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We analyze a large system of nonlinear oscillators with random pinning, mean-field coupling and external drive. For small 
coupling and drive strength, the system evolves to an incoherent pinned state, with all the oscillators stuck at random phases. 
As the coupling or drive strength is increased beyond a depinning threshold, the steady-state solution switches to a coherent 
moving state, with all the oscillators moving nearly in phase. This depinning transition is discontinuous and hysteretic. We 
also show analytically that there is a delayed onset of coherence in response to a sudden superthreshold drive. The time delay 
increases as the threshold is approached from above. The discontinuous, hysteretic transition and the delayed onset of 
coherence are directly attributable to the form of the coupling, which is periodic in the phase difference between oscillators. 

The system studied here provides a simple model of charge-density wave transport in certain quasi-one-dimensional metals 
and semiconductors in the regime where phase-slip is important; however this paper ;~ intended r~rimarily as a study of a 
model system with analytically tractable cdlective dynamics. 

1. Introduction 

Large systems of coupled nonlinear oscillators 
arise in many scientific contexts. They have beeu 
used to model cooperative dynamical systems in 
physics, chemistry, and biology, including charge- 
density waves [13, 15, 19, 40], oscillating chemical 
reactions [23, 44], and networks of oscillating nerve 
and heart cells [43, 44]. Coupled oscillators are 
also of great theoretical interest, as they provide 
tractable models for studies of nonlinear dynamics 
in systems with many degrees of freedom [1, 2, 
4-9,  11-13, 22- 25, 28, 30-40, 42-46]. 

1.1. Model 

In tiffs paper we analyze the following system of 
coupled oscillators in the infirfite-N limit: 

0,) 
K N 

+ ~  E s i n ( 0 j - 8 , ) ,  i = I , . . . , N ,  (1.1) 
j=l  

where 0 i is the phase of the i th oscillator, E, b, 
K >__ 0 are fixed and the ai are independent ran- 
dom variables uniformly distributed on [0, 2~r]. 
The many-body system (1.1) provides a model of 
charge-density wave transport in certain quasi- 
one-dimensional metals and semiconductors, as 
discussed in section 1.5 and in [40]. Therefore we 
shall adopt some of the language used in the 
charge-density wave literature, giving definitions 
where appropriate. 

The phases 0 i in (1.1) can be visual~ed as a 
swarm of points moving along the unit circle. The 
points move without inertia in response to three 
competing forces. The pinning term b s i n ( ~ - 0 i )  
tends to make 0~ stick at the random angle ~.  

rangement of the phases 0~. This pinning term is 
opposed by both the applied field E, which tends 
to drive the phases at a constant angu'~ar velocity 
and thus favors moving solutions; and by the 
co~.pling term ( K/N)Ej  sin ( S# - 0~), which tends 
to make #~ = #j and thus favors ordered solutions. 
The ratios K/b and E/b  determine whether the 
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steady-state solutions of (I.1) are ordered or disor- 
dered, static or moving. Without loss of generality 
we normalize (1.1) by setting b = 1. 

Roughly speaking one expects the following 
steady-state behavior of (1.1): for small E and K 
the pinning term dominates and the oscillators 
become pinned at random phases. As E increases 
with K fixed, the pinned state loses stability at 
some depinning threshold E - Er (K)  and the sys- 
tem evolves to a steady-state moving solution. 

Our goal is to characterize the steady-sta,,es and 
bifurcations of (1.1) as E and K are varied. In 
particular we will show that the depinning transi- 
tion is discontinuous: the steady-state velocity of 
the moving solution jumps up discontinuously 
from zero at the depinning threshold. Furthermore 
the transition is hysteretic: if E is decreased, the 
moving solution does not re-pin until E falls 
below a separate pinning threshold Er. Similar 
hysteretic and discontinuous transitions are seen 
experimentally in certain charge-density wave sys- 
tems, as discussed in section 1.5. 

1.2. Organization of the paper 

In section 1.3 we outline our strategy for study- 
~ag (1.1) analytically. The main idea is due to 
Kuramoto [22, 23, 25] and involves a dynamical 
version of self-consistent mean-field theory. Sec- 
tion 1.4 introduces the main phenomena exhibited 
by the model: switching, hysteresis, and delay. In 
section 1.5 we explah: how the dynamical system 
(1.1) can be used to model charge-density wave 
transport in "switching samples." This section is 
introductory and assumes no prior knowledge 
about charge-density waves. 

S~fions 2-5 concern the mathhematScaA anaAysis 
of (1.1). In section 2 we obtain all the static 
equilibrium solutions and analyze their bifurca- 
tions as the parameters g and K are varied. In 
section 3 we use variational methods to calculate 
the depinning threshold Er, above which the 
pinned state loses stability and the system jumps 
to a moving solution. 

Section 4 presents an analysis of d e  steady-state 
moving solutions. By seeking travelling-wave solu- 
tions of a form suggested by symmetry arguments, 
we reduce an intinite-dimensional problem to a 
boundary value problem for a single ordinary 
differential equation. Perturbation theory is used 
to obtain formal asymptotic solutions of this dif- 
ferential equation in two re~mes: the high field 
limit E >> 1 and the large coupling limit K >> 1. 
Numerical simulations indicate that the moving 
solution disappears at a pinning threshold El,; we 
argue that this disappearance occurs when a stable 
limit cycle corresponding to the moving solution 
coalesces with an unstable limit cycle. 

Section 5 presents numerical and analytical re- 
sults about delayed depinning in response to a 
sudden superthreshold drive. We derive an evolu- 
tion equation for the phase coherence and use it to 
explain our numerical results. 

Section 6 offers concluding remarks. We com- 
pare our work with previous studies and indicate 
some directions for future research. 

In the appendix we present the details of the 
perturbation calculations needed in section 4. 

1.3. Infinite-range coupling 

A good starting point for analyzing a new 
many-body system is to assume that the coupling 
is infinite-range. This assumption usually simpfi- 
ties the analysis while preserving many of the 
qualitative features found in models with nearest- 
neighbor or other kinds of short-range coupling. 
The infinite-range model (1.1) with b = 1 is 

K N 
E sm(0j-0 ), (1.2) 

j - - I  

where the factor 1/N n o r m a l ~  the coupling 
term. Because the sum extends over all j, (1.2) can 
be conveniently rewritten in terms of a mean-field 
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Fig. 1. The order parameter re it, as defined by (1.3). The 
radius r characterizes the coherence of the phases 0j and the 
angle 1/' characterizes the average phase. The collective velocity 
v is defined as v ffi ~. 

In this paper we use this self-consistency argu- 
ment to analyze the mean-field model (1.4) in the 
limit N ~ oo. The continuous analogue of (1.4) as 
N - ~ o o  is 

e + sin ( . -  0.) + 

a ~ [O,2~r],  (1.5) 

where the order parameter is now defined as 

quantity 

1 N 
rei~ = ~ Z ei°j (1.3) 

j - 1  

to give 

E + sin 

+rr  sin( - 0,), i --  1 , . . . ,  N. (1.4) 

The quantity re  i~' provides an order parameter 
for the system [23, 25, 28, 40]. As shown in fig. 1, 
the magnitude r of the order parameter character- 
izes the arnotmt of order or coherence in the 
configuration of the 0./, and ~p defines the average 
phase. The quantity v = ~ measures the average 

velocity of the system. 
At first glance (1.4) appears to be an uncoupled 

set of equations:/~i depends explicitly on 0i, a i, E, 
Kr and ~k, but not on the other 0./. Of course 0i is 
coupled to all the other Oj, but only through the 
mean-field quantities r and ~k defined by (1.3). 
This observation led Kuramoto [22, 23, 95] to the 
following insight (in a different but related con- 
text): For finite N, one expects the coherence r 
and the average velocity v to vary h~ time. How- 
~,,~r f , r  1.r~. ~ these v~6at_ions should decrease 
as O(N-~/2). Hence to find the steady-state solu- 
tions of systems like (1.4) in the large N lhnit, one 
can impose a fixed r and v, solve (1.4) for all the 
a~(t), and then aemand that the resulting solutions 
0~ be consistent with (1.3) at all times. This re- 
quirement of self-consistency determines r and v 
and thus solves the problem. 

2'I5 

rei~= ~-~--~ foei°,dot. (1.6) 

Note that a re-indexing has taken place between 
(1.4) and (1.5): because the equation of motion 
(1.4) depends on i only through a i, we can re-label 
each # in (1.5) by its associated a. This assumes 
that all oscillators with the same a eventually 
move identically, regardless of their initial condi- 
t ions-  this is certainly the case in our computer 
simulations. 

1.4. Switching, hysteresis, and delayed onset of 
coherence 

Eq. (1.5) can exhibit interesting dynamics be- 
cause of its third term Krsin(~p-0~), which 
represents a collective force that pulls each 0, 
towards the population average phase ~k. The col- 
lective force has an effective strength Kr that is 
proportional to the coherence r of the whole popu- 
lation. Thus an incoherent population exerts no 
force on any of its members. On the other hand, 
once coherence starts to develop, it can set off a 
positive feedback process: as r increases, the ef- 
fective coupling Kr increases, thus tending to bl'ing 
the phases closer together towards ~p, which makes 
r even larger, and so on. Whether thi~ process 
becomes self-sustaining depends on the parame- 
ters K and E and on the initial conditions. For 
example, when E = 0 the static pinned configura- 
tion 0, = a always solves (1.5): it has r = 0 so the 
collective pull vanishes, and the p i r~ng  forces 
s i n ( a -  e,) are also zero. But is this state stable? 
Clearly for K large enough the system is prone to 
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Fig. 3. Stability diagram for steady-state solutions of (1.2): 
solid line, depinning threshold E r = (1 - K2/4) 1/2 determined 
analyt!,.ally in section 3; dashed line, pinning threshold Er 
obtained by numerical integration of (1.2) for N = 300 phases. 

Fig. 2. Switching and hysteresis between pinned and moving 
solutions of (1.2). The velocity v and coherence r of the 
steady-state solutions of (1.2) are plotted against the applied 
field E. The data were obtained for N = 300 phases by numeri- 
cal integration of (1.2) with K = 1. As E exceeds the depinning 
threshold E T the system switches discontinuously from the 
incoherent pinned state (r = 0, v = 0) to the coherent moving 
state (r > 0, v > 0). As E is decreased the system switches back 
to the pimaed state at a separate pinning threshold Ep Because 
Ep < ET, a hysteretic region is formed. 

the feedback process discussed above; it turns out 
that KT = 2 is the threshold above which stability 
is lost (section 2.1) and the system jumps into a 
coherent configuration with r = 1. 

We now present the results of numerical experi- 
ments which illustrate some of the behavior of 
(1.4) in the large N limit. For any initial condi- 
tions the hafinite-N syste~n always evolves to a 
steady-state solution for which the average veloc- 
Ry v and the coherence r are both time-indepen- 
dent. Fig. 2 plots the steady-state velocity and 
coherence of the system (1.4) against the applied 
field ~ fnr the case of  N = 300 os~d!ators  and  

coupling strength K = 1. For small E the system 
is pinned (v = 0) and incoherent (r = 0). When E 
exceeds the depinning threshold Er, the velocity 
jumps up disconthauously, a phenomenon we call 
switching by analogy to the switching seen in ~.he 
current-voltage characteristics of some charge- 

density wave systems [10, 15-21, 29, 41, 47]. With 
further increase in E, the velocity increases nearly 
linearly. If E is then decreased, the velocity de- 
creases and then switches discontinuously to zero 
at the separate pinning threshold E = Er as shown 
in fig. 2(a). Fig. 2(b) shows that the coherence r of 
these solutions also exhibits hysteresis with dis- 
continuous jumps at E r and Er. 

The thresholds Er  and Ep depend on the cou- 
plh~g K, as shown by the bifurcation diagram 
plotted in fig. 3. The depinning threshold ET(K) 
is found analytically in section 3: 

= 4 ' K _ < 2 ,  

0, K > 2 .  

Note that for K >  2, the system moves for any 
E > 0. In other words the depinning threshold 
,,~,..,;o~,~o ¢ . . . . .  m,.,;,~,,.,,1,, ~, . . . . . . . . .  1:.,,.,,.,, 'T'k~ pin  

ning threshold Ep shown in fig. 3 was determined 
numericaUy using the irdtial condition 0 i = 8j V i, j. 
We have not been able to derive an analytical 
expression for EI,(K) when E > 0. The thresholds 
E r ( K )  and Ep(K) in fig. 3 bound a hysteretic 
region where both pinned and moving solutions 
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Fig. 4. Delayed onset of coherence for (1.2) when E and K are just above the depixming threshold and the initial state is incoherent. 
Eq. (1.2) was integrated numerically for N = 300 ph~es,  with E = 0 an5 K = 2.06i. For clarity, oniy every fourth phase is shown. 
The time corresponding to each panel is shown in its upper r i~ t  hand comer. Starting from a random initial condition the system 
first evolves toward the diagonal, corresponding to the pinned state 0 i = % The system slowly leaves the neighborhood of tNs saddle 
equilibrium, and eventually reaches the coherent final state by t = 30. 
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are stable; the final state reached depends on 
initial conditions. 

The system (1.4) exhibits a peculiar transient 
behavior when the system is initially incoherent 
and when the parameters E and K are chosen just 
above the depinning threshold: before evolving to 
the globally attracting coherent state, the system 
approaches and lingers near a saddle equilibrium 
corresponding to the pinned state. This results in a 
delayed onset of coherence. 

Fig. 4 shows the evolution of the phases 0o 
starting from a random initial configuration, with 
E = 0 and K = 2.001. Note that the panels of fig. 4 
are not equally spaced in time. The system first 
evolves rapidly toward the unstable pinned state 
0a "- a, corresponding to the diagonal in each panel 
of fig. 4. An unstable mode grows slowly and 
eventually leads to the ripping seen at t = 20. The 
coherent state is reached by t = 30. A theory of 
this delayedswitching to the coherent state is 
presented in section 5. 

1.5. Charge-der~ity wave transport 

Under certain conditions the behavior of charge- 
density waves can be modeled by the dynamical 
system presented in this paper. This section serves 
as an elementary introduction to charge-density 
wave transport for readers with no prior exposure 
~o the subject. (For reviews see [151 or [191.) This 
section also discusses the strengths and weak- 
nesses of our equations as a modal of charge-den- 
sity wave transport. 

A charge-density wave is a collective electronic 
state found ha certain quasi-one-dimensional met- 
als and semiconductors. In these materials, a uni- 
form distribution of conduction electrons loses 
stability below a critical temperature, giving rise 
~.o a periodic modulation of the charge density 
with an accompanying periodic distortion of the 
crystal lattice. Quasi-one-dimensional systems can 
be realized experimentally in materials which con- 
duct cu~ent much more readily along one direc- 
tion than along the other two. 

Charge-density wave systems exhibit nonlinear 
conduction in response to an appfied electric field: 
when the applied field is weak, the charge-density 
wave is pinned by impurities o r  defects in the 
lattice and carries no current; above a depinning 
threshold field E a, the charge-density wave breaks 
free from the pinning sites and slides through the 
crystal, carrying current. 

Depinning of the charge-density wave can occur 
either continuously or discontinuously as the elec- 
tric field is increased. Considerable theoretical 
attention has been given to the problem of contin- 
uous depinning [12-15, 19, 30, 37, 42] which char- 
aeterizes the bulk of experimental data. On the 
other hand, systematic studies of discontinuous 
depinning, known as switching, have begun to 
appear only recently [10, 15-21, 29, 41, 47]. 
Switching is seen experimentally as a break in the 
current-voltage curve as the local electric field 
crosses E r and the charge-density wave suddenly 
begins to move and carry current. Hysteresis fre- 
quently accompanies switching in these systems 
[18, 47]. That is, after the charge-density wave has 
depinned, it will not repin until the electric field is 
reduced well below ET. Switching samples also 
exhibit a delayed onset of nonlinear conduction in 
response to a sudden super-threshold applied field 
[15, 19, 21, 47]. Switching is seen in charge-density 
wave systems with very strong pinning sites, cre- 
ated, for example, by radiation-induced defects 
[10, 16-21, 29, 41]. 

The charge density p in a one-dh~ensional 
charge-density wave system can be written as 

p ( x , t ) = P o + P c D w C O S ( k X + 8 ( x , t ) ) ,  (1.7) 

where O(x,t)  is the phase distortion of the 
charge-density wave at position x and tLrne t. The 
charge-density wave has a preferred wavelength 
2k = 2~r/k but can be distorted (with some energy 
cost) to accommodate local impurities or defects 
in the lattice. When the pinning sites a~c very 
strong, the charge-density wave can be thought of 
as consisting of many coupled domains, each asso- 
ciated with one or several strong pinning sites. 
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Fig. 5 shows a schematic picture of a charge- 
density wave as a collection of domains, each with 
a well-defined phase- tha t  is, the phase distortion 
0(x, t) is a slowly varying function of x within a 
domain. Between domains, the amplitude PcDw of 
the charge-density wave can collapse, allowing the 
phases of adjacent domains to advance at different 
rates [16-18, 20]. This phase-slip process relieves 
the energetically costly phase distortion at the 
expense of an amplitude collapse betweeq do- 
mains. 

The effects of pinning, elastic deformation and 
phase-slip are included in the following simple 
model [40] for the motion of each domain: 

~= E + b sin ( a i -  0,) 

+ r E ( Oj - o, ) , 
J 

i= 1,. . . ,  N. (1.8) 

Here 0i is the phase distortion of the i th domain, 
E is the applied electric field, b is a typical 
pinning strength, a~ is the preferred random pin- 
ning phase for the i'~h domain, and K is the 
coupling strength between domains, which favors 
an undistorted wave. The periodic coupling term 
sin (Oj- Oi) is roughly linear for small phase dif- 
ference (Oj- Oi). Thus for small pha~e deforma- 
tions this coupling corresponds to the elastic-cou- 
pling assumption used in previous treatments of 
charge-density wave dynamics [2, 12, 13, 30, 37, 
42]. However the sinusoidal coupling also allows 
phase-slip between domains by giving a restoring 
force which softens and then reverses as the 
phase-difference 0 j -  0 i increases. 

This paper concerns the dynamics of (1.8) for 
the case of infinite-range coupling, and shows that 
tke solutions of (1.8) exlfibit switching, hysteresis, 
and delayed conduction. In this sense (1.8) pro- 
vides a simple model of the nonlinear transport 
processes seen in charge-density wave switcl~ng 
samples. 

However, in addition to the obviously unphysi- 
cal assumption that all domains are coupled to 
each other with equal strength, there are several 
other limitations of (1.8) as a model of charge- 

density wave transport: 
(1) Modellklg phase-slip by a sinusoidal cou- 

pling term may capture some of the features of 
this complicated process, but is certainly not cor- 
rect in detail. A more realistic model should in- 
clude the amplitude of the charge-density wave as 
a dynamical variable. A model of switching in 
charge-density waves based on amplitude collapse 
at a single phase-slip center has been analyzed 
recently [16, 20]. 

(2) We have made the simplifying assumption 
that the coupling term in (1.8) is 2~r-periodic in 
the phase difference 0 i -  0j. This implies that 
phase-slip between neighboring domains will oc- 
cur as soon as the phase difference between them 
exceeds ~r. In real charge-density wave systems a 
larger phase difference may be built up before a 
2~ phase-slip occurs [16, 20]. This has the impor- 
tant physical consequence that many energetically 
distinct metastable pinned states can exist; such 
states are observed experimentally [15, 19] but are 
not present in our model 

(3) The pinning strength b should be distributed 
across domains, rather than constant as we have 
assumed. This would allow different domains to 
depin at different apFlied fields, and may lead to 
multiple switching thresholds, an effect which has 
been observed experimentally [17, 18]. 

(4) The role of the "normal electrons"-those 
conduction electrons which are not condensed into 
the ch~ge ~ensity wave- has been completely ne- 
glected. The normal electrons provide an impor- 
tant parallel conduction path through the material 
and strongly hffluence the local electric fields felt 
by the charge-density wave domains. 

phase-sUip 
domain  ... . . .  , / -  region 

Fig. 5. Schematic representation of a charge-density wave un- 
dergoing phase-slip. Strong pinning sites separate the charge- 
density wave into domains. Between domains the amplitude of 
the charge-density wave can collapse allowing phase-slip. 
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2. S ta t i c  so lut ions  

In this section we consider static equilibrium 
solutions of the governing equations (1.5). The 
analysis divides naturally into two cases: E -  0 
and E > 0 .  

The case E = 0 has been discussed in detail 
elsewhere [28] and will be reviewed only briefly 
here. The main result of this section is that there is 
a j u m p  bifurcation in the coherence r when K = 

K~ -- 1 .489 a n d  K = K T "- 2. 

For E > 0, we show that a subcritical branch of 
static solutions with small r bifurcates along the 
depinning threshold E r = {i - K 2/4.  All of these 
subcritical solutions are unstable, as can be shown 
by extending the methods of [28]. In section 2.2, 
we derive and analyze a self-consistent equation 
for the.coherence r =  r ( E ,  K )  of these unstable 
static solutions and show that such solutions exist 
only if E + Kr _< 1. We argue by contradiction: if 
static solutions exist for E + Kr > 1, then we ob- 
tain the contradiction that the coherence r or 
some of the phases 0,~ must be complex. 

Throughout this section, we emphasize that so- 
lutions with r > 0 arise as one-parameter families 
of configurations parametrized by the average 
phase ~p. This means that whenever there is one 
static solution to the equations, there is actually 
an entire circle of solutions in configuration space. 
This point is important to keep in mind; although 
it is obvious for the static case, it helps us to 
understand the moving solutions studied in later 
sections-the limit cycles studied there are seen 
here in degenerate form as circles of fixed points. 

Writing the sine functions as complex exponentials 
and solving (2.1) for the phases 0. yields the 
equilibrium solution 

e i ¢ .  ] Kr  .t. e i (a -~ , )  eiO., 
V Kr + e - i ( a - ~ )  

= eiq, u + e i~ ( 2 . 2 )  
U + e - i v  ' 

where 

u = Kr  ( 2 . 3 )  

and 

~, = a - + .  ( 2 . 4 )  

Thus for each u, there is a one-parameter family 
of configurations (2.2) parametrized by ~. 

2.1.2. Self-consistency equation 
i'he solution (2.2) must be consistent with the 

definition of the order parameter: r e  i¢ = 
(1/2~) fo2~e i°° da. Hence 

2"~ • 1/2 

Note that the factor e i* cancels from (2.5). Thus q, 
is arbitrary, reflecting the rotational symmetry in 
the system. From (2.5) we obtain the self- 
consistency equation for r: 

r = f ( u ) ,  (2.6) 

2.!..~tmit, solutions for E = 0 

2.1.1. Explicit form of the solutions 
For E = 0 the solutions of (1.5) always evolve to 

a static equilibrium as t -o  oo. These static 
equilibria satisfy 0,, = 0. Hence 

where 

2~r • 1/2 

o u + e-iv d3, 

2"ff 

1 f u + cosy 
= ~ o 1/1 + 2u cos y + U 2 dy. (2.7) 

o = oo) + sin ( q , -  o,3, a [6,2 r I . 
(2.1) 

The function f (u)  may be expressed exactly in 
terms of elfiptic integrals [28]. 
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1.0 

0.5 

o.o 

u/K 
K=K c ..." , . 

"-,~...." . . f(u) 

0 1 2 
U 

Fig. 6. Solution of the self-consistency equations (2.6) and 
(2.7). Solid lines indicate the integral f(u) plotted froth (2.7) 
together with the line u/K (see tex0. Equilibrium solutions for 
r occur where f(u) intersects the line u/K. For the values of K 
shown, three solutions exist (filled circles). Dashed lines show 
u/K for the bifurcation values K = K¢ and K = K-r = 2. 

Fig. 6 shows the graph of f (u) .  At fixed K, the 
corresponding values of r are found at the 
intersections of the curve r = f ( u )  with the line 
r = u / K  (fig. 6). Note  that jump bifurcations occur 
where  the line intersects the curve tangentially, at 
K = K¢ -- 1.489 and K = Ka- = 2. The resulting 
curve of of r versus K is plotted in fig. 7. 

2.1.3. Stability of the solutions 
In [28] we prove the following results about 

stability: 
(i) When r = 0, the incoherent pinned solution 

0~ = a is globally stable for K < Kc, locally 
stable for K < 2 and unstable for K > 2. All 
other solutions with r = 0 are unstable. 

(ii) For  each u >  0, there is a one-parameter  
family or "circle" of static soludon~ (2.2) 

parametrized by ~p. 

1.0' 

0.5; 

0.0 

°'..... "...... 
°,. 

Kc 2 K 

Fig. 7. Coherence r of the static equilibrium solutions of (1.5) 
with E = 0, plotted against the normalized coupling strength 
K. Solid lines, locally stable equilibria; broken lines, unstable 
equiEbda. Jump bifurcations occur at g = K¢ and K = 2. 

[ \ \ /  
K c KT 

Fig. 8. Schematic bifurcation diagram for equilibrium of (1.5) 
with E = 0. The coherence r and the average phase ~ of the 
equilibria are plotted in polar coordinates. The origin r = 0 
corresponds to the pinned state 0 a = a, which is locally stable 
for K < K. r. A circle of saddle equilibria (thin line) and a circle 
of stable equilibria (thick line) appear at large r when K-- K c. 
The pinned state 0= = a loses stability at K =  K. r when it 
coalesces with the circle of saddle points. Above K.r the only 
attractor is the circle of stable points with large coherence 

(iii) 

(iv) 

For  u > uc = 1.100, the critical circle is locally 
stable to perturbations in all d.~xections 
transverse to the circle. For  u < u c, the critical 
circle consists of saddle points which are 
unstable in precisely one direction. For all u, 
the critical points are neutrally sta~-'e to 
motion along the circle in the ~ direction. 
The circle of saddles coalesces ~ t h  the circle 

of stable points at K = K c. As K --, K x = 2, 
u ~ 0, the saddle configurations for different 
~k become more and more alike, and the 
" 'radius" of the circle shrinks. At K = K T a 
saddle circle coalesces with the incoherent 

pinned state. 

2.1.4. Schematic bifurcation diagram 
Fig. 8 illustrates the transitions discussed above. 

The diagram is familiar from the Landau theory 
of first-order phase transitions or the theory of 
subcritical Hopf bifurcations. For  each equilibrium 
configuration 0~ given by (2.2), the average phase 

is plotted as the polar angle, and the coherence 
r as the radius. A circle of stable points ~4th large 
r coalesces with a circle of unstable points at 
K = K¢, and both are ~ a t e d  for K < K c. A 
small circle of unstable points coalesces ~fith the 
stable r - - -0  configuration at K = KT, rendering it 

unstable for K > KT. 
Fig. 8 is very schematic because each point 

actually represents a configuration 0,, a ~ [0, 2o], 
and therefore belongs to an infinite-dhmensional 
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function space, not a two-dimensional space. 
However, the picture is qualitatively faithful: as 
shown by (2.2) there is a two-parameter family of 
equilibria for (2.1), parametrized by the average 
phase ff and by u = Kr; the topological aspects of 
the bifurcation are captured correctly by our two- 
dimensional representation. 

Solvhg (2.8) with complex exponentials we 
obtain 

eie,, -._ 
g + e - i n  a ~ [O,2~r], 

(2.12) 

2.2. Static solutions for E > 0 

In this section we compute the shape and coher- 
ence of the static configurations for E > 0, and 
show that they exist only if E + Kr < 1. 

where u = Kr. 

2.2.2. Existence conditions 
Eq. (2.12) must be consistevt with (2.11) and 

with 

2.2.1. Explicit form of the solutions 
The static solutions now satisfy the equation 

2'IT 

1 of ei0o r = ~-~ da,  r > O. (2.13) 

0 = e + s i . ( ~ - 0 o )  

+Krsin(~-O,), a ~ [0,2~r]. (2.8) 

For r = 0, there are two serf-consistent continuous 
solutions of (2.8): 

0 6 = a + sin -x E (2.9) 

and 

In particular r must be real. Also we require that 
0,, be real for all a. 

We show now that these reality constraints are 
satisfied if and only if u + E _< 1, where u, E > 0. 
First we rewrite (2.12) in a simpler form. We 
define p and a by 

p e i° --/,/-{- e in, p( g, ~) >__ 0; a(  u, if) E [0, 2,1~ I. 
(2.14) 

0~ = a  +~r + s in -1E  (2.10) 

wkere sin- 1 E ~ [ -~ t /2 ,  ~r/2]. 
The stability of the solution (2.9) will be 

analyzed in section 3, where it is shown that 
(2.9) is locally stable if and only if E < E T ( K ) =  
(1 -- / (2/ '4)  1/2. The same analysis shows that (2.10) 
is ahvays unstable. 

For r >  0, there is one-parameter family of 
solutions of (2.8) for fixed E and K, parametrized 
by the average phase q~. Without loss of generality, 
we restrict our attention from now on to solutions 
with 

In terms of p and a, (2.12) becomes 

eW. = 
p C - i n  

E +  _ E )  2 . 
(2.15) 

Because we want (2.15) to branch from the stable 
solution for E = 0, we take the solution (2.15) in 
which the square root is added to i E/p .  Then 
making the change of variables 

~b=0. (2.11) 

(To obtain all other solutions, replace #,, and a by 
0 6 - ~p and a - ~p respectively.) 

sin × = E / O ,  

cOS X = 1 - (2.16) 
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we obtain e i°o = eiOe ix or 

9~ = o + x, a E [0,2~rl. (2.17) 

Since a(u,a) and 0, are real for all a, then 
X = x( E, p( u, a)) must also be real for all a. 
From (2.16) this condition reduces to 

E ~ minp(u~ a) 
a 

= I1 - ul. (2.18) 

From (2.12) and (2.13) the self-consistency 
equation for r is 

2= eial 2 E2 1 iE  + ¢lu + - 
r =  ~-ff fo u + e-'~ da.  (2.19) 

The integral (2.19) splits into two pieces. The first 
piece is 

where the star denotes complex conjugation. Thus 
the integral of g is real: 

2'R 

fo g(a) da 

'IT 

= of [g(a)  + g ( - a ) l  da 

'IT 

= fo [g(a)  + g*(a)l da 

= Re g ( a ) d a  . (2.23) 
0 

Combining (2.20) and (2.23) we conclude that 

u < 1 (2.24) 

2q$ 

I f  ° ie 
2~r u + e - i ' '  

2'R 

B u ' ~  u 

= u 2 ~  
Izl=l 

da  

e i " d a  

-1  -F e ia 

dz 
g + U  - 1  

0, u < l ,  
= iE/2u,  u = l ,  

iE/u ,  u> 1. 
(2.20) 

The second piece of the hategral (2.19) is real. 
To  see this, let 

f 
g ( a )  = ¢ iu + ei°l z - E 2 

u + e -i~ " (2.21) 

Because of (2.18) the n,amerator in (2.21) is real 
for all a. Therefore 

is required for the integral in (2.19) to be real. 
Now (2.18) impfies the stronger i n e q u i t y  E < 
1 - u  or 

:., + E < 1. (2.25) 

The upshot is that e ~difion (2.25) is necessary 
and su~cient for tht ~rdstence of static ~olutions 
for E > 0. (For E = 9, the argument fa i l s -as  it 
m u s t -  because the ~-.tegral in (2.20) vanishes.) 

2.2.3. Self-consistency equation 
]in this section we derive the self-consistency 

equation for the coherence r of the static solutions 
(2.12). By expanding this equation in powers of 
u = Kr we show that these solutions branch off 
from the r = 0 pinned solution zJong the curve 
E2+ K z/4 = 1. It is also shown that this branch 
is suberitical in the sense that it e×;~sts only for E 
below threshold ET, where 

= v (2.22) 
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The self-consistency equation is 

U 

2qT 
1 iE  + ¢IU + e i*l 2 -  

= ~ -  of u + e  -I° 

E 2 
d a  

2~ 

1 of ¢a - B' + 2,¢os.  +,~ 
= ~"~ l + 2 u c o s a  + u 2 

× ( u  + cos a)  da ,  (2.26) 

where the imaginary part of the integral vanishes 
as in (2.20) because we are assuming that u + 
E < I .  

Note that u = 0 solves (2.26) for all E, K > 0. 
To find when solutions with small u > 0 b/fureate 
from this trivial solution, we expand (2.26) in 
powers of u << 1. After evaluating the resulting 
integrals we obtain 

u U I U 2 1 +  2E 2 + ~(u4 ) 
= 2¢1 - e ~  ~1 + T (1 - e ~ )  '- 

(2.27) 

2.2.4. Static configurations for  0 < r << 1 
As E- -~E  T, a branch of static subcritical 

solutions with small positive r approaches the 
incoherent (r  = 0) solution 0a = a + sin - t  E. In 
fact, an entire circle of subcritical solutions 
parametrized by ~k coalesces with the incoherent 
state at E -  E T. In this section we calculate the 
shape of  those subcritical solutions to leading 
order as r-- ,  0. As before, we restrict attention to 
the case ~k = 0 without loss of  generality. From 
(2.17) we have 0a = a  + X. We first find a to dT(u) 
as follows. Eq. (2.14) implies 

ei,~__ u + e  ia 
[ u+  eia[ 

- -  ~ u + e i a  

U + e - i a  

= e-(1 - i ~  sin. + o(.~)) 
= e i - e - i . ~ o  + 0(u2) ,  (2.31) 

SO 

o = ~ -  u s t n . +  ~ ( u 2 ) .  (2.32) 

Thus non-trivial solufious branch from u = 0 Mong 

the c,:~'ve K = 2¢1--=E 2 . For fixed E, let 

K T =  2¢1 - E 2 . (2.28) 

As K ~ g r from below, the static solutions satisfy 

KT U 2 1 + 2E 2 
--g- = 1 + T (1 + E2) z + dT(u4)' (2.29) 

which "--~" - - LtUpU~,,,~ t h e  - - - ~ - - ' :  __1 ~__1. _ .__ ~ U U g ; l l t U ~  U~LI~V'iUI- 

r ~ (1 + 2E 2 

Note that the term in brackets tends to zero (but 
very slowly) as E ~ 1-. 

To find X to 0(u) we recall 

sin X = E / p  

-- E / t / 1  + 2ucos a + ,.2 

= E(1 - ucos a)  -e 0 (u2 ) ,  (2.33) 

which can be inverted to yield 

uE cos a 
x = ~ m - ~ E  V ~ - E 2  + ~ ( u 2 ) .  (2.34) 

Hence 

0 , = o +  X 

[ Ecoset ] 
= ~ + , m - x e - ,  ~m~+ S_--e~ +~(,=). 

(2.35) 
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It is significant that the leading order corrections 
lie in the subspace of configurations spanned by 
{sin a, cos a }; as will be seen in section 3, these 
are precisely the modes which lose stability at the 
depinning threshold E. r. 

This potential function H satisfies 

~ =  8H 
8%' (3.4) 

where 

3. Depinning threshold E T 

In this section we analyze the local stability of 
the incoherent pinned solution 0. = a + s in  t E. 
We show that this solution is a local ~ lma 
of the potential function if and only if ~ < 
E T ( K )  = ¢ 1 -  K2/4. We also find that for A'> 
E r the pinned state is unstable to small peJ mrba- 
tions of the form 7(a )  = a sin a + b cos a. 

In the presence of an applied field E, the $ov- 
eming equations are 

a,. =.e + o.) 

+rrsha(~-O,), a ~ [0,2~r], (3.!) 

2~ 

0 

There is a solution of these equations which is 
pinned (0. = 0 V a) and incoherent (r  = 0). Such a 
solution satisfies E + sin ( a -  0 . )=  0 or 

0 , ~ = a + s i n  - 1 E ,  a~ [0 ,2~r ] .  (3.3) 

Note that this solution exists for all IEI -< 1. The 
configuration (3.3) is a rotated version of the 
pinned solution 8. = a found earlier for E = 0. To 
recover the stable solution found when g = 0, we 
want the branch of the inverse sine that satisfies 
cos(sha -~ E)  >_ O. 

We now analyze the local stability of the pinned 
state (3.3) by diagonMizing the second variation of 
the system's potential function about that state. 

2~ 2'n 

mo=)- -E f O°d"- fo 

2.n 2¢ 

4~ .[ cos(Oa-O,)dadfl. (3.5) 

Let 0.(~.) denote a small variation about the static 
solution (3.3): 

O.(c) = a  + sin -x E + c 7 , ,  (3.6) 

where c << 1 and 7: a ~ % is a perturbation. For 
fixed 7, H is a function of the single variable e. 
W e are particularly interested in the second varia- 
tiea t" given by 

a2 ] (3.7) 

because it determines the local stab~ty of (3.3). 
R~al l  that the second variation is a quadratic 
form in rl; if F is positive defimte, i.e., F ( 7 ) >  0 
V 7 4: 0, then the configuration (3.3) is a local 
minimum of H and is therefore locally stable. 

To calculate f '  we first substitute (3.6) into (3.5) 
which yields 

H =  -E of (~ + sin - 1 E  + c~,) da 

2~ 

- fo c o s ( %  + sin - 1 E ) d ~  

2Ir 2"~ 

Jo + 4,rr o 

(3.s) 
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Hence transform: 

d H  
d~ 

255 2"n' 

× sin (o1~ + sin -~ E)da 
255 2~r 

K 

× Sin ( fi -- a + o1# -- via) da dfi, (3.9) 

and 

255 

d2Hd, a - f0 r/~cos(,71. + sin - 1 E ) d a  

2.~ 255 

x cos ( ¢  - .  + ,n# - ,no) d .  an.  (3.10) 

To find F we evaluate (3.10) at c = 0. Thus 

2,1t 

r(n) = ~h - E = f e n .  
0 

255 255 
K 

0 o 
(3.11) 

255 255 

255 2,~ 

= of of~iJ/#(eos acos fl + sin a sin fl) da dfl 

= of~l.cosada + ~l .s inada 

255 12 
= of ~a e i " d a  

- 4 ~ 2 1 ~ ( - 1 ) 1 2  , (3.13) 

where the Fourier transform ~ is defined by 

255 

(3.14) 

The upshot is that (3.11) may be rewritten as 

255 

F(~)  = V/1 - E 2 o f ~ d a -  2~rKl~(-1)l 2 

= 2~[¢1 - E2 Ilrfl[ 2 -  K [ ~ ( -  1)12], (3.15) 

where 

The second integral on the fight side of (3.11) may 
be simplified in two steps. First, when we expand 
the term (~a_%)2,  only the integral involving 
rl,~a survives- the others integrate to zero. Hence 

2~ 2qr 

iv" o f 
2~ 2~ 

= -z f fnono=os(~-.)a=aa. 
o o 

(3.12) 

255 

il~ll2= 2~  ° f ~ : d " "  (3.16) 

The quadratic form (3.15) can be d/agonalized as 
follows. We work in the Hflbert space L2(S x) of 
square integrable functions with the inner product 

255 

if ~" u = 2--~ ~,p~ da. (3.17) 
0 

Second, we expand the term c o s ( f l - a )  on the 
right side of (3.12) and note that the a and 
integrals separate, conveniently yielding a Fourier 

Let 

~ = cosa, v, = sina. (3.18) 
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Then II/~112= II1,112-- !2 and ~. i, = O. Write ~ in an 
orthogonal decomposition using/t and I,: 

~a Pa i (3.19) 

where la" ~1 ± - I" ~1 ± - 0. That is, we express ~ as 
a linear combination of  tt, p, and some function 
~1" orthogonal to b o t h / t  and 1,. 

Then 

117112 -- a + + b 2 + I1~11 + (3.20) 

and 

I ~ ( - 1 ) 1 2  

2,r )2 
"- ~ ~l, ,cosada + 

= 

= ( a l b l l )  e + (b l ld l )  e 

ae + b z 

2 " 

2-1 0f Sin ada 

(3.21) 

Note that at E = E T the unstable subcritical solu- 
tions (3.12) coalesce with the incoherent state (3.3), 
as shown in section 2.2.3. 

The present analysis also reveals the instabifity 
modes. For E > ET, the incoherent state (3.3) is 
unstable to any perturbation of  the form 

= a cos a + b sin a, (3.24) 

which is a linear combination of eigenfunctions 
(3.18). To leading order in r, this is precisely the 
form of the subcritical solutions (2.35) as they 
approach the r = 0 state (3.3). In terms of Fourier 
series, the first harmonic of 0~ is unstable, while 
all higher harmonics are stable. This instability of 
the first harmonic is strikingly apparent in fig. 4, 
between t = 5 and t = 20. 

4. Moving solutions 

Thus (3.15) has been diagon_afized to the form 

l r ( n )  

= ¢1 - K  2 

( 3 . 2 2 )  

Eq. (3.22) expresses F as the sum of two for~s: 
[]~-LIIz is positive definite, and the form c o n t a h ~ g  
a z + b: is positive, zero, or negative depending on 
the quantity ~ /1-  E e - K / 2 .  I n particular, F is 

ifive definite/f and only if ~/1 - E z _ K / 2  > 0. 
Aence the incoherent pinned state (3.3) loses sta- 
bility at the deph~ning threshold given by 

K2 
E T =  1 4 " (3.23) 

In this section w.- analyze the steady-state mov- 
ing ~olufions of (1.5). In section 4.1 we seek travel- 
ling-wave solutions of a certain form motivated by 
symmetry arguments and the results of computer 
simulations. This ansatz reduces the original infi- 
nite-d~mensional dynamical system to an ordinary 
differential equation in one variable, subject to 
three side conditions. Sections 4.2 a~-~d 4.3 use 
regular perturbation theory to approximate the 
wave-shape, coherence, and velocity of the s~ab~e 
moving solution for large E (section 4.2) and large 
K (section 4.3). 

Numerical results indicate that steady-state 
moving solutions exist if and only if E exceeds the 
pruning threshold E p ( K ) .  Section 4.4 discusses 
the bifuccafion that occurs at E = Ep. We conj~- 
ture that the stable mov-'_ag solution, which corre 7 
sponds to a stable limit cycle in configuration 
space, ceases to exist when the stable cycle co- 
alesces with a saddle cycle. 
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4.1. Ansatz for moving solutions 

The governing equations for the infinite-N sys- 
tem are 

sin( - 
+Krsin(¢/-O,,) ,  a ~ [0,2~r]. 

2~ 

I [ eiOo da r e i ~ =  

O( ix + 2~r, t) = O(a, t) + 2~rm, 

(4.1a) 

(4.1b) 

for integer m. 
(4.1c) 

(iv) The moving solution is locally asymptoti- 
cally stable for E v < E < E a. and globally asymp- 
totically stable for E > ET. 

Property (i) above is the key to analyzing (4.1) 
for moving solutions. A more explicit statement of 
property (i) is that there is a 2~r-pedodic function 
~,: R-- ,  R such that (4.1) has a solution of the 
form 

O ~ ( t ) = ~ ( t ) + , ( a - ~ ( t ) ) ,  a ~ [O,2~t]. 
(4.2) 

As always, we assume E, K >_ 0. 
Numerical integration suggests that for E > 

E v ( K )  (4.1) has a unique, locally asymptotically 
stable moving solution with the following proper- 
ties: 

(i) All the 0~ execute identical motions but 
shifted in time and phase. 

(ii) The coherence r and the collective velocity 
v = q; axe both independent of time. 

(iii) The solution O, has degree m = O: 

O(a, t) = 0 ( ~ +  2~r, t ) V a ,  V t. 

Note that the same function ~ appears in the 
ansatz for each 0,, a ¢ [t3, 2~r]; this is the sense in 
which all the 0, execute identical motions. A simi- 
lax ansatz has been used by other authors [13, 30, 
371. 

Fig. 9 illustrates a heuristic argument for the 
ansatz (4.2). The first term on the right side of 
(4.2) brings us into a reference frame moving with 
the average phase ~(t).  In this frame at a fixed 
time, some 0. axe ahead of ~ and some axe 
lagging it, depending on the location of their pin- 
ning phase a relative to ~k (fig. 9). As time evolves 

0((~, t) 

2 

0 

-./L 
2 

° 

..." t= t~  

t L ~ . . . .  , I 

2 2 

Fig. 9. Solutions O(~, t) of (4.1) for four equally spaced times, as obtained by numerical integration. The solutions at different times 
have identical shapes, but differ by a translaSon along the dashed line O = ~. Equivalently, one solution is related to another by a 
translation in both the O and a directions. This observation mot;"ates the ansatz (4.2). 
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q~ ( t )  advances uniformly according to 

~(~) = o t .  (~.3) 

Cancelling e i~ and equating the real and imagi- 
nary parts of both sides of this equation, we 
obtain 

Meanwhile the position of the leading O. moves 
like a travelling wave in the a-direction; hence the 
wave variable a - ~k (t)  = a - vt appears as the 
argument of ~b in (4.2). The function ~ describes 
the shape of this travelling wave; in particular 
q~(a) = 0,(t = 0), since ~k = 0 when t -~ 0. 

Now we use (4.2) to obtain a differential equa- 
tion for the function q~. The argument of ~b is the 
wave variable ~ defined as 

¥--- a - ~ ( t )  

= a - o r .  (4.4) 

Differentiating (4.2) with respect to time we ob- 
tain 

Oo = 4 + , ' (v ) ( -q ; )  
= v(1 - * ' ( 7 ) ) ,  (4.5) 

where prime denotes differentiation with respect 
to ~,. Also 

s~( ,~-~o)  = ~ m ( . - [ ~  + ,1)  
= s i n ( v - , )  (4.6) 

and 

2,ff 

r =  ~ cos q~(V) dy, (4.8b) 

2,ff 

0 =  of s in~(y )dT ,  (4.8c) 

since r is assumed to be real and non-negative. 
The conditions (4.8b, c) may be expressed more 
compactly as r = (cos q~) ,and 0 = (sin ~), where 
the averaging operator ( . )  is defined by 

2,I1" 

(f) = ~ ff(a,)dv. 
0 

The periodicity condition (4.1c) may be rewritten 
in tern:s of ,~. as ~(y + 2 , r r )=~(y )+  2~,m. As 
mentione:l above in property (iii), numerical simu- 
lations suggest that the moving solution has de- 
gree m = 0; hence we seek solutions satisfyi~g 

q~(Y) =q~(V + 2~r) V Y ~ [o,2~1. (4.8d) 

K~ s i n ( # -  0~) = r~ s i n ( + - [ # + , 1 )  
= - K r  s in  q~. (4.7) 

Hence (4.1a) becomes 

v(1 - q ¢ )  = E + sin (y - q~) - K r s ' . ~ , .  (4.8a) 

The self-consistency condition (4.1b) may be 
rewritten as foUows: 

2,ff 

e ie~ d a  

2'ff 
1 

= ~ f ei~ei~(v)d7 • 
0 

The problem posed by (4.8) is thus: Given 
E > 0, K >_ 0; find a 2~r-periodic function ~ and 
two numbers r >_ 0, v > 0 such that ~ solves the 
differential equation (4.8a) and satisfies the side 
conditions (cos~) = r  and (s in~)  =0.  This is a 
boundary value problem with three degrees of 
g . . . .  A,,~m Q n h  ~hr~a  onnct r~ in t~  1~','3r ~ m n ] e _  f o r  

fixed E and K we can choose values for ~(0), r, 
mad v. Then we shoot forward to y=2cr  by 
integrating (4.8a) ~dth the chosen kfitial condition 
4,(0) and the chosen parameters r and v. This 
yields a function ~(y)  which depends on the cho- 
sen ~(0), r and v. If this function satisfies the side 
conditions (cos~) = r, ( s in~)  =0,  and ~(2~r) = 
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~,(0), then (4.8) has been solved. Otherwise we 
need to choose a different triple (¢(0), r, o) and 
continue the process. 

From this argument it is not at all clear whether 
there will be any solutions to (4.8). Because we 
have as many degrees of freedom as we have 
constraints, there is reason to hope that solutions 
exist. In the next two sections we present formal 
asymptotic solutions of (4.8) for the cases E >> 1 
and K>> 1. 

(After this work was completed, Nancy Kopell 
pointed out to us that the implicit function 
theorem can be used to prove the existence of 
solutions to (4.8) for sutiiciently large E. This 
argument will be presented elsewhere.) 

4.2. Perturbation theory" E >> 1 

Numerical integration indicates that for E >> 1 
and K = dT(1), there is a stable moving solution to 
(4.8) with 

v - - E ,  r ~ l  and ¢ < < 1 .  (4.9) 

That  is, the high-field moving solution has all the 
0,~ nearly aligned with the average phase ~k. 

These observations suggest that we seek a for- 
real solution of (4.8) as a perturbation expansion 
in powers of 

= 1 / E  << 1. (4.1o) 

Our strategy is to write expansions for r, o, and 
~(~,) in powers of c; then we solve the resulting 
differential equations at each oider of c, and use 
the conditions (4.8b, c,d) to determine the con- 
stares of integration and the ~ o r , - n  paramel,ers 
in r and v. This procedure is carried out far 
enough to reveal the leading order dependence of 
~b, r, and v on c and If. 

One word about notation: for convenience, we 
often suppress the dependence on parameters in 
the expansions for v, r, and ~. The explicit depen- 

dences are 

v=v(c,K), 
r = r ( , , K ) ,  (4.11) 

¢ = ¢ ( a , , e ,  r ) .  

Using e = 1 / E  we rewrite (4.8a) as 

e v ( 1 - ~ ' )  = 1 + e s i n ( T - ~ )  -eKrsinck.  (4.12) 

As mentioned above, we expect v ~ E and hence 
ev ~ 1 as e ---> 0. Hence we expand ev as 

co = v 0 + co 1 + e202 + . - .  (4.13) 

with the expectation that v o = 1. 
The expansions for ~(T) and r are 

~ ( T ) - ' ~ o ( T ) + e ~ t ( T ) + e 2 ~ 2 ( T ) +  . .-  , (4.14) 

r = r o + cr 1 + c2r2 + . . . .  (4.15) 

In the appendix we carry out the analys; o in 
detail. The results are: 

1 1 
¢'(T) = ~ COST + ~--'~(K si~, T + ¼ sinE3,) 

1 
+ ~--~ ( [ ¼ -  K 2 ] cosy - ~ If cos2T 

-±12 cos 3T) + O(E-4) ,  (4.16) 

r = l  1 1 2 
- 4 E - ' ~ + ~ - - E - ~ ( K - ~ ) + d T ( E - S ) ,  (4.17) 

1 1 ~x , ,,r t ,-4) (4.18) = E - + ( K  : 

Fig. 10 shows that our third-order series solu- 
tions agree well with numerical solutions even 
when E = dT(1). For E >> 1 the series solution is 
uxux~tmE, ua:m~.ux~ f i t h T ~ e i ' l C ~  ~ ^ l - - ' :  . . . .  j ~U" U.NdLUJUL 9 CMLIt~..IL 

is therefore not shown. 

4.3. Perturbation theory: If  >> 1 

We now consider the strong-c~upling limit 
K>> 1 with E=O(1) .  The techniques are very 
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Fig. 10. The data points show the steady-state configuration 
¢(~,) obtained by numerical integration of (4.8) for K = 1 and 
E = 2. The perturbation theory result (4.16) is plotted as the 
continuous curve; it compares well with the numerical solu- 
tion, even though E is far from the high-field limit E >> 1 on 
which the perturbation theory is based. 

Fig. 11. The data points show the steady-state configuration 
@(y) obtained by numerical integration of (4.8) for K = 4 and 
E = 0.5. The perturbation theory result (4.21) is plotted as the 
continuous curve; it compares well with the numerical solu- 
tion, even though K is far from the strong-coupling limit 
K >> 1 on which the perturbation theory is based. 

similar to those of section 4.2, but the analysis is 
slightly easier; at each order of perturbation the- 
ory, the next term in the unknown function ck is 
generated by differentiation rather than integra- 
tion of previous terms. 

The main results are asymptotic expressions for 
the configuration ~ ( r ) ,  the coherence r, and the 
collective velocity v, expanded in powers of 1/K.  
We find that for small E the velocity v is propor- 
tional to the applied field E. In particular, the 
depinnmg threshold ET vanishes in this strong- 
coupling limit K >> 1. The results of sections 2 
and 3 prove the stronger result that E T ( K ) =  0 
for all K >  2. Fisher [12, 13] also found these 
results (v 0c E and vanishing E T in the strong- 
coupling limit) for a closely related mean-fidd 

model. 
In this sect/on, the small parameter c is given by 

, .= 1 / K .  

The detailed calculations are carried out in the 
appendix. The results are: 

1 1 
q,('y) = ~ sin~ + ~-~(Ecos  ~' - i sin 2,/) 

r = l - ~  

1 2] + ~ - ~ ( [ ¼ -  E s i n ' y -  ( E c o s 2 y  

1 

4 K '  ~ 4 64 
6 

(4.21) 

(4.22) 

o 1 
-~ = 1 - ~ + 0 (4.23) 

2K 2 

Fig. 11 shows that the solution agrees well with 
numerical results even if K is not large. 

Then (4.8a) becomes 

1 
v(1 - ¢ 9  = E + sin ( r -  ¢)  - -fr sine. 

We seek solutions o:  the form 

,/, = ¢o+  ~¢~ ÷ . . . ,  

r=ro+~r l  + . . . ,  

O=Oo+¢O1+ . . .  

subject to the conditions (4.8b, c, d). 

(i,,.2o) 

4.4. The pinning threshoM Ep 

We now offer some conjectures about the bifur- 
cation at E = Ep(K). First consider the static case 
when r~ = v, for wmcn"' we ziavc el~olou~ ~ul~- .  
Fig. 3 indicates that the point E = 0, K = K c lies 
o:. the phm/ng threshold. As discussed in sectic~v.s 
2.1.3 and 2.1.4, for K slightly greater than K c the 
system has a circle of saddle equilibrium points 
and a circle of stable equilibrium points in the full 
space of configurations (fig. 8). These circles are 
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parametr ized by ,:,. A jump bifurcation occurs at 

K = K c as the circle of saddle po in t s  coalesces 

with the circle of stable points. For K < K c the 

sinks and saddles have annihilated, leaving the 

incoherent  pinned configuration O(a)= a as 
the only attractor. These statements were proven 

in [2s]. 
For K >  K c and E = 0 ,  the circle of saddle 

points and the circle of stable points are each 
neutrally stable to motions along the circle, as 
discussed in section 2.1.3, For E = 0 +, we conjec- 
ture that the circle of stable points loses this 
neutral stability and becomes a stable l imit cycle. 
The circle of saddle points for E = 0 is expected to 
become a saddle cycle for E > 1 -  Kr, as dis- 
cussed in section 2.2.2. 

Fig. 12 shows these limit cycles and their bifur- 

cations in a schematic format analogous to fig. 8. 

Each of these cycles in configuration space repre- 

sents a moving solution to (4.1). The motion along 

the cycles is expected to be uniform, because of 

the rotational symmetry in the problem. 

Fig. 12 leads us to believe that the pinning 
threshold Ep(K ) is defined by the condition that the 
stable cycle and the saddle cycle haoe coalesced. As 

E ~ Ep(K)  one of the Floquet multipliers (corre- 

sponding to perturbations transverse to the stable 

cycle and toward the saddle cycle) is expected to 

approach zero. 

However the velocity along the cycles is not 

expected to approach zero as E ~ Ep (K) .  Thus 

we expect a genuine discontinuity in the velocity v 

at E = Ep(K) ,  as indicated in fig. 2(a). If correct, 
this discontinuity in v would be of theoretical 

interest  because it distinguishes the repinning of 

this system from that of the hysteretic dc-driven 
Josephson junct ion and the damped pendulum 

driven by a constant  torque. Daniel Fisher has 

pointed out to us that  in these latter systems the 

analogue of the velocity tends to zero continuously 
~vu~ w~m infinite oenvauves o~ an orders) as ~ 
Ep, according to 

1 
v c~ In ( E  - Ep ) "  (4.24) 

! 
Ep 

oo o 
\ / 

I I 
Es E T 

(a) 

2.0 

Kc/ 

1.0 

0.0 
0.0 

moving 

E; ,E, 

0.5 1 .o 
E 

(b) 

Fig. 12. (a) Schematic bifurcation diagram for steady-state 
solutions of (4.1) with E > 0. The coherence r and the average 
phase if(t) of the solutions are plotted in polar coordinates. 
The origin corresponds to the pinned state 0,--a + sin-l E, 
which is locally stable for E < E T. A saddle limit cycle (thin 
line) and a stable limit cycle (thick line) are born at large r 
when E-- Ep. Motion along the saddle cycle stops at E = E s, 
giving rise to a circle of saddle equilibrium points; the stopping 
threshold E s is defined by the condition E + Kr = I given in 
(2.25). The circle of saddle points coalesces with the pinned 
state at E = E T. At this coalescence the r = 0 pinned state 
becomes unstable. Above E T the only attractor is the stable 
limit cycle corresponding to the coherent moving solution. (b) 
Stability diagram as in fig. 3, but with the stopping threshold 
E s added. The points (K s, Es) on the stopping threshold are 
defined by the parametric equations E s = 1 -  u and K s = 

u/r(u); the coherence r(u) was obtained by numerical quadra- 
ture of the integral in (2.26). 

For the Josephson junction,  v and E correspond 

to the dc-voltage and the applied current, respec- 

tively; for the driven pendulum they represent the 

average velocity and the applied torque. 

The bifurcation which leads to (4.24) has com- 

pletely different phase space geometry from that  

in our system: t-'he velocity dependence (4.24) 

occurs when a stable limit cycle passes near a 

saddle point, and motion on the cycle becomes 

extremely non-uniform and slow in the neighbor- 

hood of that  point. We believe that  in our system, 



S.H. Strogatz et al./ Collective @namics of coupled oscillators 43 

a discontinuity in the velocity occurs when a sta- 
ble limit cycle collides with a saddle cycle (fig. 12). 
Motion along the cycle is expected to be uniform 
with velocity bounded away from zero even as 
E "-* Ep. 

5. Delayed switching 

Thus far we have only been concerned with ~,he 
steady-state behavior of (1.5). We now turn to an 
analysis of delayed switching, an interesting tran- 
sient phenomenon seen when the coupling K and 
the applied field E are chosen just above the 
depinning threshold E 2 + ( / ( /2)2= 1, and when 
the initial configuration is incoherent. Above 
threshold the only stable solutions have large co- 
herence r - -1 .  Close to threshold, the evolution 
from an incoherent initial state to the coherent 
steady state will take much longer than the time 
scale on whick a single, uncoupled phase would 
evolve. 

There is a simple heuristic explanation for this 
delayed onset of coherence. Recall that for E = 0 
the equation of motion is 0 i = s i n ( ¢ i - 8 ~ ) +  
Kr s i n ( ~ -  0~). Hence an initial configuration with 
r = 0 evolves as if the system were uncoupled. 
Thus an initially incoherent system will evolve 
towards the equilibrium 0~ = ai, which is stab& fcu ~ 
the uncoupled system but which is unstable for the 
coupled system with K above threshold K-r = 2. 
After remaining in the vicinity of the unstable 
equilibrium 0 i = a~ the system will slowly develop 
coherence and then depin suddenly once the co- 
herence becomes appreciable. 

Fig. 13 shows an example of this delayed onset 
of coherence beginning from a random initial con- 
figuration with K = 2.001 and E = 0, obtained by 
numerical integration of (1.2). This figure illus- 
trates the rapid initial evolution towards the un- 
stable equilibrium 0~ = a~ followed by the slow 
development of coherence. Fig. 13(a) plots the 
time-evolution of the coherence r, showing that r 
stays small for about 20 time units and then grows 
rapidly, reaching a steady-state value of r---0.92. 
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Fig. 13. Evolution of r, q and root-mean-square (rms) speed 
as the system evolves from incoherence to coherence. Eq. (1.2) 
with K = 2.001 and E = 0 was integrated numerically for N = 
300 phases, starting from a random initial condition. The 
system rapidly approaches the pinned state 0, = a,, as shown 
by the large value of q after t - -5 .  Then the system slowly 
develops coherence between t -- 10 and t - 20. A second peak 
in the rms speed occurs at t = 26 as the system leaves the 
neighborhood of the pinned state and rapidly switche~ to the 
coherent attractor. Compare fig. 4, which shows the same 
dynamics at the level of the individual phases. 

A new order parameter q, defined as 

1 N 
q =  ~ E c ° s ( a i - S i ) ,  

i----1 

characterizes how close the system is to the pinned 
configuration. Fig. 13(b) shows that q grows as 
the initially random phases flow towards the 
pinned configuration ~i = ai and then decreases as 
the system leaves the pinned state towards the 
stable coherent state. Fig. 13(c) shows that the 
root-mean-square speed of the system has two 
peaks, one corresponding to the initial approach 
to the pinned state, and another corresponding to 
the later switch to the coherent attractor. 



10 5 The choice E = 0 used above is special in the 
sense that the steady-state solution is static, but 
this does not affect the qualitative features of the 
delayed switching. Throughout this section we will 

concentrate on the case E = 0. The ease E > 0, 
which  is relevant to the delayed switching ob- 
served experimentally in some charge-density wave 
systems [21, 47], will be discussed in a subsequent 

paper .  
In  section 5.1, we present data from numerical  

simulations characterizing delayed switching for 
the case E = 0. In particular we study the depen- 
dence of the time delay • on the proximity to 
threshold defined by g = K - K  T. Section 5.2 pre- 
sents an analytical expression for the delay • in 
terms of ~ and the initial coherence r 0. The results 
presented in section 5.2 are derived in section 5.3 
using regular per turbat ion theory about the unsta- 
ble  equilibrium at 0~ = a~. The a~alysis makes use 
of the fact that  nearly all of the time delay occurs 
as the system is leaving this unstable equilibrium. 

5.1. Switching delay for E = 0: Numerical results 

Fig. 14 shows the evolution of the coherence r 
obtained from numerical integration of (1.2) for 
three values of coupling K near threshold. The 

• numerical integration 

10  4 

10 3 

10 2 
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Fig. 15. Dependence of the switching delay ~" on K -  g T, the 
distance from the depinning threshold. The data points are 
obtained by numerical integration of (1.2) as described in fig. 
14. The initial condition for all the integrations had coherence 
r 0 = 1.4 × 10 -2. The continuous curve shows the analytical 
result (5.3) for this value of r 0. 

switching delay • increases as K nears the thresh- 
old value K T --- 2. Fig. 15 shows the depel dence of 
~" on ~ = K -  K T, where 1" is defined by the condi- 
tion that r becomes ~(1). Over the regime of 
shown, the dependence is well approximated by a 
power law ~- ~ ~-a,  where 0.9 </3 < 1. The devia- 
tion from a strict fl = 1 power  law will be dis- 
cussed in section 5.2. 
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Fig. 14. Delayed onset of coherence for different values of K 
above the depinning threshold, Note that the time axis is 
logarithmic. Eq. (1.2) was integrated numerically for N = 300 
phases, E = 0, and for the three values of K shown. All three 
integrations were started from the same initial condition, which 
was chosen near the pinned state according to O, = % + ~i, 
where the ~, were small random numbers of order 0(10-2). 

5.2. Switching delay for E = 0: Analytical results 

As discussed above, an initially incoherent sys- 
tem first evolves toward me saddle equilibrium 
0 i = ai and then departs along the unstable mani-  
fold. Dur ing  this departure, the coherence r 3rows 
according to the evolution equation 

(5.1) 

as derived in section 5.3. Eq. (5.1) implies that the 
coherence grows faster than exponentially for 2 < 
K < 3. This superexponential growth becomes sig- 
nificant once r becomes large enough that the 
cubic term matches the linear term. Thus at ~ 
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value of r given by exponentially according to 

r 2 _  K - 2  
3 - K (5.2) 

the system evolves superexponenfially and sud- 
denly switches to the coherent state. 

The condition (5.2) provides a natural definition 
of  the time at which switching occurs. If the initial 
coherence satisfies r0 2 << ( K -  2) / (3  - K) ,  then the 

k 

first term on the fight side of (5.1) is initially 
dominant and the coherence grows according to 
r ( t )  ~ ro eKt/2. (Here t is measured from the time 
when the system first reaches the neighborhood of 
the pinned state.) Then the switching time • is 
defined by thecondit ion (5.2): 

K - 2  
3 _ K -- ro2e ~* . 

For  ~ = K -  2 << 1 this yields the switching delay 

1(,) 
~" --- -- In - -  (5.3) r 2 "  

Fig. 15 shows that this theoretical value of the 
delay agrees well with the values obtained by 
numerical integration of (1.2). In general (5.3) != 
expected to hold for K in the range r0 2 << x << 1. 

A theory of delayed switching which neglected 
the cubic term in eq. (5.1) would yield ~" cc ~-# 
with fl = 1. Although (5.3) is dominated by the 
1 / ~  term for r << 1, the important logarithm term 
affects not only the magnitude of the delay but 
also its scaling with x, giving an approximate 
value of fl which is less than one. For the values 
of K and r 0 used In our numerical integration, 
both the numerical data and co. (5.3) can be fit by 

,~, . ,~, .~. . , ;  , , .  ,, , . d  . . . . .  t - _ _ .  K--  ~ • , .VV,,, ,~,,~t,, , ly p o w e r  l a w  "r 

= 0.96. This approximate power law was ob- 
tained for ~: in the range 10 -4 < ~: < 10 -~. 

The cubic term in (5.1) is also important for 
r 2 > ( K -  2)/(3 - K ), in which ease the cubic term 
dominates ff, e finear term from the starL In par- 
titular, at threshold the coherence grows non- 

r ( t )  -- (r0 - z -  t) -1/2 [for K =  KT= 2] (5.4) 

before r saturates near 1. Eq. (5.4) shows that the 
timescale at threshold is O(ro2), which is much 
longer than ~- in (5.3) for small r 0. On the other 
hand, (5.4) also shows that the delay before r 
becomes 0(1) does not diverge as K ~ K r. 

5.3. Evolution equation for coherence 

We now derive the evolution equation (5.1). 
This equation describes the growth of coherence 
for a system evolving along the unstable manifold 
of the saddle pinned state. In the infinite-N limit 
the dynamics of the .,h . . . . .  " E = 0 are governed 
by 

= s i ,  - o . )  + .  0o) .  (5 .5 )  

We must now find a self-consistent solution for u, 
as before, but with the added compfication that 
u(t)  evolves in time. 

In numerical solutions of (5.5) the average phase 
remains essentially constant as the phases O~ 

evolve. We make use of this observation by seek- 
ing solutions of (5.5) of the form 

= + ¢ ( a -  u) (5 .6 )  

and insist that 

throughout the evolution. This ansatz (5.6) is 
closely related to that used in section 4.1; the 
difference is that here u depends on time and ~ is 
th-ne-independent. This ansatz is valid after the 
system has completed its initial rapid evolution 
toward the pinned state and has begun to depart 
very. slowly from the saddle planed state 'along its 
unstable manifold. 

Substituting (5.6) into (5.5) yields 

sin(v using, (5.7) O, uU = - _ 
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where y - a - ft. The self-consistency equation for 
u is 

,, = r ( ~ s  #,), (5.8) 

where the brackets denote the average over one 
cycle of 7, as in (4.8b). 

Two symmetries of (5.7) restrict the form of its 
solutions: First, (5.7) is invariant under the trans- 
formation 

y . . .~  o y ,  

#,--, -q, 

and therefore its solutions must satisfy 

4,(,, v) = - , ( , , - v ) .  (5.9) 

Second, (5.7) is invariant under the transformation 

y--+ V +~r, 

#,--* ~ + ~r, 
U---~ - - U  

and therefore its solutions must satisfy 

~ + , ( . , v )  = , ( - . , , , +  ~). (5.1o) 

We assume that close to the unstable equifib- 
rium q~(u, y)=~,,  we can express q~-~, as a 
Fourier series in ~, with small amplitudes ak(U ) 
which grow as the system leaves the unstable 
equilibrium and develops coherence. The symme- 
tries (5.9) and (5.10) require that such solutions be 
o f  the form 

oO 

* ( . , v ) = v  - E ~ ( . ) ~ m k v ,  (5.11) 

where the ampfitudes ak(u) satisfy 

the cartier linear stability analysis to include non- 
linear terms in the small parameter u. 

Now we substitute (5.11) into (5.7), expand 
both sides in Fourier series, and collect the result- 
ing terms in sin k~, for each k. Matching the 
coetficients of sin k~t on both sides of (5.7) yields a 
set of coupled ordinary differential equations de- 
scribing the evolution of the amplitudes ak(u). 
For our purposes it is sufficient to study the evolu- 
tion of the first two amplitudes, ak(u) for k = 1,2. 
Because both u and the a k(U) are small near the 
unstable equilibrium ~(u, 7)=~,,  we assume a 
power series form for the ak(u). The most general 
series for these amplitudes which satisfy (5.12) and 
which vanish at u = 0 are 

al(u ) = blu + b3u 3 + 0(uS), (5.13a) 

a2(u)=c2u2+O(u4). (5.13b) 

Substituting (5.11) and (5.13) into (5.7) eventually 
yields 

- a d a l  = (bx -1 )u  
du 

( + b3-  + --U + u3 + O(u4)' 

(5.14a) 

d ~  ( ba) 
-a--d-F = C 2 + T  u + o ( u 4 )  • (5.14b) 

The unknown constants bx, b 3, and c 2 are de- 
termined by the self-consistency condition (5.8) 
and by the requirement that there be a unique 
evolution equation for u, that is (5.14a) and (5.14b) 
must give the same differential equation for a. 
These conditions can be shown to imply 

{ ~ ( - . ) ,  
~ ( . )  = _ ~ ( _ . ) ,  

2 1 
k even, (5.12) bl = K '  c2= ( 1 -  K ) K '  
k odd. 

The leading order term in (5.11) appeared already 
(2.35) for the unstable mode about the pinned 

state ~(u, ~,)= ~. Eq. (5.11) enables us to extend 

1 
b3 = (1 - K)K 3" 

After substituting these values into (5.14a) we 
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obtain the evolution equation for u: 

]u + O(u'). 

Finally, substituting u-- Kr gives the equation for 
the evolution of coherence r discu~ed in section 
5.2: 

#--(K--~2 2)r+(3~---~K)r'+O(r" ). 

6. Concluding remarks and open problems 

In this paper we have studied the dynamics of a 
system of many oscillators with random pinning 
and periodic coupling. The goal has been to pre- 
sent a case study of collective nonlinear dynamics 
in a model which is simple enough to yield to 
analysis and yet rich enough to possess interesting 
dynamics. To facilitate the analysis, we have made 
two assumptions f ~ a r  from statistical mechan- 
ics: that the coupling between oscillators has infi- 
nite range and that the system is infin/tely large. 

Most previous studies of the collective dynamics 
of coupled oscillators have been concerned with 
the mutual synchronization of oscillators whose 
intrin, sic frequencies are randomly distributed 
[1, 7-9, 11, 22-25, 31, 32, 34, 38, 39, 43, 44] or 
noisy [5, 6, 33, 35, 36, 45, 46]. These studies show 
that mutual synchronization is remarkably similar 
to the second-order phase transitions seen in equi- 
librium statistical mechanics [27]. That is, the or- 
der parameter characterizing synchronization 
grows continuously from zero as the coupling ex- 
ceeds a critical value. 

In contrast, the collective dynamics of the sys- 
tem studied in this paper is more suggestive of a 
first-order phase transition [3]. The transition from 
a disordered and static state to an ordered and 
moving state occurs discontinuously, with hystere- 
s•s in both the coupling strength and the driving 
field. The onset of order from an initially incoher- 
ent star, also shows an interesting and novel time 

delay near threshold. The first-order character of 
the depinnil,g transition is directly attributable to 
the periodic coupling ~in(0~-0j) in (1.2). Alter- 
nate models with linear coupling, corresponding 
to an elastic interaction between phases [2, 12, 13, 
37, 42] do not show switching, hysteresis or de- 
layed onset of order. 

There are several open mathematical problems 
concerning the dynamical system (1.5): (1) Prove 
rigorously that there is a unique, locally stable, 
steady-state moving solution for each E and K 
with E > Ev(K) and (2) prove that this solution 
disappears at E = E p ( K )  via coalescence with an 
unstable solution. (3) Find a closed form expres- 
sion for the pinning threshold Ep(K). (4) Charac- 
terize the basins of attraction for the incoherent 
pinned solution and the coherent moving solution 
in the bistable r e ,  me Ep < E < E T. (Prefiminary 
numerical work suggests that the basins axe char- 
acterized only by the coherence of the initial con- 
figuration.) 

Before the model can be applied to charge-den- 
sity waves or other real physical systems, it needs 
to be extended in various ways. Most importantly, 
it is not known wtfich aspects of the mean-field 
dynamics will ~uawive with short-range coupling in 
finite dimension. Numerically we find that in d~- 
mension d= 3 the discontinuity at depinning 
remains but is weakened. We do not know if 
switching in d =  3 is a finite size effect of the 
numerics: simulations with various N show that 
the discontinuity decreases as the system size is 
increased. It is also unknown whether there is an 
upper critical dimension [12, 13, 27, 30] above 
which the dynamics agree with those found here in 
mean-field theory. The effects of temperature, dis- 
tributed pinning strengths and distributed field 
strengths also deserve future study. 

Appendix: P e ~ b a f i o n  ~ecD' c~c~afions 

This appendix ~,ives the perturbation calcula- 
tions needed in seet;ons 4.2 and 4.3. 
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A.1. Perturbation theory for E >> 1 

We begin by substituting (4.13)-(4.15) into 
(4.12). At 0(1) this yields 

, ,o(1-  ~6) = 1, 

which has the solution 

where we have used the fact that ¢o -- 0. Thus 

<¢1> =~0, (A .5a )  

< ¢ 2 )  =0, (A.5b) 

¢3 - -g- = o. (A.Sc) 

°o-l) 
*o(V) = ~'o v + Co, (A.1) 

where Co is a constant of integration. From (4.8d), 
¢o must be 2~r-periodic and therefore ¢o(2~r)= 
¢o(0). Hence the coefficient of 7 in (A.1) vanishes, 
which implies 

% = 1  

as expected. Thus ¢o(7)=Co.  From (4.8c) 
(sin¢o) = 0 and so ~o = n~r for integer n. Since 
r -  (cos ¢)  is non-negative by assumption, n must 
be even. Without loss of gener~ity we take the 
solution 

¢0(7) --=0. (A.2) 

Eqs. (A.3) and (A.4) imply (¢1) = (cos 7 > + q = 
C t and therefore (A.5a) yields 

Q=O, 
¢ 1 ( 7 )  -- COS 7" (A.6) 

Combining (A.2) and (A.6) gives the first four 
terms in the expansion for r: 

r= (cos ¢) 
¢2 ¢ ) 

= 1 - ~ + ~ . . -  

C 2 
= 1 - -~-- <cos2 y> + 0 ( ,  4) 

E 2 
= 1 -  -g- + 0(c4). 

0(~) equations: The differential equation (4.12) at 
0(~) is 

v 1 - ¢ ~  = sin~,, 

which has a solution 

ex(Y) = off + cosy + G" (A.3) 

Since ex(0) = ex(2~r) we obtain 

O 1 = 0 .  (A.4) 

Hence 

r o = 1 ,  r x=0 ,  r 2 = - ¼ ,  r 3=0 .  

O(c 2) equations: The differential equation (4.12) at 
0(E 2) iS 

02 --  l)leel --  ¢t2 - -  --  Kroqx - ' 1  cos 7- (A.7) 

Using v z = 0, r o = 1, and ¢1 = cos 7, (A.7) simpli- 
fies to 

To evaluate CI we expand the condition (4.8c): 

o = <sin~> 
( ¢3¢5 ) 

= , - ~ + ~ . . .  

¢2 --" /)2 + K COS '~ + COS 2 7 

= (o~ + ~) + K~os~ + ~ ~ o s ~ .  (A.8) 

Eq. (A.8) has the solution 

~:(~)  = (~, + ~)~ + K s tar  + ~ sin2v + c , .  

As argued previously, the coefficient of 7 vanishes 
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because ¢2(2~r) = ¢2(0). Hence 

U 2 ~  - - L  2 . 

Moreover (72 = 0 because of the condition (A.Sb). 
The resulting expression for ¢2 is 

¢ 2 ( v )  = K s i n v  + ~, s in2v.  

A.2. Perturbation theory for K >> 1 

Now we substitute (4.20) into (4.19) and match 
terms at each power of c= 1/K.  The @(l/c)  
condition requires r 0 sin % = 0. Hence, from (4.8c), 
sin % = 0. Since we are looking for solutions with 
r > 0, we find % = 21rn for integer n, and we 
choose 

@(¢3): We omit the details. The main results are % = 0 

V 3 --  0 ,  

' / '3(r)  - (¼ - K2)  cos ~ ' - { K e o s 2 y -  ~ cos3v. 
without loss of generality. Hence r = ( c o s ¢ ) =  
1 - (¢2/2)(¢21) + @(E3), and (4.19) becomes 

These results allow us to see the leading order 
dependence of r and o on K, which enters only r 
now. We compute r as follows: 

r = (cos  ¢ ) 

E 2 
- 1 -  T ( ¢ ~ ) -  ~3(¢~1¢2) 

E 2 E 4 
= 1 - "4 + "4-( K2 - ½) + @(,5) .  

One might thir~k i~ necessa-% ~ to go to ¢(¢4) to 
obtMn an expression for v 4. An eaa-L~er method 

uses the identity 

(Oo + , o 0 ( 1  - , ¢ 0  = e + siQ ( r  - ,,~) 

- -  ! Sin ( ' ¢ 1  + ' 2 ¢ 2 )  + @ ( , 2 ) .  
E 

(A.10) 

@(1) equations: The @(1) equation in (A.10) is 
O 0 --  E -I- S in  "~ - ¢1" Hence 

¢,, = E - v o + sin T. (A.11) 

The condition (sin ¢)  = 0 implies 

(¢1)  = (¢2)  = 0, 

which appfied to (A.11) yields 

(A.9) 

obtained by averaging (4.8a) and using the facts 
that  ( s i n e ) = 0  and ( ¢ ' )  = [ ¢ ( 2 ¢ r ) - ¢ ( 0 ) ] / 2 ¢ r =  
0. The term ( s i n ( 7 - ¢ ) )  can be computed to 
0(¢ 3) by expanding s ine  and cos¢ to @(¢3) and 
using the trigonometric identity for s in (~ , -  ¢). 

The result is 

V0= E,  

,~(v) = sin ~. (A.12) 

O(c) equations: The O(e) equation h~ (A.10) is 

vl - Voq6 = - ¢ 1  cos V - ¢2 or 

¢2 = - ¢ 1  cos ~, - vl - Eel .  

Therefore 

These results are summarized in section 4.2. 

Note that the u n ~ o ~  function ¢2 is obtah~ed 
from the previously found ¢1 by differentiation 
and s~abstitufion, but not integration. This occurs 
at all orders of perturbation theory. Here it yields 

¢2 = - vl + E cos y - sin y cos ~e 
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and since 0, 

V I -- O, 

= E c o s  sin ,cos 

= E c o s y -  ½ sin2~.  (A.13) 

To find %, we use the identity (A.9) as above. 
After substituting (A.12) and (A.13) into ( s i n ( 7 -  
~ ) )  - ( s i n ( . / -  E~b I -- E2,k2)) + O(c 3) and comput- 
ing some integrals, we find v2 = - ½E. Thus 

Continuing in this way, we obtain higher order 
terms in ~, r, and v. These calculations are sum- 
marized in section 4.3. 
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