Yeast Oscillations, Belousov-Zhabotinsky
Waves, and the Non-Retraction Theorem*

When you think of scientific applications of topology,
you usually think of physics: fiber bundles [1], solitons
[2], and instantons in particle physics, for example.
But more and more, topology is beginning to play an
important role in chemistry and biology. When bio-
chemists discuss the three-dimensional ceiling of
DNA, differential topology is the language of choice
[3-6]. The widespread occurrence of closed rings of
DNA leads to complex topologies: knots or even net-
works of interlocked rings (as in the Trypanosome par-
asite that causes sleeping sickness) [7, 8]. Amazing en-
zymes called “topoisomerases”” can break DNA rings
and rejoin them with altered topology [9, 10]. These
feats have only recently been mimicked by man-made
technology —after decades of effort, organic chemists
[11, 12] have synthesized the first molecular Mobius
strip.

In this spirit I present two disparate examples of
science unified by a theorem of topology, the so-called
non-retraction theorem. The first example should ap-
peal to beer drinkers—it concerns a peculiarity of the
yeasts’ brewing schedule. Then turning from rhythms
in time to patterns in space, the second example deals
with chemical waves in a remarkable broth, the Be-
lousov-Zhabotinsky reagent. Unlike the tedious chem-
istry of high school days, this little dish of reactions
seems positively alive. Against a motionless orange
backdrop, blue spiral waves rotate and spread like
grassfires, each dominating its own paich of reagent,
colliding with and annjhilating intrusive blue waves
from afar. There is much topology in these two-di-
mensional patterns and even more in their three-di-
mensional analogues, all organized around the non-
retraction theorem.

* I owe much to A. T. Winfree. The best ideas in this article are his.
Many of them can be found (in less overtly mathematical form) in
his forthcoming book, When Time Breaks Down (Scientific American
Library, W. H. Freeman, San Francisco). For more applications of
topology to bioclogy, see his monograph The Geometry of Biological
Time (Springer-Verlag, New York, 1980). I thank Mel Prueitt for com-
puter graphics software and instruction.

Steven Strogatz

1. Yeast

Yeast is most famous for its biochemical knack of con-
verting sugar to alcohol. But with some provocation
by inquisitive biologists, the cells are capable of topo-
logical tricks of timing that may surprise you.

Before discussing topology, we need a bit of biology.
The full story is told in [13-15]. The relevant facts con-
cern the yeasts’” timetable. Under contrived laboratory
conditions, yeast cells do not metabolize sugar
through a series of monotonous steps; instead some
of the intermediate reactions proceed via oscillations
(though the end result is still a steady trickle of al-
cohol). For example, biochemists have monitored the
levels of a metabolic intermediate, NADH, which con-
veniently fluoresces under ultraviolet light. Its blue
glow brightens and dims periodically, revealing a cycle
in the underlying biochemistry. Furthermore, the in-
dividual cells are mindful of the others; they pulse in
unison, collectively synchronized in a biochemical
rhythm which waxes and wanes twice per minute.

Steven Strogatz
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Figure 1. A square of initial phases (¢, ¢,) in the phase
compromise experiment for yeast glycolysis. Phases 0 and 1
represent the same point in the biochemical cycle. The con-
tours of compromise phase & = f(¢$;, &) are not shown here,
since this figure is for a preliminary thought experiment:
according to axioms Al1-A3, Ad(AB) = 1 and AG(BC) =
AG(CA) = M = integer. Hence W = AG(ABCA) = 2M + 1
# 0. By the non-retraction theorem (section 2), f must be
discontinuous within ABCA.

It would be extraordinary luck if all the yeast began
in unison. So how do they manage to get in step and
stay there? Presumably the cells communicate by mo-
lecular diffusion and then each accelerates or hesitates
to get in step with the stirred mass.

A simple experiment [13] elucidates these adjust-
ments. Two equal volumes of cells, each synchronous
within itself, yet out of step with the other volume,
are mixed together. After mixing, they rapidly resyn-
chronize in the standard cycle, but perhaps at some
compromise phase. How does the compromise phase
depend on the old phases of the “parent” ingredients?

We could dream up all sorts of rules: “Whichever
group peaked first sets the pace, and the other falls in
step.” But that rule is nonsense—since both groups
are periodic, neither can be said to have peaked
“first.” Another try: “If groups 1 and 2 have pro-
gressed through fractions ¢, and &, of the cycle, then
upon mixing they adopt the average, '2(¢; + ¢,).”” Nor
is this rule well-defined, since the fractions depend on
an arbitrary selection of the “beginning’” of each cycle.
In other words, the purported compromise depends
unrealistically on our conventions: whether the cycle
is said to begin at its peak, at its trough, or wherever.

So fix any reference point for the cycle’s beginning,
but stick to it. Having done so we can define the useful
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notion of phase: the cell’'s biochemical rhythm is at
phase & when it has progressed through a fraction ¢
of its cycle, as measured in equal time steps from the
arbitrary zero point. Notice that phase should be re-
garded not as a real number, but instead as a real
number (mod 1), or equivalently as a point on the unit
circle 5!, because (¢ = 0 = beginning) and (¢ = 1 =
end) correspond to the same part of the biochemical
cycle. Now the question about phase compromise can
be restated [16]. The phase ¢ of the mixture has some
unknown functional dependernce on the phases ¢, and
¢, of the ingredients.

¢ = fdr, b))
f: 5l x 51— sl

What can be said, a priori, about the function f? (Biol-
ogists [13] have actually done the experiments, and
thus measured f, but that would be giving away the
answer.) It is plausible that:

(Al) interchanging the names of groups 1 and 2 will
not affect the outcome: fidp,d,) = fAd,dq).

if the separate groups agree in phase initially,
they continue. at that phase, unaffected by mix-
ture with their own kind. That is, if &; = &,
then ¢ = ¢; = b, (In science, this is usually
called a “control experiment.”)

Slight changes in the initial phases alter the out-
come only slightly: in other words, f is contin-
uous in each argument.

(A2)

(A3)

Though reasonable, these axioms probably sound
weak—they dont seem to pin down the function’s
detailed behavior. And yet within them lurks a topo-
logical surprise, the one advertised at the outset.

They are inconsistent.

In the proof of inconsistency, the final step invokes
the non-retraction theorem, discussed in the next sec-
tion.

Proof:

Step 1: Instead of thinking of f as a function on the
torus T2 = S! x §', regard it as a function on the unit
square I = [0, 1] x [0, 1]. Keep track of the phase
assigned to each point of the closed curve ABCA in
the unit square shown in Figure 1. In particular, since
the curve begins and ends at A, the compromise phase
¢ = f(d;, $,) must change by an integer number of
full cycles in one counterclockwise lap around this
path. This integer is the winding number W.

Step 2: Compute W. Along arc AB, ¢, = &,, so axiom
(A2)implies ¢ = &, = $,. Hence along AB, & increases
by one cycle. For convenience we write Ap(AB) = 1.
Along arc BC, A&(BC) equals some integer number M
of cycles (since points B and C represent the same



Figure 2. Phase compromise ex-
periments, plotting compromise
phase as a function of two parent
phases. The digits represent ob-
served compromise phase, plot-
ted in one-tenth cycle intervals,
using the data of Ghosh et al.
[13]. Contour lines link rough-
ly equivalent data. Note that ax-
ioms Al-A3 are satisfied, except
at the predicted phase singular-
ities, where continuity fails. From

O

biochemistry, and so are assigned the same ¢.) The
number M is unknown, but we do know AH(BC) =
AP(CA) = M. (This follows from the symmeiry (Al).)
These contributions imply a winding number of W =
2M + 1, around ABCA.

Step 3: Since M is an integer, W is odd. In particular,
W # 0. That’s all we need to derive a contradiction.
For if phase is to be assigned continuously (Axiom 3)
throughout the triangular region bounded by ABCA,
then the non-retraction theorem (next section) implies
that W = 0 along this boundary.

Which axiom is the culprit? The experiments impli-
cate A3, the continuity axiom. Indeed, the data seem
to show the most localized breakdown possible: a
“phase singularity” [14], a single point at which all
phase contours converge. Elsewhere, all three axioms
appear to be obeyed (Figure 2).

Near the singularity, the experimental results are ex-
tremely sensitive to initial conditions, and therefore
practically irreproducible. One must sympathize with
the pioneering experimenters [13]; at least three times,
they meticulously probed the zone here claimed to be
singular, each time obtaining a different compromise
phase. Their dogged conclusion:

Winfree [14], p. 62. {This figure
originally appeared in The Geom-
etry of Biological Time, by A. T.
Winfree, Springer-Verlag, 1980.)

The synchronization does not follow any clear pattern.

The reason . . . is not understood at this Hme. Much more
experimentation is probably needed before the effects can

be correlated to some variable in the system.

At the time, “more experimentation’ may have
seemed the only recourse. In retrospect, the yeast
were merely behaving as they had to, single-celled
creatures abiding by the non-retraction theorem.

2. The Non-Retraction Theorem

The non-retraction theorem forbids certain kinds of
mappings from a space to its boundary. In its simplest
form it merely states a familiar fact about intervals: a
closed interval cannot be mapped continuously onto
its two endpoints. All the points in the interval must
go one way or the other—otherwise, the interval is
ripped.

Stated more formally, let I = [0, 1], and let al = {0,
1} be its boundary. By a retraction of I, we mean a
continuous function r: I — a1 such that #/d] = identity.
In other words, r leaves the boundary pointwise fixed.
Of course, there is no retraction of I, since [ is con-
nected and its image r(I) must be connected as well.

It might appear that the disconnectedness of the
boundary is essential for this result; it is not. Consider,
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Figure 3. Any function f:D? — 5! which leaves the boundary
aD? = §! pointwise-fixed must be discontinuous. Wiggly
curves in the disk represent loci of constant phase, i.e., the
contours {f"}(p) : p ¢ S'}. Here the contours converge to a
“phase singularity,” the most localized discontinuity pos-
sible,

for example, the closed unit disk D? = {(x, y) € R?x?
+ 1?2 < 1} and its boundary 6D? = S'. The non-retrac-
tion theorem still holds, even though 5! is connected.
There is no continuous function r: D* — S! that leaves the
boundary pointwise fixed (Figure 3).

We can provide an intuitive proof of this fact using
the winding number. Let C = 3D? Then r assigns a
’phase” #(P) to each point P on C. Now r is the identity
on C; when P executes one anticlockwise circuit of C,
r(P) = P executes one anticlockwise cycle of phase in
S!. Hence, along C, the winding number is 1.

Now deform C, shrinking it radially (Figure 4). The
winding number must change continuously through-
out the deformation. But since the winding number is
an integer, it must be constant and hence is identically
1, even when C becomes arbitrarily small. This is a
contradiction: on-small circles the winding number is
zero, as in Figure 4.

The winding number argument suggests a refine-
ment of the theorem. The contradiction arose because
the winding number was nonzero on 4D? the stronger
assumption that #|aD? = identity is needlessly restric-
tive. Paring down to essentials, we see that any contin-
uous function r.D* — S' must have winding number zero
around 9D?. This is most easily proved using funda-
mental groups [17].

It was this form of the theorem that we invoked

Figure 4. The continuous funchion #.D? — 5! acts as the iden-
tity on C, so r(C} winds once around §' Hence W = 1 on
C As the large circle C shrinks continuously to a small arcle
¢, W vanes continuously and, being integer-valued, remains
constant Hence W = 1 on ¢ But for ¢ suthicently small, r(c)
15 an arc with no net winding arcund §* hence W = Oonc
Thg2 contradiction implies that ri1s discontinuous somewhere
n
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when discussing yeast, and we will invoke it twice
more when discussing BZ reagent.

We mention in passing only one of the vast gener-
alizations of the results above. If M is any compact
manifold with boundary, then there is no smooth map
r: M — dM that leaves oM pointwise fixed. The argu-
ment can be found in [18] and uses an elegant idea of
Hirsch [19]. Essentially it says the following. If such
an r exists, then for any regular value x € M, r~Yx)
must be a one-dimensional manifold (with boundary).
But the boundary of r~!(x) is precisely *~!(x) N M and
consists of the point x itself. There are, however, no
one-dimensional manifolds with only one boundary
component.

3. Belousov-Zhabotinsky reagent

Figure 5 shows an example of “Pa Ndau.” In this ritual
needlework embroidered by one of the Hmong
women of Laos, the spirals are said to hold a magic
spell; the borders guard the magic of the inner images.
All Hmong children begin life strapped to their
mothers’ backs in carriers elaborately decorated with
Pa Ndau, and Pa Ndau honors the dead on their final
journeys [20].

Nature too stitches the spiral patterns of Pa Ndau.
In a dish of motionless BZ reagent (Figure 6), a blue
spiral wave of “fire” (actually, chemical oxidation)
spreads across a medium of orange “grass” (quiescent,
unoxidized reagent). The wavefront advances relent-
lessly, oxidizing its neighbors in front and thus turning
them blue. The visual effect is striking: thanks to the
spiral geometry [21], the wave appears to rotate rig-
idly, slowly turning like the spray from a lawn sprin-
kler. Meanwhile its passage leaves a “burnt out,” re-
fractory region behind. Gradually the exhausted re-
gion recovers. Its color returns to deep orange,
indicating its renewed susceptibility to another oxi-
dizing pulse from its neighbors. Because of this re-
newal, the pattern is self-regenerating: it propagates
round and round, like a dog chasing its own tail, until
the energy resources in the medium are spent (after
about an hour.)

BZ reagent has become a Rorschach inkblot test. Ap-
plied mathematicians [22, 23] see it as an analog com-
puter for demonstrating rotating wave solutions to
reaction-diffusion equations. Chemists point to it as an
oscillating [24] oxidation-reduction reaction. And for
physiologists, it mimics pernicious rotating electrical
waves on the heart [25, 26], believed to be involved in
certain forms of heart attack.

Here it is recruited in the name of topology. The
existence of rotating waves in BZ reagent entails some
weird topological consequences, in the form of “phase
singularities.” First we must adapt the earlier notion
ot phase.

Figure 5. A “snail” motif in Pa Ndau, needlework of the
Hmong people of Laos.

Figure 6. The Belousov-Zhabotinsky chemical reagent, seen
by blue light transmitted through a 1 mm depth. The bright
spirals mark loci of maximum concentration of ferriin (Bel-
ousov's blue indicator dye); the intervening darkness is
deep orange. Waves of oxidation propagate from the spiral
centers at a few min per minute, the spirals turning in about
one minute. The dish is 90 mm in diameter. From Winfree
and Strogatz [29], Figure 2. (This figure originally appeared
in an article by A. T. Winfree and S. H. Strogatz, Physica-§D
(1983), pp. 35-49, North-Holland Physics Publishing, Am-
sterdam.)
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Figure 7. Contours of uniform phase on a disk periodically excited by a
clockwise rotating wave During one circuit of the boundary, at fixed time,
phase changes through a full cycle Hence a phase singulanty lurks within
the disk. From Wintree and Strogatz [29], Figute 5 (This figure onginally
appeared in an article by A, T. Winfree and S H, Stiogatz, Physica-8D (1983},
pp 35-49, North-Holland Physics Publishing, Amsterdam )

Figure 8a. A scroll-shaped wave surface formed trom sp1-  Fig. 8b. As in (a), but a 360° twist 13 imparted along the
rals. The singular point of a spiral wave 15 here replaced  length of the scroll before joining its ends. Both figures
by a singular filament aboutr which the scroll 15 colled  from Winfiee [14], p 233 (These figures onginally ap-
Without violating local chemical continuity, the scroll may — peared in The Geowetry of Brological Timie, by A T Win-
be closed n an untwisted nng free, Springer-Verlag, 1980.)
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Figure 9. Computer image of an “un-
twisted scroll ring,” obtained from
Figure 8a by adding more turns to the
spirals. A wide sector has been re-
moved to make the insides visible, The
inner piece of the wave is attached to
the singular ring; the outer piece has
budded off, and is formed by the col-
lision of spirals with their diametri-
cally opposite counterparts. Real
chemical scroll rings [31, 32] look less
symmetric, but are topologically sim-
ilar to this figure.

B o it & e

ANVTTRr e me—
SN o
._-::____u_:_.'—""‘-q.‘\.__
-o—:_"--l-.-‘“"'l

i {éﬂ' I
oK
i)
X0
)
- 4

ﬁ%}‘f«s SO
DO

Since every area element in the domain of a spiral
wave is periodically excited by its recurrent passage,
each element may be assigned a phase. As before, a
phase is a point on S'; now it represents the fraction
of a cycle elapsed since the arrival of the previous
wavefront (at the point in question).

This phase description breaks down in an informa-
tive way: it detects a point to which phase cannot be
meaningfully assigned (hence, one which is not peri-
odically excited). The proof relies on the non-retraction
theorem, as applied to a closed curve C that encircles
the spiral’s inner portions (Figure 7). The winding
number of phase around Cis W = +1. (Why? Because
as time advances, the wave periodically rotates
through all locations along C. Hence, at fixed time, one
point is just now being excited, those ahead of the
wave are in varying stages of anticipation, and those
behind are in varying stages of recovery, running
through all phases once in a circuit of C.)

As before, the key point is that W # 0 around C.
Now if we idealize the assignment of phage
throughout the dish of reagent as a mapping ;D?* —
S!, the non-retraction theorem requires that f be dis-
continuous. The alternative is that f fails to be defined
somewhere in D? i.e., some point is not periodically
excited. The latter option is physically reasonable; mo-
lecular diffusion smears the observed wavefront, and
the inner end of the spiral appears to thrash about, or
“meander” [27].

Of course, the actual medium is three-dimensional.
in thick layers of BZ reagent, the spirals are seen to be
slices of a wave surface shaped like a scroll [14, 28].
The singular point elongates to a thread of phaseless-
ness (Figure 8a). For chemical reasons [29, 30], the

thread generically closes in a ring, and the scroll closes
in a toroidal “scroll ring” wave.

The closure might occur in many topologically dis-
tinct ways: the ends could be joined directly (Figure
8a), or the scroll could first be twisted along its length
through 360° (Figure 8b), or it could even be knotted.
What would these structures look like, and would they
be chemically viable?

The simplest is shown in Figure 9. It is a surface of
revolution swept out by a spiral orbiting a distant axle.
The spirals all intersect and terminate at a common
kink. (They terminate because of the empirical obser-
vation that such colliding waves annihilate, just as col-
liding grassfires cannot continue through each other’s
ashes.) These waves have been observed [31] and pho-
tographed recently [32]. Their chemical viability is in-
disputable.

On the other hand, the once-twisted scroll ring
(Figure 8b) is chemical nonsense. Though locally a
normal scroll wave, its global behavior is unphysical.
(Scroll rings are reminiscent of fiber bundles [1] in this
interplay of local and global properties.} To visualize
a twisted scroll ring, imagine extending the surface’s
edge in Figure 8b, stopping its development whenever
bits of edge collide.

Not easy, is it?

A more indirect approach is instructive. Encase the
twisted scroll ring with an imaginary torus. The inter-
section of the wavefront with the toroid is a ring which
threads the hole exactly once (since the generating
spiral twists once as it orbits the hole axis.) The past
and future positions of this ring constitute the instan-
taneous contours of constant phase on the torus
(Figure 10). In a circuit around the toreid’s inner
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Figure 10. Curves of constant phase on an imaginary torus
encasing a twisted scroll ring. One of the curves represents
the position of the moving wavetront. Because of the scroll’s
twist, the curves link the toroid’s hole. Only half of each
curve is visible. From Winfree [14], p. 255. (This figure orig-
inally appeared in The Geometry of Biological Time, by A. T.
Winfree, Springer-Verlag, 1980.)

equator, the contours are encountered in succes-
sion, running through a full cycle after one lap, so that
W= =1

Hence, around the inner equatorial circle, W #= 0.
This circle bounds a disk that plugs the toroid’s hole.
As in earlier arguments, there must be a phase sin-
gularity within the disk. Here’s a new wrinkle: since
the theorem applies to any disk-like diaphragm
bounded only by the equator, each such diaphragm is
pierced by a singular point. Following the singularity
from one diaphragm to another, we trace a new sin-
gularity, an unforeseen filament threading the original
singular ring.

Computer graphics replaces this existence proof
with a picture (Figure 11). The wavefront is a screw
surface, a gnarled helicoid built from spirals. As in a
parking garage, we can move from one level fo the
next by staying on the surface and circulating around
the central axle, Chemically the axle would be a sink,
a collision locus for waves emanating from the original
singular ring. However, sinks have never been ob-
served in BZ reagent.

The non-retraction theorem spawns a prediction: a
twisted scroll ring is not chemically viable. Indeed, fur-
ther investigation shows that scroll ring topology is
quantized; the only configurations of linked, twisted,
and knotted rings which are potentially realizable are
those for which a certain mathematical index vanishes

16 THE MATHEMATICAL INTELLIGENCER VOL. 7, NC. 2, 1985

[29, 33-35]. On topological grounds, it seems that
waves in BZ reagent are like atoms—they fall into a
periodic table, not of chemistry but of shape.

Division of Applied Sciences
Harvard University
Cambridge, MA 02138
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Figure Ila (right). Similar to Figure 9,
but obtained instead by extending the
twisted scroll ring of Figure 8b. Unlike
Figure 9, this wave is in one piece, at-
tached to the inner singular ring—
strictly speaking, the wavefront must
be continued to infinity so that it will
not have to end along an artifactual
edge. No such structure could exist
chemically. {In the computer construc-
tion, the edge was placed in the invis-
ible sector.) From Winfree [36], Figure
14a,

Figure 11b (below). The screw-like
surface near the vertical axle is viewed
through several windows in the fully
evolved wave. The original singular
filament is horizontal, near the center;
note that it is threaded by the axle sin-
gularity, as predicted by the non-re-
traction theorem. From Winfree [36],
Figure 14b. (These figures originally
appeared in “Wavefront Geometry in
Excitable Media” by A. T. Winfree, an
article in Fronts, Interfaces, and Patterns,
ed. by A. Bishop, 1984, North-Hol-
land, Amsterdam.)
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