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We analyze a large system of nonlinear oscillators with random pinning, mean-field coupling and external drive. For small
coupling and drive strength, the system evolves to an incoherent pinned state, with all the oscillators stuck at random phases.
As the coupling or drive strength is increased beyond a depinning threshold, the steady-state solution switches to a coherent
moving state, with all the oscillators moving nearly in phase. This depinning transition is discontinuous and hysteretic. We
also show analytically that there is a delayed onset of coherence in response to a sudden superthreshold drive. The time delay
increases as the threshold is approached from above. The discontinuous, hysteretic transition and the delayed onset of
coherence are directly attributable to the form of the coupling, which is periodic in the phase difference between oscillators.

The system studied here provides a simple model of charge-density wave transport in certain quasi-one-dimensional metals
and semiconductors in the regime where phase-slip is important; however this paper ;s intended primarily as a study of a

model system with analytically tractable ccllective dynamics.

1. Intreduction

Large systems of coupled nonlinear oscillators
arise in many scientific contexts. They have beeu
used to model cooperative dynamical systems in
physics, chemistry, and biology, including charge-
density waves [13, 15, 19, 40}, oscillating chemical
reactions [23, 44], and networks of oscillating nerve
and heart cells [43, 44]. Coupled oscillators are
also of great theoretical interest, as they provide
tractable models for studies of nonlinear dynamics
in systems with many degrees of freedom [1, 2,
4-9, 11-13, 22- 15, 28, 30-40, 42-46).

1.1. Model

In this paper we analyze the following system of
coupled oscillators in the infinite-N limit:

6,=E+bsin(a,—6,)
N

+% lem(oj—gi)’ i=1,...,N, (1-1)
Jj=

where 6, is the phase of the ith oscillator, E, b,
K >0 are fixed and the «; are independent ran-
dom variables uniformly distributed on [0,2x].
The many-body system (1.1) provides a model of
charge-density wave transport in certain quasi-
one-dimensional metals and sewniconductors, as
discussed in section 1.5 and in [40]. Therefore we
shall adopt some of the language used in the
charge-density wave literature, giving definitions
where appropriate.

The phases 0, in (1.1) can be visualized as a
swarm of points moving along the unit circle. The
points move without inertia in response to three
competing forces. The pinning term bsin(a; — 8;)
tends to make 6, stick at the random angle a,.
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rangement of the phases 8. This pinning term is
opposed by both the applied field E, which tends
to drive the phases at a constant angular velocity
and thus favors moving solutions; and by the
coupling term (K/N)X;sin (8, - 6;), which tends
to make 6, = 6, and thus favors ordered solutions.
The ratios K/b and E/b determine whether the
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steady-state solutions of (1.1) are ordered or disos-
dered, static or moving. Without loss of generality
we normalize (1.1) by setting b= 1.

Roughly speaking one expects the following
steady-state behavior of (1.1): for small E and K
the pinning term dominates and the oscillators
become pinned at random phases. As E increases
with K fixed, the pinned state loses stability at
some depinning threshold E = E+(K) and the sys-
tem evolves to a steady-state moving solution.

Our goal is to characterize the steady-states and
bifurcations of (1.1) as E and K are varied. In
particular we will show that the depinning transi-
tion is discontinuous: the steady-state velocity of
the moving solution jumps up discontinuously
from zero at the depinning threshold. Furthermore
the transition is hysteretic: if E is decreased, the
moving solution does not re-pin until E falls
below a separate pinning threshold Ej,. Similar
hysteretic and discontinuous transitions are seen
experimentally in certain charge-density wave sys-
tems, as discussed in section 1.5.

1.2. Organization of the paper

In section 1.3 we outline our strategy for study-
ing (1.1) analytically. The main idea is due to
Kuramoto [22, 23, 25] and involves a dynamical
version of self-consistent mean-field theory. Sec-
tion 1.4 introduces the main phenomena exhibited
by the model: switching, hysteresis, and delay. In
section 1.5 we explaic how the dynamical system
(1.1) can be used to model charge-density wave
transport in “switching samples.” This section is
introductory and assumes no prior knowledge
about charge-density waves.

Sections 25 concern the mathematical analysis
of (1.1). In section 2 we obtain all the static
equilibrium solutions and analyze their bifurca-
tions as the parameters E and K are varied. In
section 3 we use variational methods to calculate
the depinning threshold E,, above which the
pinned state loses stability and the system jumps
to a moving solution.

Section 4 presents an analysis of the steady-state
moving solutions. By seeking travelling-wave solu-
tions of a form suggested by symmetry arguments,
we reduce an infinite-dimensional problem to a
boundary value probiem for a single ordinary
differential equation. Perturbation theory is used
to obtain formal asymptotic solutions of this dif-
fereatial equation in two regimes: the high field
limit E >> 1 and the large coupling limit K> 1.
Numerical simulations indicate that the moving
solution disappears at a pinning threshold Ep; we
argue that this disappearance occurs when a stable
limit cycle corresponding to the moving solution
coalesces with an unstable limit cycle.

Section 5 presents numerical and analytical re-
sults about delayed depinning in response to a
sudden superthreshold drive. We derive an evolu-
tion equation for the phase coherence and use it to
explain our numerical results.

Section 6 offers concluding remarks. We com-
pare our work with previous studies and indicate
some directions for future research.

In the appendix we present the details of the
perturbation calculations needed in section 4.

1.3. Infinite-range coupling

A good starting point for analyzing a new
many-body system is io assume that the coupling
is infinite-range. This assumption usually simpli-
fies the analysis while preserving many of the
qualitative features found in models with nearest-
neighbor or other kinds of short-range coupling.
The infinite-range model (1.1) with b=1 is

6,=E +sin(«,—5,)
K N
+ 5 }lem(gf’“@")’ i=1,...,N, (12)
=

where the factor 1/N normalizes the coupling
term. Because the sum extends over all j, (1.2) can
be conveniently rewritten in terms of a mean-field
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Fig. 1. The order parameter re'¥, as defined by (1.3). The
radius r characterizes the coherence of the phases §; and the
angle ¢ characterizes the average phase. The collective velocity
v is defined as v =14

quantity
o1 X
retv=x5 3 € (1.3)
j=1
to give

6,= E +sin(a; - 0;)
+Krsin(¢—8), i=1,..,N. (1.4)

The quantity re'¥ provides an order parameter
for the system [23, 25, 28, 40]. As shown in fig. 1,
the magnitude r of the order parameter character-
izes the amount of order or coherence in the
configuration of the §;, and { defines the average
phase. The quantity v —v.]/ measures the average
velocity of the system.

At first glance (1 .4) appears to be an uncoupled
set of equations: §, depends explicitly on 6;, &;, E,
Kr and ¢, but not on the other 0 Of course 0, is
coupled to all the other 6, but only through the
mean-field quantities » and ¢ defined by (1.3).
This observation led Kuramoto [22, 23, 25] to the
following insight (in a different but related con-
text): For finite N, one expects the coherence r
and the average velocity v to vary in time. How-
ever for large N these variations should decrease
as O(N~YV 2) ). Hence to find the steady-state solu-
tions of systems like (1.4) in the large N limit, one
can impose a fixed r and v, solve (1.4) for all the
6,(t), and then demand that the resulting solutions
6, be consistent with (1.3) at all times. This re-
quirement of self-consistency determines 7 and v
and thus solves the problem.

In this paper we use this self-consistency argu-
ment to analyze the mean-fieild model (1.4) in the
limit N — co. The continuous analogue of (1.4) as
N- oo is

6,=E+sin(a-0,) + Krsin(y—46,),
ac[0,27], (1.5)

where the order parameter is now defined as

L1
iw_ 1 [
re“‘=-2—1—r_£e°°da. (1.6)

Note that a re-indexing has taken place between
(1.4) and (1.5): because the equation of motion
(1.4) depends on i only through a;, we can re-label
each @ in (1.5) by its associated a. This assumes
that all oscillators with the same a eventually
move identically, regardless of their initial condi-
tions — this is certainly the case in our computer
simulations.

1.4. Switching, hysteresis, and delayed onset of
coherence

Eq. (1.5) can exhibit interesting dynamics be-
cause of its third term Krsin(y —6,), which
represents a collective force that pulls each &,
towards the population average phase . The col-
lective force has an effective strength Kr that is
proportional to the coherence r of the whole popu-
lation. Thus an incoherent population exerts no
force on any of its members. On the other hand,
once coherence starts to develop, it can set off a
positive feedback process: as r increases, the ef-
fective coupling Kr increases, thus tending to bring
the phases closer together towards v, which makes
r even larger, and so on. Whether thi; process
becomes self-sustaining depends on the parame-
ters K and E and on the initial conditions. For
example, when E = 0 the static pinned configura-
tion @, = « always solves (1.5): it has = 0 so the
collective pull vanishes, and the pinning forces
sin(a — 6,) are also zero. But is this state stable?
Clearly for K large enough the system is prone t0
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Fig. 2. Switching and hysteresis between pinned and moving
solutions of (1.2). The velocity v and coherence r of the
steady-state solutions of (1.2) are plotted against the applied
field E. The data were obtained for N = 300 phases by numeri-
cal integration of (1.2) with K= 1. As E exceeds the depinning
threshold E; the system switches discontinuously from the
incoherent pinned state (=0, v =0) to the coherent moving
state (>0, v> 0). As E is decreased the system switches back
to the pinned state at a separate pinning threshold Ep. Because
Ep < Er, a hysteretic region is formed.

the feecback process discussed above; it turns out
that K= 2 is the threshold above which stability
is lost (section 2.1) and the system jumps into a
coherent configuration with r= 1.

We now present the results of numerical experi-
ments which illustrate some of the behavior of
(1.4) in the large N limit. For any initial condi-
tions the iufinite-N system always evolves to a
steady-state solution for which the average veloc-
ity v and the coherence r are both time-indepen-
dent. Fig. 2 plots the steady-state velocity and

coherence of the system (1.4) against the applied
field E for the case of N =300 oscillators and
coupling strength K'=1. For small E the system
is pinned (v = 0) and incoherent (» = 0). When E
cxceeds the depinning threshold E, the velocity
jumps up discontinuously, a phenomenon we call
switching by analogy to the switching seen in the
current-voltage characteristics of some charge-
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Fig. 3. Stability diagram for steady-state solutions of (1.2):
solid line, depinning threshold Et = (1 — K2/4)!/2 determined
analyt..ally in section 3; dashed line, pinning threshold Ep
obtained by numerical integration of (1.2) for N = 300 phases.

density wave systems [10, 15-21, 29, 41, 47]. With
further increase in E, the velocity increases nearly
linearly. If E is then decreased, the velocity de-
creases and then switches discontinuously to zero
at the separate pinning threshold E = Ep as shown
in fig. 2(a). Fig. 2(b) shows that the coherence r of
these solutions also exhibits hysteresis with dis-
continuous jumps at Er and Ep.

The thresholds E; and E; depend on the cou-
pling K, as shown by the bifurcation diagram
plotted in fig. 3. The depinning threshold E(X)
is found analytically in section 3:

KZ
E(K)=( V1= 7 Ks2

0, K>2.

Note that for K> 2, the system moves for any
E>0. In other words the depinning threshold

vanishes for sufficiently strong coupling. The pin-
ning threshold E; shown in fig. 3 was determined
numericaily using the initial condition §,= 8, V i, j.
We have not been able to derive an analytical
expression for Eyx(K ) when E > 0. The thresholds
E+(K) and Ep(K) in fig. 3 bound a hysteretic

region where both pinned and moving solutions
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Fig. 4. Delayed onset of coherence for (1.2) when E and K are just above the depinning threshold and the initial state is incoherent.
Eq. (1.2) was integrated numericaily for N = 300 phases, with E=0 and K = 2.001. For ciarity, oniy every fourih phase is shown.
The time corresponding to each panel is shown in its upper right hand corner. Starting from a random initial condition the system
first evolves toward the diagonal, corresponding to the pinned state & = «,. The system slowly leaves the neighborhood of this saddle

equilibrium, and eventually reaches the coherent final state by ¢ = 30.
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are stable; the final state reached depends on
initial conditions.

The system (1.4) exhibits a peculiar transient
behavior when the system is initially incoherent
and when the parameters £ and K are chosen just
above the depinning threshold: before evolving to
the globally attracting coherent state, the system
approaches and lingers near a saddle equilibrium
corresponding to the pinned state. This results in a
delayed onset of coherence.

Fig. 4 shows the evolution of the phases 6,
starting from a random initial configuration, with
E =0 and K =2.001. Note that the panels of fig. 4
are not equally spaced in time. The system first
evolves rapidly toward the unstable pinned state
0, = a, corresponding to the diagonal in each panel
of fig. 4. An unstable mode grows slowly and
eventually leads to the ripping seen at ¢ = 20. The
coherent state is reached by ¢=30. A theory of
this delayed switching to the coherent state is
presented in section S.

1.5. Charge-density wave transport

Under certain conditions the behavior of charge-
density waves can be modeled by the dynamical
system presented in this paper. This section serves
as an elementary introduction to charge-density
wave transport for readers with no prior exposure
iv the subject. (For reviews see [15] or [19].) This
section also discusses the strengths and weak-
nesses of our equations as a model of charge-den-
sity wave transport.

A charge-density wave is a collective electronic
state found in certain quasi-one-dimensional met-
als and semiconductors. In these materials, a uni-
form distribution of conduction electrons loses
stability below a critical temperature, giving rise
to a periodic modulation of the charge density
with an accompanying periodic distortion of the
crystal lattice. Quasi-one-dimensional systeins can
be realized experimentally in materials which con-
duct current much more readily along one direc-
tion than along the other two.

Charge-density wave systems exhibit nonlinear
conduction in response to an applied electric field:
when the applied field is weak, the charge-density
wave is pinned by impurities -or defects in the
lattice and carries no current; above a depinning
threshold field E; the charge-density wave breaks
free from the pinning sites and slides through the
crystal, carrying current.

Depinning of the charge-density wave can occur
either continuously or discontinuously as the elec-
tric field is increased. Considerable theoretical
attention has been given to the problem of contin-
uous depinning [12-15, 19, 30, 37, 42] which char-
acterizes the bulk of experimental data. On the
other hand, systematic studies of discontinuous
depinning, known as switching, have begun to
appear only recently [10, 15-21, 29, 41, 47].
Switching is seen experimentally as a break in the
current-voltage curve as the local electric field
crosses E and the charge-density wave suddenly
begins to move and carry current. Hysteresis ire-
quently accompanies switching in these systems
[18, 47]. That is, after the charge-density wave has
depinned, it will not repin until the electric field is
reduced well below E;. Switching samples also
exhibit a delayed onset of nonlinear conduction in
response to a sudden super-threshold applied field
{15, 19, 21, 47]. Switching is seen in charge-density
wave systems with very strong pinning sites, cre-
ated, for example, by radiation-induced defects
[10, 16-21, 29, 41).

The charge density p in a one-dimensional
charge-density wave system can be written as

p(x,1) = pg + pcpw cos (kx + 0(x, 1)), (1.7)

where 8(x,t¢) is the phase distortion of the
charge-density wave at position x and time ¢. The
charge-density wave has a preferred wavelength
A =2m/k but can be distorted (with some energy
cost) to accommodate local impurities or defects
in the latiice. When the pinning sites aic very
strong, the charge-density wave can be thought of
as consisting of many coupled domains, each asso-
ciated with one or several strong pinning sites.
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Fig. 5 shows a schematic picture of a charge-
density wave as a collection of domains, each with
a well-defined phase - that is, the phase distortion
8(x, t) is a slowly varying function of x within a
domain. Between domains, the amplitude pcpy of
the charge-density wave can collapse, allowing the
phases of adjacent domains to advance at different
rates [16-18, 20]. This phase-slip process relieves
the energetically costly phase distortion at the
expense of an amplitude collapse between do-
mains.

The effects of pinning, elastic deformation and
phase-slip are included in the following simple
model [40] for the motion of each domain:

6,=E +bsin(a;—6,)
+K) sin(8,-6,), i=1,...,N. (1.8)
J

Here 6, is the phase distortion of the ith domain,
E is the applied electric field, b is a typical
pinning strength, «; is the preferred random pin-
ning phase for the ith domain, and K is the
coupling strength between domains, which favors
an undistorted wave. The periodic coupling term
sin(6; — 0;) is roughly linear for small phase dif-
fereace (8, — 6,). Thus for small phase deforma-
tions this coupling corresponds to the elastic-cou-
pling assumption used in previous treatments of
charge-density wave dynamics [2, 12, 13, 30, 37,
42]. However the sinusoidal coupling also allows
phase-slip between domains by giving a restoring
force which softens and then reverses as the
phase-difference 8, — 0, increases.

This paper concerns the dynamics of (1.8) for
the case of infinite-range coupling, and shows that
the solutions of (1.8) exhibit switching, hysteresis,
and delayed conduction. In this sense (1.&) pro-
vides a simple model of the nonlinear transport
processes seen in charge-density wave switching
samples.

However, in addition to the obviously unphysi-
cal assumption that all domains are coupled to
each other with equal strength, there are several
other limitations of (1.8) as a model of charge-

density wave transport:

(1) Modelling phase-slip hy a sinusoidal cou-
pling term may capture some of the features of
this complicated process, but is certainly not cor-
rect in detail. A more realistic model should in-
clude the amplitude of the charge-density wave as
a dynamical variable. A model of switching in
charge-density waves based on amplitude collapse
at a single phase-slip center has been analyzed
recently [16, 20].

(2) We have made the simplifying assumption
that the coupling term in (1.8) is 2m-periodic in
the phase difference 6;—6;. This implies that
phase-slip between neighboring domains will oc-
cur as soon as the phase difference between them
exceeds . In real charge-density wave systems a
larger phase difference may be buiit up before a
2« phase-slip occurs [16, 20]. This has the impor-
tant physical consequence that many energetically
distinct metastable pinned states can exist; such
states are observed experimentally [15, 19] but are
not present in our model.

(3) The pinning strength b should be distributed
across domains, rather than constant as we have
assumed. This would allow different domains to
depin at different applied ficlds, and may lead to
multiple switching thresholds. an effect which has
been observed experimentally [17, 18}.

(4) The role of the “normal electrons” - those
conduction electrons which are not condensed into
the charge-density wave — has been compietely ne-
glected. The normal electrons provide an impor-
tant parallel conduction path through the material
and strongly influence the local electric fields felt
by the charge-density wave domains.

phase-slip
——— domain —— - fegion

Fig. 5. Schematic representation of a charge-density wave un-
dergoing phase-slip. Strong pinning sites separate the charge-

density wave into domains. Between domains the amplitude of
the charge-density wave can collapse allowing phase-slip.
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2. Static solutions

In this section we consider static equilibrium
solutions of the governing equations (1.5). The
analysis divides naturally into two cases: E=0
and £>0.

The case E=0 has been discussed in detail
elsewhere [28] and will be reviewed only briefly
here. The main result of this section is that there is
a jump bifurcation in the coherence r when K=
K_.=1489 and K=K=2.

For E > 0, we show that a subcritical branch of
static solutions with small r bifurcates along the
depinning threshold E;=y1 - K*/4. All of these
subcritical solutions are unstable, as can be shown
by extending the methods of [28]. In section 2.2,
we derive and analyze a self-consistent equation
for the.coherence r=r(E, K) of these unstable
static solutions and show that such solutions exist
only if E+ Kr <1. We argue by contradiction: if
static solutions exist for £+ Kr > 1, then we ob-
tain the contradiction that the coherence r or
some of the phases 8, must be coraplex.

Throughout this section, we emphasize that so-
lutions with > 0 arise as one-parameter families
of configurations parametrized by the average
phase . This means that whenever there is one
static solution to the equations, there is actually
an entire circle of solutions in configuration space.
This point is important to keep in mind; although
it is obvious for the static case, it helps us to
understand the moving solutions studied in later
sections — the limit cycles studied there are seen
here in degenerate form as circles of fixed points.

2.1, Static solutions for E=0

2.1.1. Explicit form of the solutions

For E = 0 the solutions of (1.5) always evolve to
a static equilibrium as ¢ — co. These static
equilibria satisfy 6, = 0. Hence

0=sin(a~0,)+ Krsin{y—6,), ac[0,2n].

(2.1)

Writing the sine functions as complex exponentials
and solving (2.1) for the phases 8, yields the
equilibrium solution

0, _ iy, | Krtele™®
TV ke @ w

[ utel?
= e“l‘J " e—iy R (2.2)
where
u=Kr (2.3)
and
Yy=a-. (2.4)

Thus for each u, there is a one-parameter family
of configurations (2.2) parametrized by .

2.1.2. Self-consistency equation
The solution (2.2) must be consistent with the
definition of the order parameter:

(1/2m) /7 e%da. Hence
ut+e V2
i 5e iy . 2.
re f (u+e“*) dY 23)

Note that the factor ¢'¥ cancels from (2.5). Thus
is arbitrary, reflecting the rotational symmetry in
the system. From (2.5) we obtain the self-
consistency equation for »:

reiV =

r=f(u), (2.6)
where
p1.4 1/2
1 u+el
f(u)—z,n{( +e“‘*) dy
2n

u + cos y
‘/l +2ucosy + u?

dy. (2.7)

The function f(u) may be expressed exactly in
terms of elliptic integrals [28].
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Fig. 6. Solution of the self-consistency equations (2.6) and
(2.7). Solid lines indicate the integral f(u) plotted from (2.7)
together with the line u/K (see text). Equilibrium solutions for
r occur where f(u) intersects the line u/K. For the values of K
shown, three solutions exist (filled circles). Dashed lines show
u/K for the bifurcation values K=K_ and K=Ky =2.

Fig. 6 shows the graph of f(u). At fixed K, the
corresponding values of r are found at the
intersections of the curve r=f(u) with the line
r =u/K (fig. 6). Note that jump bifurcations occur
where the line intersects the curve tangentially, at
K=K,~1489 and K=K;=2. The resulting
curve of of r versus K is plotted in fig. 7.

2.1.3. Stability of the solutions
In [28] we prove the following results about
stability:

(i) When r=0, the incoherent pinned solution
0,=a is globally stable for K < K, locally
stable for K <2 and unstable for K> 2. All
other solutions with r =0 are unstable.

(ii) For each u>0, there is a one-parameter
family or “circle” of static solutions (2.2)
parametrized by .

r 1.0% / f

05

e

Fig. 7. Coherence  of the static equilibrium solutions of (1.5)
with E =0, plotted against the normalized coupling strength
K. Solid lines, locally stable equilibria; broken lines, unstable
equilibria. Jump bifurcations occur at K=K, and K=2.

@

Q.O

Fig. 8. Schematic bifurcation diagram for equilibrium of (i.5)
with E =0. The coherence r and the average phase ¢ of the
equilibria are plotted in polar coordinates. The origin r=0
corresponds to the pinned state 6, = a, which is locally stable
for K < K. A circle of saddle equilibria (thin line) and a circle
of stable equilibria (thick line) appear at large r when XK= K_.
The pinned state 0, =a loses stability at K=Ky when it
coalesces with the circle of saddle points. Above X the only
attractor is the circle of stable points with large coherence

N

K

c

(iii) For u > u_ = 1.100, the critical circle is locally
stable to perturbations in all directious
transverse to the circle. For u < u_, the critical
circle consists of saddle points which are
unstable in precisely one direction. For all u,
the critical points are neutrally sta‘'c to
motion along the circle in the ¢ direction.

(iv) The circle of saddles coalesces with the circle
of stable points at K=K _. As K> K;=2,
u — 0, the saddle configurations for different
Y become more and more alike, and the
“radius” of the circle shrinks. At K=K 2
saddle circle coalesces with the incoherent
pinned state.

2.1.4. Schematic bifurcation diagram

Fig. 8 illustrates the transitions discussed above.
The diagram is familiar from the Landau theory
of first-order pbase transitions or the theory of
subcritical Hopf bifurcations. For each equilibrium
configuration 6, given by (2.2), the average phase
¥ is plotted as the polar angle, and the coherence
r as the radius. A circle of stable poinis with large
r coalesces with a circle of unstable points at
K=K_, and both are annihilated for K <K.. A
small circle of unstable points coalesces with the
stable r = 0 configuration at K = K, rendering it
unstable for K> K.

Fig. 8 is very schematic because each point
actually represents a configuration 6,, a € [0, 2],
and therefore belongs to an infinite-dimensional
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function space, not a two-dimensional space.
However, the picture is qualitatively faithful: as
shown by (2.2) there is a two-parameter family of
equilibria for (2.1), parametrized by the average
phase { and by u = Kr; the topological aspects of
the bifurcation are captured correctly by our two-
dimensional representation.

2.2. Static solutions for E >0

In this section we compute the shape and coher-
ence of the static configurations for E >0, and
show that they exist only if E+ Kr<1.

2.2.1. Explicit form of the solutions
The static solutions now satisfy the equation

d=E+sin(a—8,)
+Krsin(y-46,), a<i0,2x]. (2.3)

For r =0, there are two self-consistent continuous
solutions of (2.8):

8, =a+sin"'E (2.9)
and

,=a+a+sin"'E (2.10)
where sin™!' E € [-n/2, n/2].

The stability of the solution (2.9) will be
analyzed in section 3, where it is shown that
(2.9) is locally stable if and only if E< E;(K) =
(1 — K2/4)'/2. The same analysis shows that (2.10)
is always unstable.

For r>0, there is one-parameter family of
solutions of (2.8) for fixed E and K, parametrized
by the average phase . Without loss of generality,
we restrict our attention from now on to solutions
with
¢=0. (2.11)

(To obtain all other solutions, replace 6, and a by
6, —{ and a -y respectively.)

Solving (2.8) with complex exponentials we
obtain

iE + {|u+e* - E?

if,
ell= -
ut+e

, ac[0,2x],
(2.12)

where u = Kr.

2.2.2. Existence conditions
Eq. (2.12) must be consistert with (2.11) and
with

2

1 :
r=—2-1—r_£e‘oﬂda, r>0. (2.13)

In particular r must be real. Also we require that
6, be real for all a.

We show now that these reality constraints are
satisfied if and only if u+ E <1, where u, E > 0.
First we rewrite (2.12) in a simpler form. We
define p and o by

pe’=u+e"“, p(u,a)20; o(u,a)e[0,2x].

(2.14)
In terms of p and o, (2.12) becomes
o 1E+ o~ E?
€ - pe—ia
oJE [ (EV
= {1pi. 1 (p) ) (2.15)

Because we want (2.15) to branch from the stable
solution for E =0, we take the solution (2.15) in
which the square root is added to iE/p. Then
making the change of variables

sinx=E/p,

2
cosx = l—(%) , (2.16)
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we obtain el = gi%ix or

9,=0+x, ac|0,2n]. (217)

Since o(u,a) and 6, are real for all a«, then
x = X{E, p(u, @)) must also be real for all a.
From (2.16) this condition reduces to

E < minp(u.a)
a
= [1-u|. (2.18)

From (2.12) and (2.13) the self-consistency
equation for r is

1 FE+{|lu+e2—E?

r= -2—'!; da.
0

— (2.19)

The integral (2.19) splits into two pieces. The first
piece is

_EL7f drda
- © 2 —1+em
0
_E1 [ _d
u 2m zi=1 2 +u!

0, u<l,
= (iE/2u, u=1, (2.20)

1E/u, u>1.

The second piece of the iategral (2.19) is real.
To see this, let

“/!it4+ei“i2—E2

u+e e

g(a)

(2.21)

Because of (2.18) the mumerator in (2.21) is real
for all a. Therefore

g*(a)=g(-a)Va, (2.22)

where the star denotes complex conjugation. Thus
the integral of g is real:

2a
{ g(a)da

[g(a) +g(-a)] da

]
C\. 3

[g(a) +g*(a)] da

=Re [2 .{ g(a)da].

Combining (2.20) and {2.23) we conclude that

i
O"'\ 3

(2.23)

u<l (2.24)

is required for the integral in (2.1%9) to be real.
Now (2.18) implies the stronger inequality F <
1—wuor

v+ E<1. (2.25)

The upshot is that » .dition (2.25) is necessary
and sufficient for the .xistence of static solutions
for E> 0. (For E= 0, the argument fails—as it
must — because the itegral in (2.20) vanishes.)

2.2.3. Self-consistency equation

In this section we derive the self-consistency
equation for the coherence r of the static solutions
(2.12). By expanding this equation in powers of
u = Kr we show that these solutions branch off
from the r=0 pinned solution along the curve
E?+ K?/4=1. It is also shown that this branch
is subcritical in the sense that it exists only for £
below threshold Er, where

E.={1-K%%4.
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The self-consistency equation is

A=
[
-

2

E}

iE+|u+e)2—E?

u+e ia da

O'“.

1
2n

V1 - E2+4 2ucosa + u?
1+2ucosa+u?

1
2

ot ¥

X (u+ cosa)da, (2.26)
where the imaginary part of the integral vanishes
as in (2.20) because we are assuming that u+
E<1.

Note that u =0 solves (2.26) for all E, K> 0.
To find when solutions with small u > 0 bifurcate
from this trivial solution, we expand (2.26) in
powers of u < 1. After evaluating the resulting
integrals we obtain

u u u? 1+2E?

7 =1+ o —— + 0(u*)|.

K -2 8 (1-g2) ( )]
(2.27)

Thus non-trivial solutions branch from « = 0 along
the curve K= 2y1 — E2. For fixed E, let

KT=2VI ___EZ .

As K - K from below, the static solutions satisfy

(2.28)

K. u? 1+2E2
- =1+ 5 ———— + 0(u*), 2.29
=1 g O (229)
which implies the subcritical behavior
Q-3 |
{(1 +2E2)1/2 ‘/KT—K. {2.30)

Note that the term in brackets tends to zero (but
very slowly) as E— 1",

2.2.4. Static configurations for 0 <r <1

As E— E;, a branch of static subcritical
solutions with small positive r approaches the
incoherent (r=0) solution §,=a+sin"'E. In
fact, an entire circle of subcritical solutions
parametrized by { coalesces with the incoherent
state at E = E,. In this section we calculate the
shape of those subcritical solutions to leading
order as r — 0. As before, we restrict attention to
the case ¢ =0 without loss of generality. From
(2.17) we have 6, =0 + x. We first find o to O(u)
as follows. Eq. (2.14) implies

o _ute®
|u+ e**|

- ‘/_u_t_ei
u+e i
=e'*(1 - iusina + 0(u?))

= glegTiusina 4 @(y2), (2.31)

so
o=a—usina+ 0(u?). (2.32)
To find x to @(u) we recall

sinx=E/p

= E/1+2ucosa + u?

=E(1-ucosa) + 0(u?), (2.33)

which can be inverted to yield

uEcos a

V1-E?

x=sin"'E~ + 0(u?). (2.34)

Hence

6,=0+x

Ecosa

ﬁ]+w(uz)'

(2.35)

=a+sin'1E——u[s7ma+
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It is significant that the leading order corrections
lie in the subspace of configurations spanned by
{sina,cos a}; as will be seen in section 3, these
are precisely the modes which lose stability at the
depinning threshold E,.

3. Depinning threshold E

In this section we analyze the local stability of
the incoherent pinned solution 8, = a +sin ! E.
We¢ show that this solution is a local minin um
of the potential function if and only if <
E-(K)=y{1-K?/4. We also find that for . >
E, the pinned state is unstable to small pe:turba-
tions of the form n(a) =asina + bcos a.

In the presence of an applied field E, the gov-
erning equations are

6,=E+sin(a—86,))

+Krsin(¢—0,), ae[0,2a], G.1)
1 2w
rei¥= —?-—E{e‘”ﬂdoz. (3.2)

There is a solution of these equations which is
pinned (6, = 0 V &) and incoherent (» = 0). Such a
solution satisfies E + sin(a —6,) =0 or

6,=a+sin"'E, aec[0,2x]. (3.3)

Note that this solution exists for all |£| < 1. The
configuration (3.3) is a rotated version of the
pinned solution 8, = & found earlier for E = 0. To
recover the stable solution found when E =0, we
want the branch of the inverse sine that satisfies
cos(sin~! E) > 0.

We now analyze the local stability of the pinned
state (3.3) by diagonalizing the second variation of
the system’s potential function about that staie.

This potential function H satisfies

OH

6,=— 30, (3.4)
where

2% 2
H(9,)= —E [6,da~ [ cos(a-6,)da

0 0

2q 2@
- Z% f [cos(ﬂﬁ— 6,)dadB. (3.5
0 ¢

Let 6,(¢) denote a smail variation about the static
solution (3.3):

0,(¢)=a+sin ' E +en,, {3.6)
where e < 1 and 9: a = 7, is a perturbation. For
fixed n, H is a function of the single variable e.

We are particularly interested in the second varia-
ticn I given by

=

L) ()

because it determines the local stability of (3.3).
Racall that the second variation is a quadratic
form in u; if I is positive definite, i.e., I'(7)>0
Y #0, then the configuration (3.3) is a local
minimum of H and is therefore locally stable.

To caiculate I'" we first substituie (3.6) into (3.5)
which yields

H=-E [(a+sin™ E +en,)da
0
2%
- jws(mu%—sin'lE)da
0

X 27 2o
3
~ A fcos(ﬁ—a+enﬁ-—em)ﬁcxdﬁ.
00
(3.8)
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Hence

2m 2%
%{:-= —E{nada+ {m.

X sin (en, +sin* E) da
2@ 2n

+Z‘I%{jo‘("p—"u)

Xsin (B — a+eng—en,) dadp, (3.9

and
H _ ?n’ cos (en, +sin~! E) da
dez ¢ ¢

K 2n 2w
+z;{{(np—na)z

xcos(B— a+eng—en,)dadB. (3.10)

To find I" we evaluate (3.10) at ¢ = 0. Thus
2m

I(n)=V1-E* [r2da
0

2q 27
+4Li,ff("ﬂ—%)zcos(ﬁ—a)dadﬁ.

0 0
(3.11)

The second integral on the right side of (3.11) may
be simplified in two steps. First, when we expand
the term (mg—7,)% only the integral involving
NaMg survives — the others integrate to zero. Hence

27 2w
[ [ (g =n2)cos(8 - a)dadp
0 0

2% 2w

= —-2f fnanﬂcos(ﬁ—-a)dadﬁ. (3.12)
0 o

Second, we expand the term cos(8 — a) on the
right side of (3.12) and note that the « and g
integrals separate, conveniently yielding a Fourier

transform:

%
)
== 3

N.pcos (B —a)dadB

2@ 2%
ffnanp(oosacosﬁ+sinasinﬁ)dad,8
0 0

[ 2% 2 2@ 2
= fnacosada + [f’q,,sinada]
[ © (i}

2

2n
= f n.e%da
0

=an’li(-1))%, (3.13)

where the Fourier transform 1) is defined by

(3.14)

The upshot is that (3.11) may be rewritten as

2%
I(n) =V1-E? [v2da—2aK|4(-1))?
0
=2a[VI-EXjmi* - Kia(-1)12], (3.15)

where

27
1
Inli?= 55 [73de. (3.16)
0
The quadratic form (3.15) can be diagonalized as
follows. We work in the Hilbert space L?*(S?) of
square integrable functions with the inner product

(3.17)
Let
Be=cOS@, p,=sina. (3.18)
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Then ||g||*>=||»||>= } and p-»=0. Write 7 in an
orthogonal decomposition using g and »:

y’d Va
=g +b=%+q),
M = 4] M

il (3.19)

where p -9t =»-9t=0. That is, we express 7 as
a linear combination of p,», and some function
1t orthogonal to both p and ».

Then

Il = a®+ %+ ||| (3.20)

and
1w(-1))?
1 2 2 2n
= ‘\-2—“ fnacosada) + (-7:1; f'qasinada)
0 0
=(n-p)’+ (n-»)’
= (allul)* + (BlI#1)®

2 2
_4 ;”’ _ (3.21)

2

Thus (3.15) has been diagonalized to the form

1
5=T(n)
2 2
=\/1—E2(a2+b2+||'n*i§2)——K(a ;’b )
= (a?+ bz)(\/l "B’ - 5;-) + V1= EX |l

(3.22)

Eq. (3.22) expresses I' as the sum of two forins:
lln*||? is positive definite, and the form containing
a? + b? is positive, zero, or negative depending on
the quantity V1~ E? — K/2. In particular, I is

itive definite if and only if V1 — E* — K/2>0.
cJence the incoherent pinned state (3.3) loses sta-
bility at the depinning threshold given by

Ex=1\1-". (3.23)

Note that at £ = E the unstable subcritical solu-
tions (3.12) coalesce with the incoherent state (3.3),
as shown in section 2.2.3.

The present analysis also reveals the instability
modes. For E > E;, the incoherent state (3.3) is
unstable to any perturbation of the form

1,(!=a""ﬂ+bpn

=gcosa+ bsina, (3.24)

which is a linear combination of eigenfunctions
(3.18). To leading order in r, this is precisely the
form of the subcritical solutions (2.35) as they
approach the r = 0 state (3.3). In terms of Fourier
series, the first harmonic of 6, is unstable, while
all higher harmonics are stable. This instability of
the first harmonic is strikingly apparent in fig. 4,
between =S5 and 7 = 20.

4. Moving solutions

In this section wc analyze the steady-state mov-
ing ~olutions of (1.5). In section 4.1 we seek travel-
ling-wave solutions of a certain form motivated by
symmetry arguments and the results of computer
simulations. This ansatz reduces the original infi-
nite-dimensional dynamical system to an ordinary
differential equation in one variable, subject to
three side conditions. Sections 4.2 and 4.3 use
regular perturbation theory to approximate the
wave-shape, coherence, and velocity of the siabie
moving solution for large E (section 4.2) and large
K (section 4.3).

Numerical results indicate that steady-state
moving solutions exist if and only if E exceeds the
pinning threshold Ep(K). Section 4.4 discusses
the bifurcation that occurs at E = Ep. We conjec-
ture that the siable moviag solution, which corre-
sponds to a stable limit cycle in configuration
space, ceases to exist when the stable cycle co-
alesces with a saddle cycle.
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4.1. Ansatz for moving solutions

The governing equations for the infinite-N sys-
tem are

6,=E+sin(a—4,)

+Krsin(y—86,), «<[0,2n]. (4.1a)
2m
. 1 .
rei¥ = P .([ el da (4.1b)

0(a+2m,t)=0(a,t)+2am, forinteger m.
(4.1¢c)

As always, we assume E, K>0.

Numericai integration suggests that for E >
Ep(K) (4.1) has a unique, locally asymptotically
stable moving solution with the following proper-
ties:

(i) All the 8, execute identical motions but
shifted in time and phase.

(ii) The coherence r and the collective velocity
v =1 are both independent of time.

(iii) The solution §, has degree m = 0:

0(a,t)=0(a+2m,t)Va,Vi.

(iv) The moving solution is locally asymptoti-
cally stable for E, < E < E; and globally asymp-
totically stable for E > E.

Property (i) above is the key to analyzing (4.1)
for moving solutions. A more explicit statement of
property (i) is that there is a 2n-periodic function
¢: R = R such that (4.1) has a solution of the
form

0,(1) =¥ (1) +¢(a—¥(2)), a<[0,2n].
(4.2)

Note that the same function ¢ appears in the
ansatz for each 6,, a €[0,2]; this is the sense in
which all the 8, execute identical motions. A simi-
lar ansatz has been used by other authors [13, 30,
37].

Fig. 9 illustrates a heuristic argument for the
ansatz (4.2). The first term on the right side of
(4.2) brings us into a reference frame moving with
the average phase Y (¢). In this frame at a fixed
time, some @, are ahead of ¢ and some are
lagging it, depending on the location of their pin-
ning phase a relative to ¢ (fig. 9). As time evclves

o

Fig. 9 So!utions (e, t) of (4.1) for four equally spaced times, as obtained by numerical integration. The solutions at different times
have 1df.anmfal shapes, but differ by a translation along the dashed line § = a. Equivalently, one solution is related to another by a
translation in both the # and « directions. This observation moti-ates the ansaiz (4.2).
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Y (t) advances uniformly according to
(1) =ot. (4.3)

Meanwhile the position of the leading 6, moves
like a travelling wave in the a-direction; hence the
wave variable a —{/(¢)=a— vt appears as the
argument of ¢ in (4.2). The function ¢ describes
the shape of this travelling wave; in particular
¢(a) =0,(t= ), since ¢ =0 when 1=0.

Now we use (4.2) to obtain a differential equa-
tion for the function ¢. The argument of ¢ is the
wave variable y defined as

y=a—y(1)
=a—ut. (4.9)

Differentiating (4.2) with respect to time we ob-
tain

6,=v+¢'(v)(-¥)
=v(1-¢'(y)), (4.5)

where prime denotes differentiation with respect
to v. Also

sin(a—0,)=sin(a—[¢+o¢])

=sin(y—¢) (4.6)
and
Krsin(y—6,) =Krsin(¢ — [{ + ¢])
= — Krsing. (4.7

Hence (4.1a) becomes
v(1—¢)=E +sin(y—¢)—Krsin¢. (4.8a)

The self-consistency condition (4.1b) may be
rewritten as foliows:

1 2%
rei"‘= 'i;few"da
0

2w

= ilq? j' eivei*Mdy.
0

Cancelling e'¥ and equating the real and imagi-
nary parts of both sides of this equation, we
obtain

2x
1
r= 2—ﬂfcos¢(y)dy, (4.8b)
0
2z
0= f sin$(y)dy, (4.8¢c)
0

since r is assumed to be real and non-negative.
The conditions (4.8b,c) may be expressed more
compactly as r= {(cos¢) and 0= (sin¢), where
the averaging operator ( - ) is defined by

2m
(Y= [F()av.
0

The periodicity condition (4.1c) may be rewritten
in terms of ¢ as (y+2m)=d(y) +2am. As
mentioned above in property (iii), numerical simu-
lations suggest that the moving solution has de-
gree m = 0; hence we seek solutions satisfying

¢(y) =¢(y+2m)Vye[0,20]. (4.8d)

The problem posed by (4.8) is thus: Given
E>0,K>0; find a 2u-periodic function ¢ and
two numbers r>0, v >0 such that ¢ solves the
differential equation (4.8a) and satisfies the side
conditions (cos$) =r and (sin¢) =0. This is a
boundary value problem with three degrees of
freedom and three constraints. For example, for
fixed E and K we can choose values for ¢(0), r,
and v. Then we shoot forward to y=2a by
integrating (4.8a) with the chosen initial condition
¢(0) and ihe chosen parameters r and v. This
yields a function ¢(y) which depends on the cho-
sen ¢(0), r and v. If this function satisfies the side
conditions (cos¢) =r, (singy =0, and ¢(27)=
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¢(0), then (4.8) has been solved. Otherwise we
need to choose a different triple (¢(0), r, v) and
continue the process.

From this argument it is not at all clear whether
there will be any solutions to (4.8). Because we
have as many degrees of freedom as we have
constraints, there is reason to hope that solutions
exist. In the next two sections we present formal
asymptotic solutions of (4.8) for the cases E > 1
and K> 1.

(After this work was completed, Nancy Kopell
poinied out to us that the implicit function
theorem can be used to prove the existence of
solutions to (4.8) for sufficiently large E. This
argument will be presented elsewhere.)

4.2. Perturbation theory- E > 1

Numerical integration indicates that for E > 1
and K= (1), there is a stable moving solution to
(4.8) with

v~E, r~1 and ¢<1. (4.9)

That is, the high-field moving solution has all the
8, nearly aligned with the average phase .

These observations suggest that we seek a for-
mal solution of (4.8) as a perturbation expansion
in powers of

e=1/E<1. (4.10)

Our strategy is to write expansions for r, v, and
$(v) in powers of ¢; then we solve the resulting
differential equations at each order of ¢, and use
the conditions (4.8b,c,d) to determine the con-
stants of integration and the unknown parameiers
in r and v. This procedure is carried out far
enough to reveal the leading order dependence of
¢, r,and v on € and X.

One word about notation: for convenience, we
often suppress the dependence on parameters in
the expansions for v, r, and ¢. The explicit depen-

dences are
v=v(e, K),
r=r(e,K),
o=0¢(y,¢, K).

(4.11)

Using €e=1/E we rewrite (4.8a) as
ev(l-¢)=1+esin(y—¢) —eKrsing. (4.12)

As mentioned above, we expect v ~ E and hence
ev ~ 1 as € —» 0. Hence we expand ev as

e0=vy+ev; +e,+ - (4.13)

with the expectation that v, = 1.
The expansions for ¢(y) and r are

o(v) =da(v) +edy(v) +Zp5(v) + -+, (4.14)

r=ry+er,+eir,+ - (4.15)

In the appendix we carry out the analysic in
detail. The results are:

o(y) = %:cosy + %(!{sin'y + §sin2y)

1

+ E;([% ~ K?]cosy — 2 Kcos2y
—&cos3y) + O(E™4), (4.16)
1 1 -
r=1- 4—E—5 + EZ(KZ_ 32‘) +0(E 5), (4.17)

{r-%). (418)

Fig. 10 shows that our third-order series solu-
tions agree well with numerical solutions even
when E = 0(1). For E> 1 the series solution is
indistinguishable from the numerical solution, and

is therefore not shown.

4.3. Perturbation theory: K > 1

We now consider the strong-coupling limit
K>1 with E=0(1). The techniques are very
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Fig. 10. The data points show the steady-state configuration
¢(y) obtained by numerical integration of (4.8) for K=1 and
E = 2. The perturbation theory result (4.16) is plotted as the
continuous curve; it compares well with the numerical solu-
tion, even though E is far from the high-field limit E>>1 on
which the perturbation theory is based.

similar to those of section 4.2, but the analysis is
slightly easier; at each order of perturbation the-
ory, the next term in the unknown function ¢ is
generated by differentiation rather than integra-
tion of previous terms.

The main results are asymptotic expressions for
the configuration ¢(y), the coherence r, and the
collective velocity v, expanded in powers of 1/K.
We find that for small E the velocity v is propor-
tional to the applied field E. In particular, the
depinning threshold E; vanishes in this strong-
coupling limit K >> 1. The results of sections 2
and 3 prove the stronger result that Ef(K)=0
for all K> 2. Fisher [12, 13] also found these
results (v« E and vanishing E; in the sirong-
coupling limit) for a closely related mean-field
model.

In this section, the small parameter e is given by

e=1/K.

Then (4.8a) becomes

U(l‘¢')=E+Sin(‘Y"¢)—%—rsinqS. (4.19)

We seek solutions o the form

P=dotept o,
r=rgtern+ -,
v=Ugtevy+ -

(4.20)

subject to the condiiions (4.8b,c,d).

41
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Fig. 11. The data points show the steady-state configuration
¢(y) obtained by numerical integration of (4.8) for K=4 and
E =0.5. The perturbation theory result (4.21) is plotted as the
continuous curve; it compares well with the numerical solu-
tion, even though K is far from the strong-coupling limit
K> 1 on which the perturbation theory is based.

The detailed calculations are carried out in the
appendix. The results are:

1 . 1 .
¢(v) = g siny + F(Ecosy — 4sin2y)

%([%—Ez]siny—%Ecosh'
1. 1
+31sin3y)+ 0 <) (4.21)
1 1 (E* 11 1
r=1-4fﬁ+*lz';(—?—6—4:)+0(k—g).
(4.22)
v 1 1
-E=1~’2?+@(F). (4.23)

Fig. 11 shows that the solution agrees well with
numerical results even if K is not large.

4.4. The pinning threshold Ep

We now offer some conjectures about the bifur-
cation at E = Ep(K). First consider the static case
when E =90, for which we have rigorous resuiis.
Fig. 3 indicates that the point E=0, K=K, lies
o:. the pinning threshold. As discussed in sections
2.1.3 and 2.1.4, for K slightly greater than K the
system has a circle of saddle equilibrium points
and a circle of stable equilibrium points in the full
space of configurations (fig. 8). These circles are
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parametrized by »y. A jump bifurcation occurs at
K=K_ as the circle of saddle points coalesces
with the circle of stable points. For K < K, the
sinks and saddles have annihilated, leaving the
incoherent pinned configuration 8(a) =a as
the only attractor. These statements were proven
in [28].

For K>K, and E=0, the circle of saddle
points and the circle of stable points are each
neutrally stable to motions along the circle, as
discussed in section 2.1.3. For E =0, we conjec-
ture that the circle of stable points loses this
neutral stability and becomes a stable limit cycle.
The circle of saddle points for E = 0 is expected to
become a saddle cycle for E>1—Kr, as dis-
cussed in section 2.2.2.

Fig. 12 shows these limit cycles and their bifur-
cations in a schematic format analogous to fig. 8.
Each of these cycles in configuration space repre-
sents a moving solution to (4.1). The motion along
the cycles is expected to be uniform, because of
the rotational symmetry in the problem.

Fig. 12 leads us to believe that rthe pinning
threshold Eo(K) is defined by the condition that the
stable cycle and the saddle cycle have coalesced. As
E — E,(K) one of the Floquet multipliers (corre-
sponding to perturbations transverse to the stable
cycle and toward the saddle cycle) is expected to
approach zero.

However the velocity along the cycles is not
expected to approach zero as E — Ep(K). Thus
we expect a genuine discontinuity in the velocity v
at E = Ey(K), as indicated in fig. 2(a). If correct,
this discontinuity in v would be of theoretical
interest because it distinguishes the repinning of
this system from that of the hysteretic dc-driven
Josephson junction and the damped pendulum
driven by a constant torque. Daniel Fisher has
pointed out to us that in these latter systems the
analogue of the velocity tends (0 zero continuously
{but with infinite derivatives of ali orders) as E —
Ep, according to

1

v <& m . (4.24)

(@)

(b)

Fig. 12. (a) Schematic bifurcation diagram for steady-state
solutions of (4.1) with E > 0. The coherence r and the average
phase {(z) of the solutions are plotted in polar coordinates.
The origin corresponds to the pinned state §, =« +sin~! E,
which is locally stable for E < E;. A saddle limit cycle (thin
line) and a stable limit cycle (thick line) are born at large r
when E = E;. Motion along the saddle cycle stops at E = Eg,
giving rise to a circle of saddle equilibrium points; the stopping
threshold Eg is defined by the condition E+ Kr=1 given in
(2.25). The circle of saddle points coalesces with the pinned
state at E= Ep. At this coalescence the r=0 pinned state
becomes unstable. Above Ep the only attractor is the stable
limit cycle corresponding to the coherent moving solution. (b)
Stability diagram as in fig. 3, but with the stopping threshold
Es added. The points (Kg, Eg) on the stopping threshold are
defined by the parametric equations Eg=1-u and Kg=
u/r(u); the coherence r(u) was obtained by numerical quadra-
ture of the integral in (2.26).

For the Josephson junction, v and E correspond
to the dc-voltage and the applied current, respec-
tively; for the driven pendulum they represent the
average velocity and the applied torque.

The bifurcation which leads to (4.24) has com-
pletely different phase space geometry from that
in our system: The velocity dependence (4.24)
occurs when a stable limit cycle passes near a
saddle point, and motion on the cycle becomes
extremely non-uniform and slow in the neighbor-
hood of that point. We believe that in our system,
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a discontinuity in the velocity occurs when a sta-
ble limit cycle collides with a saddle cycle (fig. 12).
Motion along the cycle is expected to be uniform

with velocity bounded away from zero even as
E - E,.

5. Delayed switching

Thus far we have oily been concerned with the
steady-state behavior of (1.5). We now turn to an
analysis of delayed switching, an interesting tran-
sient phenomenon seen when the coupling X and
the applied field E are chosen just above the
depinning threshold E2+ (K/2)2>=1, and when
the initial configuration is incoherent. Above
threshold the only stable solutions have large co-
herence r=1. Close to threshold, the evolution
from an incoherent initial state to the coherent
steady state will take much longer than the time
scale on whick a single, uncoupled phase would
evolve.

There is a simple heuristic explanation for this
delayed onset of coherence. Recall that for E=0
the equation of motion is 6, =sin(a;—6,) +
Kr sin(y — 8,). Hence an initial configuration with
r=0 evolves as if the system were uncoupled.
Thus an initially incoherent system will evolve
towards the equilibrium 8, = a,, which 1s stabie for
the uncoupled system but which is unstable for the
coupled system with X above threshold K;=2.
After remaining in the vicinity of the unstable
equilibrium 8, = a; the system will slowly develop
coherence and then depin suddenly once the co-
herence becomes appreciable.

Fig. 13 shows an example of this delayed onset
of coherence beginning from a random initial con-
figuration with X =2.001 and E = 0, obtained by
numerical integration of (1.2). This figure illus-
trates the rapid initial evolution towards the un-
stable equilibrium ,=a; followed by the slow
development of coherence. Fig. 13(a) plots the
time-evolution of the coherence r, showing that
stays small for about 20 time units and then grows
rapidly, reaching a steady-state value of r = 0.92.

(b)

©
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Fis. 13. Evolution of r, g and root-mean-square (rms) speed
as the system evolves from incoherence to coherence. Eq. (1.2)
with K'=2.001 and E =0 was integrated numerically for N =
300 phases, starting from a random initial condition. The
system rapidly approaches the pinned state 8, = a;, as shown
by the large value of ¢ after r=35. Then the system slowly
develops coherence between 1= 10 and ¢ = 20. A second peak
in the rms speed occurs at ¢=26 as the system leaves the
neighborhood of the pinned state and rapidly swiiches io the
coherent attractor. Compare fig. 4, which shows the same
dynamics at the level of the individual phases.

A new order parameter ¢, defined as

2

Z cos(a, —

characterizes how close the system is to the pinned
configuration. Fig. 13(b) shows that ¢ grows as
the initially random phases flow towards the
pinned configuration 6; = «, and then decreases as
the system leaves the pinned state towards the
stable coherent state. Fig. 13(c) shows that the
root-mean-square speed of the system has two
peaks, one corresponding to the initial approach
to the pinned state, and another corresponding to
the later switch to the coherent attractor.
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The choice E =0 used above is special in the
sense that the steady-state solution is static, but
this does not affect the qualitative features of the
delayed switching. Throughout this section we will
concentrate on the case E=0. The case E >0,
which is relevant to the delayed switching ob-
served experimentally in some charge-density wave
systems [21, 47], will be discussed in a subsequent
paper.

In section 5.1, we present data from numerical
simulations characterizing delayed switching for
the case E = 0. In particular we study the depen-
dence of the time delay = on the proximity to
threshold defined by x = K — K. Section 5.2 pre-
sents an analytical expression for the delay = in
terms of « and the initial coherence 7,. The results
presented in section 5.2 are derived in section 5.3
using regular perturbation theory about the unsta-
ble equilibrium at §, = a;. The analysis makes use
of the fact that nearly all of the time delay occurs
as the system is leaving this unstable equilibrium.

5.1. Switching delay for E =0: Numerical results

Fig. 14 shows the evolution of the coherence r
obtained from numerical integration of (1.2) for
three values of coupling K near threshold. The

1.0
08}
r
06t K=2.1 K=2.01 |K=2.001
0.4}
0.2+ J
0.0 < ' s
10! 102 10° 104 10°
ﬁmo

WIS

Fig. 14. Delayed onset of coherence for different values of X
above the depinning threshold Note that the time axis is
logarithmic. Eq. (1.2) was integrated numerically for N = 300
phases, E =0, and for the three values of K shown. All three
integrations were started from the same initial condition, which
was chosen near the pinned state according to 8, =q; + 17,
where the 7, were small random numbers of order @(102).

105 ¢
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Fig. 15. Dependence of the switching delay r on K — K, the
distance from the depinning threshold. The data points are
obtained by numerical integration of (1.2) as described in fig.
14. The initial condition for all the integrations had coherence
I, =1.4X 1072 The continuous curve shows the analytical
result (5.3) for this value of r,.

switching delay 7 increases as K nears the thresh-
old value K= 2. Fig. 15 shows the depe: dence of
7on k = K — K, where 7 is defined by the condi-
tion that r becomes @(1). Over the regime of «
shown, the dependence is well approximated by a
power law 7« k=%, where 0.9 < 8 < 1. The devia-
tion from a strict =1 power law will be dis-
cussed in section 5.Z.

5.2. Switching delay for E = 0: Analytical results

As discussed above, an initially incoherent sys-
tem first evolves toward the saddle equilibrium
0.= a; and then departs along the unstable mani-
fold. During this departure, the coherence r grows
according to the evolution equation

f~=(K;2)r+{3_2K)r3+(9(r4), (5.1)

as derived in section 5.3. Eq. (5.1) implies that the
coherence grows faster than exponentially for 2 <
K < 3. This superexponential growth becomes sig-
nificant once r beccmes large enough that the
cubic term matches the linear term. Thus at -
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value of r given by

K-2
r2=3_K (5.2)

the system evolves superexponentially and sud-
denly switches to the coherent state.

The condition (5.2) provides a natural definition
of the time at which switching occurs. If the initial
coherence satisfies 7 < (K —2)/(3 — K), then the
first term on the right side of (5.1) is initially
dominant and the coherence grows according to
r(t) = rye/2. (Here t is measured from the time
when the system first reaches the neighborhood of
the pinned state) Then the switching time 7 is
defined by the condition (5.2):

K-2 2 K7

For x =K —2 « 1 this yields the switching delay

K

Tz%m(-r?). (5.3)

Fig. 15 shows that this theoretical value of the
delay agrees well with the values obtained by
numerical integration of (1.2). In general (5.3)
expected to hold for « in the range r§ < k < 1.

A theory of delayed switching which neglected
the cubic term in eq. (5.1) would yield 7o«
with 8=1. Although (5.3) is dominated by the
1/« term for k < 1, the important logarithm term
affects not only the magnitude of the delay but
also its scaling with &, giving an approximate
value of 8 which is less than one. For the values
of K and 7, used in our numerical integration,
both the numerical data and er. (5.3) can be fit by
an approximately power law scaling: = & x™# with
B =0.96. This approximate power law was ob-
tained for « in the range 107*<x <10 .

The cubic term in (5.1) is also important for
ré > (K ~2)/(3 — K), in which case the cubic term
dominates the linear term from tne start. In par-
ticular, at threshcid the coherence grows non-
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exponentially according to

r()=(rg2=1)"""? [for K=K;=2] (5.4)

before r saturates near 1. Eq. (5.4) shows that the
timescale at threshold is @(r; %), which is much
longer than 7 in (5.3) for small r,. On the other
hand, (5.4) also shows that the delay before r
becomes (1) does not diverge as K — K.

5.3. Evolution equation for coherence

We now derive the evolution equation (5.1).
This equation describes the growth of coherence
for a system evolving along the unstable manifold
of the saddle pinned state. In the infinite-N limit
the dynamics of the phases at E =0 are governed
by

6,=sin(a—6,) +usin(¢y—4,). (5.5)

We must now find a self-consistent solution for ,
as before, but with the added complication that
u(t) evolves in time.

In numerical solutions of (5.5) the average phase
Y remains essentially constant as the phases &,
evolve. We make use of this observation by seek-
ing solutions of (5.5) of the form

6,=¢+¢p(a—1y,u) (5.6)
and insist that
§=0

throughout the evolution. This ansatz (5.6) is
closely related to that used in section 4.1; the
difference is that here u depends on time and ¢ is
time-independent. This ansarz is valid after the
system has completed its initial rapid evolution
toward the pinned state and has begun to depart
very slowly from the saddie pinned state along its
unstable manifold.
Substituting (5.6) into (5.5) yields

92 = sin(y—¢) - usine, (5.7)
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where y = a — ¢. The self-consistency equation for
uis
u=K{cos ¢), (5.8)
where the brackets denote the average over one
cycle of y, as in (4.8b).

Two symmetries of (5.7) restrict the form of its

solutions: First, (5.7) is invariant under the trans-
formation

Y-,
o =9

and therefore its solutions must satisfy

‘i’(us Y)= -¢(u’ —Y)- (59)
Second, (5.7) is invariant under the transformation
y—=>y+m,

¢—>o+m,

u—> —u

and therefore its solutions must satisfy

w+ o(u,y)=o(—u,w+7). (5.10)

We assume that close to the unstable equilib-
riuir ¢(u,y)=7y, we can express ¢—7y as a
Fourier series in y with small amplitudes a,(u)
which grow as the system leaves the unstable
equilibrium and develops coherence. The symme-

tries (5.9) and (5.10) require that such solutions be
of the form

cQ

¢(u,v) =y~ X a,(u)sinky, (5.11)
k=1
where the amplitudes a,(u) satisfy
_Jar(—u), k even,
a(u) { ~a,(-u), kodd. (5.12)

The leading order term in (5.11) appeared already
in (2.35) for the unstable mode about the pinned
state ¢(u,y)=1y. Eq. (5.11) enables us to extend

the earlier linear stability analysis to include non-
linear terms in the small parameter u.

Now we substitute (5.11) into (5.7), expand
both sides in Fourier series, and collect the result-
ing terms in sinky for each k. Matching the
coefficients of sin ky on both sides of (5.7) yields a
set of coupled ordinary differential equations de-
scribing the evolution of the amplitudes a,(u).
For our purposes it is sufficient to study the evolu-
tion of the first two amplitudes, a,(u) for k=1,2.
Because both u and the a,(u) are small near the
unstable equilibrium ¢(u,y)=17y, we assume a
power series form for the a,(u). The most general
series for these amplitudes which satisfy (5.12) and
which vanish at u =0 are

a,(u) = byu + byu® + 0(u®), (5.13a)

a,(u) =cu®+ 0(u*). (5.13b)

Substituting (5.11) and (5.13) into (5.7) eventually
yields

.da
—uagl=(b1—1)u
3 2
+(b3—- %1 + —3% + %)u3+@(u4),
(5.14a)
.da b
RPN (c2+ 71)u+0(u4). (5.14b)

The unknown constants b;, b,, and c, are de-
termined by the self-consistency condition (5.8)
and by the requirement that there be a unique
evolution equation for u, that is (5.14a) and (5.14b)
must give the same differential equation for .
These conditions can be shown to imply

b=l =t

17K 2T A-K)K’
1

by=———s.

P (1-K)K?

After substituting these values into (5.14a) we
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obtain the evolution equation for u:

a=(K;2)u+(3‘K)u3+m(u4).

2K?
Finally, substituting u = Kr gives the equation for

the evolution of coherence r discussed in section
5.2:

F= (ng)r+ (3_2K)r3+@(r4).

6. Concluding remarks and open problems

In this paper we have studied the dynamics of a
system of many oscillators with random pinning
and periodic coupling. The goal has been to pre-
sent a case study of collective nonlinear dynamics
in a model which is simple enough to yield to
analysis and yet rich enough to possess interesting
dynamics. To facilitate the analysis, we have made
two assumptions familiar from statistical mechan-
ics: that the coupling between oscillators has infi-
nite range and that the system is infinitely large.

Most previous studies of the collective dynamics
of coupled oscillators have been concerced with
the mutual synchronization of oscillators whose
intrinsic frequencies are randomly distributed
1, 7-9, 11, 22-25, 31, 32, 34, 38, 39, 43, 44] or
noisy [5, 6, 33, 35, 36, 45, 46]. These studies show
that mutual synchronization is remarkably similar
to the second-order phase transitions seen in equi-
librium statistical mechanics [27]. That is, the or-
der parameter characterizing synchronization
grows continuously from zero as the coupling ex-
ceeds a critical value.

In contrast, the collective dynamics of the sys-
tem studied in this paper is more suggestive of a
first-order phase transition [3]. The transition from
a disordered and static state to an ordered and
moving state occurs discontinuously, with hystere-
sis in both the coupling strength and the driving
field. The onset of order from an initially incoher-
ent statg also shows an interesting and novel time

delay near threshold. The first-order character of
the depinniug transition is directly attributable to
the periodic coupling sin(6; - 6;) in (1.2). Alter-
nate models with linear coupling, corresponding
to an elastic interaction between phases [2, 12, 13,
37, 42] do not show switching, hysteresis or de-
layed onset of order.

There are several open mathematical problems
concerning the dynamical system (1.5): (1) Prove
rigorously that there is a unique, locally stable,
steady-state moving solution for each E and K
with E > Ep(K) and (2) prove that this solution
disappears at E = Ep(K) via coalescence with an
unstable solution. (3) Find a closed form expres-
sion for the pinning threshold Ep(K). (4) Charac-
terize the basins of attraction for the incoherent
pinned solution and the coherent moving solution
in the bistable regime Ep < E < E. (Preliminary
numerical work suggests that the basins are char-
acterized only by the coherence of the initial con-
figuration.)

Before the model can be applied to charge-den-
sity waves or other real physical systems, it needs
to be extended in various ways. Most importantly,
it is not known which aspects of the mean-field
dynamics will survive with short-range coupling in
finite dimension. Numerically we find that in di-
mension d=3 the discontinuity at depinning
remains but is weakened. We do not know if
switching in d=3 is a finite size effect of the
numerics: simulations with various N show that
the discontinuity decreases as the system size is
increased. It is also unknown whether there is an
upper critical dimension [12, 13, 27, 30] above
which the dynamics agree with those found here in
mean-field theory. The effects of temperature, dis-
tributed pinning strengths and distributed field
strengths also deserve future study.

Appendix: Perturbation theory calculations

This appendix gives the perturbation calcula-
tions needed in sections 4.2 and 4.3.
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A.l. Perturbation theory for E>1

We begin by substituting (4.13)-(4.15) into
(4.12). At 0(1) this yields

vo(1—¢h) =1,
which has the solution

vo_].

%(7)=( o )7+Co,

(A1)

where G, is a constant of integration. From (4.8d),
¢, must be 2w-periodic and therefore ¢y(27)=
$0(0). Hence the coefficient of y in (A.1) vanishes,
which implies

UQ=»1

as expected. Thus ¢,(y) = C,. From (4.8¢c)
(sin¢,) =0 and so ¢, =nm for integer n. Since
r = (cos ¢) is non-negative by assumption, # must
be even. Without loss of genereiity we take the
solution

$o(v) =0. (A.2)

0(¢) equations: The differential equation (4.12) at
O is

v; — ¢} =siny,

which has a solution

¢1(y) =v;y +cosy + C,. (A3)
Since ¢,(0) = ¢,(27) we obtain
Ul = 0- (A'4)

To evaluate C, we expand the condition (4.8c):

0= (sing)
3 5
=<¢—%+%—!—.-.>
3

—c(op+ ey + (0= 54 0(e)

where we have used the fact that ¢,=0. Thus

<¢1> =0, (ASa)

{$2) =0, (A.5b)
3

<¢3 - %l' > =0. (A.5¢c)

Egs. (A.3) and (A4) imply (¢,) = (cosy) + C; =
C, and therefore (A.5a) yields
C, =0,

¢;(y) =cosy. (A.6)

Combining (A.2) and (A.6) gives the first four
terms in the expansion for r:

r=(cos¢)
¥ ¢
=<1—-—2—!-+z!—..->

2
€
=1~ 5(cos’y) + 0(¢)
e? 4
=1~ Y + @(f )
Hence

1

i’0=1, !‘1=0, i'2="3, r3=0.

0(€*) equations: The differential equation (4.12) at
0(e?) is
U2~ Uy — ¢5 = — Krgd, — ¢, cosy. (A7)

Using v, =0, r,=1, and ¢, = cosy, (A.7) simpli-
fies to

95 =0, + Kcosy + cos?y

=(v,+ %)+ Kcosy + Lcos?y. (A.8)
Eq. (A.8) has the solution
¢y (y) = (v, +4)y+ Ksiny + 1 sin2y + C,.

As argued previously, the coefficient of y vanishes
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because ¢,(27) = ¢,(0). Hence
Uy = — '%.

Moreover C, =0 because of the condition (A.5b).
The resulting expression for ¢, is

¢,(v) =Ksiny + §sin2y.
0(e®): We omit the details. The main results are

v3=0,

¢3(v) = (3 — K?)cosy — 3K cos2y — 35 cos 3y.

These results allow us to see the leading order

dependence of r and v on K, which enters only *?

now. We compute  as follows:
7= {cos¢)
e, 2 3
=1-5(¢1) — <X d:#2)

4 2
+‘4<% - % “¢1¢3> +0(¢%)

62 €4 2_ 1 5
=1-7+5(K - +o0().

One might think it necessary to go to O(e?) to
obtain an expression for v,. An earlier method
uses the identity

v=E+(sin(y-¢)) (A9)

obtained by averaging (4.8a) and using the facts
that (sing) =0 and (") =[$(27) - $(0)i/27 =
0. The term (sin(y—¢)) can be computed to
0(e®) by expanding sin¢ and cos ¢ to &(e?) and
using the trigonometric identity for sin(y —¢).
The result is

(sin(y - ¢)) = — e+ 3(K2- 1) + 0(<*).
Therefore
U= ’li(Kz" %)-

These results are summarized in section 4.2.

A.2. Perturbation theory for K >> 1

Now we substitute (4.20) into (4.19) and match
terms at each power of e=1/K. The O(1/¢)
condition requires 7, sin ¢, = 0. Hence, from (4.8c),
sin ¢, = 0. Since we are looking for solutions with

r>0, we find ¢,=2mn for integer n, and we
choose

$0=0

without loss of generality. Hence r= {(cos¢) =
1— (e2/2)(¢?) + O(¢3), and (4.19) becomes

(vo+€v,)(1 —e¢) = E +sin (v — )

- -} sin (e, + €%, ) + 0(€?). (A.10)

0(1) equations: The O(1) equation in (A.10) is
vo=E + siny — ¢,. Hence

¢, = E — v, + siny. (A.11)
The condition (sin¢) = 0 implies

(o) = (92> =0,

which applied to (A.11) yields

i)0=E,

¢,(v) =siny. (A12)

0(¢) eguations: The O(¢) equation in (A.10) is
U — Uy = —$ €08 Y — ¢, OF

¢, = —¢, cosy —v; — Edi.

Note that the unknown function ¢, is obtained
from the previously found ¢, by differentiation
and substitution, but not integration. This occurs

at all orders of perturbation theory. Here it yields

¢, = —uv, + Ecosy—sinycosy
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and since (¢,) =0,

01=0,
¢,(y) =Ecosy—sinycosy

= Ecosy — 1sin2y. (A.13)
To find v,, we use the identity (A.9) as above.
After substituting (A.12) and (A.13) into (sin(y —
$)) = (sin(y — e, — €%p,)) + O(¢’) and comput-
ing some integrals, we find v,= — 1E. Thus

v=E - 1’E+ 0(¢).

Continuing in this way, we obtain higher order
terms in ¢, r, and v. These calculations are sum-
marized in section 4.3.
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