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Step in Time
Exploring the mathematics
of synchronously flashing fireflies

By IVARS PETERSON

s the evening light fades, the
A myriad fireflies perched in a tree

on a riverbank in Thailand begin
tuning up for their nightly light show. One
emits a burst of light; then another firefly
flashes, and another, and so on, creating a
random pattern of twinkling lights.

But it doesn't take long for neighboring
fireflies to begin coordinating their
flashes. The synchrony spreads rapidly
to larger and larger clumps in the tree —
and within half an hour, the entire swarm
acts as a unit, flashing about once every
second in nearly perfect unison.

The firefly’s ability to control the tim-
ing of its flashes has long intrigued biclo-
gists. In particular, the rhythmic, syn-
chronized flashing by the males —
observed mainly among Southeast Asian
species and rarely in North American
species — has sparked a variety of field
and laboratory studies. This remarkable
phenomenon has also attracted the at-
tention of mathematicians interested in
elucidating the underlying mechanisms
that compel a set of independent oscilla-
tors to become synchronized.

Recent theoretical work inspired by
the firefly example focuses cn the emer-
gence of synchrony in the special case
where oscillators, whether biological or
physical, communicate by firing pulses.
Mathematicians Renato E. Mirollo of Bos-
ton College and Steven H. Strogatz of the
Massachusetts Institute of Technology
have now created an abstract, idealized
mathematical model of this type of
behavior and have proved that under
certain circumstances, pulse-coupled os-
cillators operating at the same frequency
but starting at different times will always
become synchronized.

“People have had a hard time figuring
out the general mechanism of synchro-
nization,” says Arthur T. Winfree, a math-
ematical biologist at the University of
Arizona in Tucson. Mathematical models
like the one developed by Strogatz and
Mirollo may provide useful insights into
the dynamical behavior of a wide range of
pulse-driven oscillating systems.

“Fireflies supply the right picture,”
Strogatz says. “They dou't make them-
selves known to the others until the
instant they go off, and it’s only for that
instant that they interact.” Each firefly
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then responds to such flashes by gradu-
ally shifting its rhythm fo achieve syn-
chrony.

Few species other than fireflies and
humans display a propensity for rhyth-
mic communal synchronization. On a
cellular level, however, such behavior
appears in many biological systems. For
example, the heart’s pacemaker cells co-
ordinate their electrical activity to main-
tain a beat, and networks of neurons in
the brain keep time and respend to
certain rhythms.

“There's a whole spectrum of possible
[mathematical] models, from very de-
tailed models, which include all the phys-
iology and all the anatomy, to much more
stylized models that try to capture the
essence,” says mathematician Charles 5.
Peskin of New York University in New
York City. “The strength of what [Strogatz
and Mirollo] did is in making [their
model] general enough to be more likely
applicable to a real situation.”

At the same time, mathematical tech-
niques — even when applied to simplified
models — have their limitations. “The
mathematical analysis of mutual syn-
chronization is a challenging problem,”
Mirollo and Strogatz report in the Decem-
ber 1990 SIAM JOURNAL OF APPLIED MATH-
EMATICS. “If is difficult enough to analyze
the dynamics of a single nonlinear os-
cillator, let alone a whole population of
them.”

he thread of research leading to
I Strogatz and Mirollo’s prooi
started with Peskin's attempt in
1975 to model the way heart cells coordi-
nate their electrical signals to generate a
heartbeat. Applying ideas developed hy
other researchers to explain how nerve
cells synchronize their activity in re-
sponse to a stimulus, Peskin examined
the case of two oscillators — representing
two heart celis — that influence each
other via their own signals.

In Peskin's grossiy simplified model,
each electrical pulse from one oscillator
kicks its companion a small step up
toward the threshold voltage at which
that oscillator normally fires. Thus, each
oscillator fires and resets itself at inter-
vals influenced by the repeated signals

from the other oscillator. At some stage,
an oscillator that happens to be very
close to its threshold senses a signal from
its companion that induces it to fire
immediately. From that point on, the
signals from the two oscillators lock
together and remain synchronijzed.

To make this model work, however,
Peskin had to include a crucial proviso.
He had to assume that an oscillator
“leaked” when it neared the threshoid,
and that the leakage affected its readi-
ness to fire. In other words, the closer an
oscillator came to its firing threshold, the
smaller an effect a given kick from its
companion would have.

With this condition in place, Peskin
proved mathematically that for almost all
initial conditions, two oscillators would
eventually get in sync. He went on to
conjecture, based on his model of two
cells, that the same mechanism leads to
synchronization of any number of identi-
cal oscillators.

“That’s actually a very strong conjec-
ture — that no matter how they were
started, they would always synchronize,”
Strogatz says. “With all these cells inter-
acting, you might think that something
very complicated could happen ... and
that the system would never settle down
or that it might break up into different
groups, with individuats synchronized
within a group but different groups stay-
ing out of step.”

trogatz first came across Peskin’s
S work on synchronized electrical

signals among pacemaker cells
while thumbing through a book by
Winfree on the geometry of biological
time. Intrigued by the reference, he
looked up Peskin’s original paper on the
subject.

“The conjectures were neat,” Strogatz
says. “But it was clear that his results
were incomplete.”

Strogatz got Mirollo interested in the
problem, and together they developed a
modified version of Peskin’s model that
could encompass any number of oscilla-
tors. Like Peskin, they assumed that all
the oscillators behaved identically and
that each was directly coupled to, or
influenced by, all the others. But they
expressed Peskin’s “leakiness” constraint
in a more general form, specifying only
that the rise of an oscillator toward
threshold follows an upward curve that
gradually becomes less and less steep.

Computer simulations invelving 100
oscillators provided the first evidence
that a system of oscillators started at
random times will eventually reach syn-
chrony. The simulations showed that an
individual oscillator initially receives
many conflicting signals, but as their
collective behavior evolves, oscillators
begin to clump together in groups that
fire at the same time. As these groups
acquire more oscillators, they produce
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larger collective puises, which gradually
bring othet, out-of-sync oscillators to the
brink of threshold even faster. Large
groups grow at the expense of smaller
ones. Ultimately, only one huge group
remains, and the entire population of
osciliators becomes synchronized.

“We tried many different initial condi-
tions, and the system always ended up
synchronizing,” Strogatz says. “That gave
us a little confidence that [the original
conjecture] was going to be a true
theorem.”

Strogatz and Mirollo relied heavily on
geometric arguments to establish the
conditions under which synchrony could
be achieved. The resulting proof clearly
demonstrates that synchrony is actually
the rule for mathematical models in
which every oscillator interacts with
every other oscillator under the condi-
tions Strogatz and Mirollo specify.

“The strength of this work is the proof
that this behavior can emerge under a
certain range of conditions,” Peskin says.

he Strogatz-Mirollo model, how-

I ever, contains a number of sim-
plifications that cloud its appli-
cability to a swarm of real fireflies. For
example, critics argue that not all fireflies
of a given species flash at precisely the
same rate, and it's unlikely that every
firefly sees the flash of every other firefly.

“The questicn is: How different can
[individual fireflies] be and stiil synchro-
nize?” Peskin says. “The most important
thing to do in the future is to generalize
[the model] to the case where you have a
population of oscillators that are not
quite identical”

Experiments involving different spe-
cies of Southeast Asian fireflies show that
each species tends to have a characteris-
tic flashing frequency despite small dif-
ferences among individuals in that group.
“Fireflies [of a particular species] have a
fairly narrow [frequency] window,” says
biologist Frank E. Hanson of the Univer-
sity of Maryland Baltimore County in
Catonsville. “They don't pay any atten-
tion to anything flashing at a rate outside
that window.”

Hanson and others have observed
overlapping swarms of two different fire-
fly species flashing synchronously at
independent rates. They note, however,
that although the flashes ordinarily have
fairly uniform intensities, durations and
delays, no single swarm ever really
achieves perfect synchrony.

Mathematicians are also taking a
closer look at what happens when each
oscillator interacts directly with oniy a
few neighbors rather than with the whole
population. One possibility is that such a
group would generate distinctive, non-
synchronous patterns of firing. In fact,
observers have noticed waves of flashing
in firefly congregations, especially when
a population is spread out over a large
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tree or in a string of bushes along a
riverbank.

Strogatz and Mirollo have tried some
computer simulations to explore the ef-
fects of limited-range interactions in
their model. “Strangely, we never saw any
waves in our model,” Strogatz says. “We
always saw synchrony”

This led them to conjecture that the
oscillators in their model — even when
limited to interacting with close neigh-
bors — would always synchronize, and
that the system would never show waves.
“That could he completely wrong,”
Strogatz says. “We don't know yet.”

Indeed, apparently small changes in
the rules governing a mathematical
model can lead to radically different
results. Mathematician G. Bard Ermen-
trout of the University of Pittsburgh has
studied coupling in a ring of identical
osciliators, and he finds that he gets
a stable traveling wave rather than
synchrony,

Ermentrout has also extended his
model to two-dimensional networks. “I
can now prove the existence and stability
of rotating spiral waves in two-dimen-
sional arrays with nearest-neighbor cou-
pling,” he says.

ut in all this mathematical model-
B ing, the issue comes down to

whether a given model actually
captures key aspects of the behavior of
biological oscillators. “There are cer-
tainly an awful lot of real biological
systems that do mutually synchronize,”
Winfree says. “Whether they do it by
the mechanism involved in this pulse-
coupled theory seems to me an impor-
tant question that ought to be pursued.”

“There are many different ways of
synchronizing,” Ermentrout says. “While
Strogatz and Mirollo did a really nice job
on their particular model, it doesn't help
explain many types of oscillators.”

For instance, the model postulates that
pulses and responses are instantaneous,
and it specifies that sensed pulses always
advance an oscillator toward threshold.
However, even among fireflies, pulses
clearly have a finite duration, and field
studies by biologists have revealed that
in some species of fireilies, such signals
can either advance or delay firing.

“Mathematicians remain in the dark
about these more subtle aspects of firefly
synchronization,” comments mathemati-
cian lan Stewart of the University of
Warwick in Coventry, England, in the
April 18 NATURE.

Equally subtle is the more general
problem of determining whether a biolog-
ical oscillator really responds to a string
of sharp pulses or instead interacts con-
tinuously with its neighbors. “It's an open
scientific question whether certain ex-
amples are really pulse-coupled as op-
posed to coentinuously coupled,” Strogatz
Says.

Nonetheless, the work of Strogatz and
Mirollo does shed some light on mecha-
nisms that lead to synchronization. Their
generalization of Peskin's leakiness prop-
erty, for instance, “is a realistic feature of
the model,” Peskin says. “Biological
membranes have a resistive character.
They have channels that aliow current to
leak.”

This leakiness plays roughly the same
role as friction does in mechanics and
resistance does in electricity, he adds. In
effect, it allows two oscillators to forget
their past firing patterns so that they can
come together.

athematicians who attempt to
M understand biological osciila-

tors face difficult mathematical
questions. “It would be very desirable to
start building in a little more reality”
Strogatz says. But, as so often happens in
mathematics, “one problem may turn out
relatively easy to solve, and everything
else in every direction around [it] is
hard”

Researchers aiso have much more to
learn about biological oscillators. Firefly
behavior alone is remarkably diverse and
complex, and has so far eluded thorough
understanding. For instance, biologists
originally suggested that the synchro-
nized displays of the males serve as
riverside beacons for females, who fly in
to mate, then fly down to dry land to lay
their eggs. But subsequent research
showed that several other factors may be
involved.

Over the past 50 years, investigators
have learned a great deal about the
synchronous rhythmic flashing of fire-
flies, says John Buck, an emeritus biolo-
gist with the National Institutes of Heaith,
who in 1938 wrote the first general review
of their behavior. “At the same time, its
mysteries have multiplied,” he notes in
the September 1988 QUARTERLY REVIEW OF
BroLogy. “Each step of physiological elu-
cidation has revealed new black boxes,
and each behavioral insight has left ma-
jor puzzles yet unsolved.”

Future progress in understanding bio-
logical oscillators may depend on greater
cooperation between mathematicians
and biologists. “Best of all would be to
collaborate with a biologist who actually
measures things in, say, fireflies, against
which we could check the guantitative
predictions of mathematical models,”
Strogatz says.

Ermentrout has already mined some of
the data colliected by Hanson, Buck and
their co-workers for evidence supporting
his firefly models, But that’s just a begin-
ning. Mathematical models also make
predictions that can be tested in the field.

Says Hanson, “Perhaps [Ermentrout]
and { could go back to New Guinea or
someplace like that, with some carefully
designed experiments to probe these
systems.” ]
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