File

Generally used for OSX

@ size required to be a multiple of the page size.
o Creates a temp file with permissions 0x0600.

@ Uses unlink to hide file and remove it when program closes.

Sets length of temp file to 2*size.

o Uses ftruncate.
@ Map the first half of the file to a pointer first_copy.
o Uses mmap to point to start of temp file.

Map the second half of the file to a pointer second_copy.
o Uses mmap to point to first_copy+size.

@ Resets temp file to size with ftruncate.

@ Uses first_copy as the buffer's base address.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26



Buffer creation: System V Shared Memory

Generally used for Linux/POSIX

@ size required to be a multiple of the page size.
o Uses shmget to get 2*size (plus guard pages) as schmid?2.
o Uses shmget to get size as shmidl.

o Attach shmid1 to first half of schmid2 with shmat.

@ Attach shmid1 to second half of schmid2 with shmat.

@ Memory in both halves of shmid2 are mapped to the same
virtual space.

@ Keep guard pages as read-only.

@ Return memory in shcmid2+pagesize as buffer base location.

o Keeps 2*size allocated.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 47 / 56



Buffer Creation

Buffer creation: Memory-mapped Shared Memory

Alternative implementation for Linux/POSIX

@ size required to be a multiple of the page size.

o Creates a shared memory segment with shm_open.
@ Sets length of memory segment to 2xsize.
o Uses ftruncate.
@ Map the first half of the file to a pointer first_copy.

e Uses mmap to point to start of memory segment.

@ Map the second half of the file to a pointer second_copy.
o Uses mmap to point to first_copy+size.

@ We should reset memory segment to size with ftruncate.
e on OSX this isn’t allowed, though; not actually compiled.

@ Uses first_copy as the buffer's base address.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26



Buffer Creation
VM circular buffer preference setting

Working VM Circular Buffer technique is stored in a prefs file

e Handled by vmcircbuf_prefs class.

o Path:
$HOME/ . gnuradio/prefs/vmcircbuf_default_factory

@ Single line that specifies the default factory function:
e e.g., gr::vmcircbuf_sysv_shm_factory

@ If no file, we find the best version and store it here.

@ Should only be created once on a machine when GNU Radio is
first run.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 49 / 56



Building a gr: :buffer

Buffers are built and attached at runtime

@ When start is called, flowgraph is flattened and connections
created.

@ gr::block_details are created and a gr::buffer for each
output.
o Buffer size is calculated as the number of items to hold.
@ min/max restrictions applied, if set.

@ Connects inputs by attaching a gr: :buffer_reader.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 50 / 56



Buffer Creation

Calculating gr: :buffer size

gr::flat_flowgraph::allocate_buffer

Takes in item_size.

Calculates number of items: nitems =
s_fixed_buffer_sizex2/item_size.

o s_fixed buffer_size = 32768 bytes.

o doubling the size to allow double buffering.

@ Checks that nitems is at least 2x output_multiple.

Checks max_output_buffer & min_output_buffer settings.
o Both default to -1, which means no limit.

@ Checks that nitems is greater than
decimation*output_multiplet+history.
o Must have enough to read in all of this at one time.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 51 / 56



Buffer Creation

Calculating gr: :buffer size: granularity

gr::buffer::allocate_buffer handles the actual creation

@ Checks if we have the minimum number of items:
o Based on system granularity (i.e., page size) and item size.
e Rounds up to a multiple of this minimum number of items.
@ Rounding up based on item size may result in unusual buffer
sizes.
e We handle this; just sends a warning to the user.

o Calls VM circular buffer default factory function.

@ Sets d_base, the address in memory for the buffer, from the
circular buffer.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 52 / 56



Buffer Creation

Controlling the size of buffers: min/max

User interface allows us to set min/max buffer for all blocks

@ Methods of gr::block:
e gr::block::set_min_output_buffer(port, length)
e gr::block::set_max_output_buffer(port, length)
@ Methods to set all ports the same:
o gr::block::set_min_output_buffer(length)
e gr::block::set_max_output_buffer(length)

@ Will still round up to the nearest granularity of a buffer.

@ Can only be set before runtime to have an effect.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26



Section 6

Wrap-up

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 54 / 56



Wrap-up
Review:

This presentation covered:

The responsibility of the scheduler.

And understanding of the user interaction with the scheduler.

The roles the scheduler plays in the three data streams:
o Overview of the data stream, message passing, and tag streams.

o Alignment, output multiple, forecast, and history.

@ Flow chart of the threaded loops each block runs.
e Launching the thread body.
e Handling messages.

o calling run_one_iteration and its tasks.

In-depth look into how the scheduler makes its calculations.

o Buffer structure, calculations.

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 55 / 56



Wrap-up
Purpose:

From the information in this presentation, you should be able to:

@ Better interact with the three data stream models

@ Use the features of the data flow model (forecast, history, etc.)
to improve logic, performance

@ Understand how the buffer system works

o and how to extend or alter it for different architectures

Tom Rondeau (www.trondeau.com) Scheduler Details 2013-09-26 56 / 56



	The Flowgraph
	The general_work and work functions
	Scheduler's job
	Scheduler Flow Chart
	Buffer Creation
	Wrap-up

