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A dilemma faced by teachers, and increasingly by designers of
educational software, is the trade-off between teaching new ma-
terial and reviewing what has already been taught. Complicating
matters, review is useful only if it is neither too soon nor too late.
Moreover, different students need to review at different rates. We
present a mathematical model that captures these issues in idea-
lized form. The student’s needs are modeled as constraints on the
schedule according to which educational material and review are
spaced over time. Our results include algorithms to construct
schedules that adhere to various spacing constraints, and bounds
on the rate at which new material can be introduced under these
schedules.
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In his 2009 speech to the National Academy of Sciences, Presi-
dent Barack Obama exhorted the audience to imagine some of

the things that could be made possible by a commitment to scien-
tific research, including the invention of “learning software as
effective as a private tutor” (1). This paper is a modest step in
that direction.

An important challenge for the design of educational software
is to incorporate the results of empirical research on how people
learn. Such research endeavors to provide principles for how to
choose what is taught, how to present it, and how to sequence the
material. Ultimately, educational software will require mechan-
isms for managing the constraints that arise when these principles
are applied in different settings.

Here we develop and analyze an idealized mathematical model
for incorporating a fundamental class of such constraints into
educational software—constraints arising from the importance
of timing and review in the presentation of new material. For
example, software for building vocabulary must determine when
to introduce new words that the student has not yet learned, and
when to review words whose definitions the student has success-
fully recalled in the past. The issue is similar to that faced by a
high school math teacher deciding how often to schedule lessons
that involve trigonometry, or by a piano teacher who needs to
decide how much time a student should devote to practicing
scales while also learning to play new pieces.

The study of the importance of timing with respect to review
dates to at least 1885 (2). The notion that it is better to spread
studying over time instead of doing it all at once is called the spa-
cing effect. In 1988, Dempster noted that “the spacing effect is
one of the most studied phenomena in the 100-year history of
learning research” (3). As Balota et al. point out in their review
(4), “spacing effects occur across domains (e.g., learning percep-
tual motor tasks vs. learning lists of words), across species (e.g.,
rats, pigeons, and humans), across age groups and individuals
with different memory impairments, and across retention inter-
vals of seconds to months.” See refs. 5 and 6 for reviews. For
further results and background, see refs. 7–9. For work on ex-
ploiting the spacing effect to build vocabulary (in humans), see
refs. 10–13.

Review is an important part of the learning process, but the
extent to which review is needed varies by student. Some students
need to review early and often, whereas others can learn a lot
without any review at all. Personalized educational software of

the future could fit a model to the user and then schedule review
in a way that is tailored to the model.

With such educational software in mind, we envision a system
in which the software designer can specify a schedule for the in-
troduction of new material, together with a schedule by which the
review of existing material is spaced over time. What we find,
however, is that the resulting scheduling problems are mathema-
tically subtle: Existing techniques do not handle scheduling pro-
blems with spacing constraints of this type.

Our main contribution is to develop an approach for reasoning
about the feasibility of schedules under spacing constraints. We
begin by introducing a stylized mathematical model for the con-
straints that arise from the spacing effect, and then consider the
design of schedules that incorporate these constraints.

Models
Roughly speaking, we model the introduction and review of ma-
terial as a sequence of abstract educational units, and we model
the needs of the student using two sequences, fakg and fbkg:
After an educational unit has been introduced, the “ideal” time
for the student to see it for the ðkþ 1Þst time is between ak and bk
time steps after seeing it for the kth time. We also model various
educational outcomes that the designer of educational software
may seek to achieve. The details are given below.

The Educational Process. We imagine the underlying educational
software as implementing a process that presents a sequence
of abstract educational units which could represent facts such
as the definitions of vocabulary words, concepts such as trigono-
metric identities, or skills such as playing a scale on the piano. For
example, the sequence u1, u2, u3, u1, u4;…, indicates that educa-
tional unit u1 was introduced at the first time step and reviewed
at the fourth time step. This sequence defines the schedule ac-
cording to which the units will be presented. We also allow
our schedules to contain blanks, or time steps in which no educa-
tional unit is presented; thus, an arbitrary schedule will have each
entry equal to either an educational unit or a blank.

This model is highly idealized. It ignores possible relationships
between units, such as the etymological (and potentially ped-
agogically useful) connection between the vocabulary words
“neophyte” and “neologism,” for example, or the dependence of
trigonometry on more basic concepts in geometry. It also treats
all units as equal. Thus it does not capture, for example, that an
experienced pianist may benefit more from practicing a scale than
practicing Twinkle Twinkle Little Star.

The real-life educational process is nuanced, complex, and
context dependent. Future work in building models for educa-
tional software may introduce more complexity to this model,
or simply reduce scope and model more specific situations. Here,
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in the interest of generality as well as mathematical tractability,
we use this very simple model of the general educational process
in order to create a formalism that captures spacing constraints
and their role in reviewing material after it has been introduced.

Spacing Constraints. A large body of empirical work in learning
research has studied the expanding nature of optimal review.
For example, when students first learn a new vocabulary word,
they must review it soon or else they likely lose the ability to cor-
rectly recall the definition. If they do review it before forgetting it,
they will then generally be able to go longer than before without
needing review. By repeatedly reviewing, the student “builds up”
the ability to go longer and longer without seeing the word while
maintaining the ability to recall its definition. However, reviewing
a word too soon after studying it can reduce the benefit of the
review. These are the principles of the well-established theory
of expanded retrieval; see ref. 4 for a review specifically on
expanded retrieval. More generally, see refs. 3–13.

We want a simple formalism that captures the need to review
an educational unit on a schedule that “expands” the spacing
between successive viewings. We wish to leave the exact rate of
expansion under the control of the software designer, motivated
by the goal of creating different schedules for different students.
We thus imagine that the designer of the software specifies a set
of spacing constraints, consisting of an infinite sequence of or-
dered pairs ða1;b1Þ, ða2;b2Þ;…;ðak;bkÞ;…, where ak ≤ bk are posi-
tive integers for all k. Intuitively, the idea is that, for each
educational unit ui in the schedule, the designer wants the gap
in the schedule between the kth and ðkþ 1Þst occurrences of
ui to have length in the closed interval ½ak;bk�. The fact that a
student can go longer between occurrences as they gain familiar-
ity with the educational unit is represented by the assumption that
the numbers ak and bk are weakly increasing: We impose the re-
quirement that ak ≤ akþ1 and bk ≤ bkþ1 for all k.

Thus, our key definition is that a schedule satisfies a set of spa-
cing constraints if, for each ui in the schedule, the ðkþ 1Þst occur-
rence of ui in the schedule comes between ak and bk positions
(inclusive) after the kth occurrence. Roughly speaking, the num-
bers bk model how long the student can retain learned material.
The numbers ak model how long a student should wait before
review is beneficial, capturing the notion that there is an ideal
time to review. If review is done too early, it is less beneficial.
If it is done too late, the student will forget the material in
the interim.

This model is, by design, a simplification of spacing constraints
and their role in learning. A more nuanced model might allow
for “blurry” boundaries for the intervals ½ak;bk�, in which there
is a numerical penalty for missing the interval by a small amount.
Another refinement would be to allow the model to discriminate
between educational units to reflect that some things are easier
to learn than others. However, our simple model captures the
essence of the phenomenon we are investigating, and will allow
for mathematical analysis that elucidates the mechanics of
scheduling review in an optimal way.

Educational Goals. We consider two natural goals for the designer
of the educational software. The mission of the software could be
to teach students in such a way that they grow their knowledge
without bound, never forgetting anything along the way; a sort
of “lifelong learning” approach to education. Alternatively, the
mission could simply be to get students familiar with a certain
set of educational units by a particular point in time, regardless
of whether they are destined to forget what they learned quickly
thereafter; something like the studying technique known as
“cramming.” We address both goals in this paper.

We model the first goal by saying that a schedule exhibits in-
finite perfect learning with respect to some spacing constraints if
(i) it satisfies the spacing constraints, and (ii) it contains infinitely

many educational units, each of which occurs infinitely often.
Thus if the constraints represented the needs of a student, then
with such a schedule the student would, over the course of the
infinite sequence, learn an infinite set of educational units with-
out ever forgetting anything.

For the second goal we consider a finite sequence, represent-
ing the presentation of material up to a test or performance. For
a positive integer n, we say that the sequence is a cramming se-
quence, and exhibits bounded learning of order n, if (i) it satisfies
the spacing constraints, and (ii) it contains at least n distinct edu-
cational units such that, if a unit occurs a total of k times in the
sequence, then its last occurrence is within bk positions of the
end of the sequence. Condition (ii) captures the requirement that
the student should still be able to recall all of the n educational
units at the end of the sequence, which was the whole point of
cramming. Note that, although the spacing constraints have been
respected up to the end of the finite sequence, there is no guar-
antee that the sequence could be extended while continuing to
satisfy the spacing constraints.

With respect to infinite perfect learning, we will be interested
in the rate at which the student would learn if taught according to
the schedule. To this end, we define the introduction time func-
tion: For a given schedule of educational units, let tn denote the
position in the schedule of the first occurrence of the nth distinct
educational unit. Thus the slower the growth of tn, the faster new
educational units are being introduced.

We will be considering questions of the following nature. Gi-
ven spacing constraints fðak;bkÞg, does there exist a schedule that
exhibits infinite perfect learning, or bounded learning, with re-
spect to the constraints? If so, how can we construct such sche-
dules? And when such a schedule exists, what rate of learning
(as measured by the sequence t1;t2;…) is achievable? These
are fundamental problems that would be faced by an educational
software designer seeking to incorporate spacing constraints in
the design of the underlying algorithms. As we will see, despite
the simply stated formulation of these questions, the combinator-
ial challenges that they lead to quickly become quite intricate.

Results
The spacing constraints are described by two infinite sequences
of parameters, fakg and fbkg. In this section, we describe how
choices for these parameters affect the rate at which new educa-
tional units can be introduced into the schedule and how sche-
dules can be tailored to particular parameter regimes and
educational goals.

Overview of Results. We begin by examining the first main issue
of this paper: the trade-off between (i) the rate at which bk grows
as a function of k and (ii) the rate at which tn grows as a function
of n. Informally, if bk grows relatively slowly, then a lot of time
must be spent on review rather than on introducing new units,
and hence tn must grow more quickly, corresponding to slower
learning. It is clear that tn ≥ n for any schedule, because even
without review we can only introduce one educational unit per
time step. With these considerations in mind, we investigate
the following pair of questions that explore the two sides of
the trade-off. First, is there a set of spacing constraints for which
tn is close to this trivial bound, growing nearly linearly in n? Sec-
ond, as we require bk to grow slower as a function of k, it becomes
more difficult to achieve infinite perfect learning. Is there a set of
spacing constraints for which infinite perfect learning is possible,
and for which bk grows as a polynomial function of k? We answer
both of these questions in the affirmative.

In The Recap Method, we describe a set of spacing constraints
for which a schedule can be constructed that exhibits infinite
perfect learning, and where the rate of learning is relatively quick.
In the schedule we construct, tn grows as Θðn log nÞ, and in fact
tn ≤ n · ð⌊ log2 n⌋þ 1Þ. Recalling that we must have tn ≥ n for all
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n for any schedule, we see that the recap schedule achieves in-
finite perfect learning with only a modest increase on this
bound—that is, with a relatively small amount of review. In
the SI Text, we show how to construct a schedule where tn grows
at a rate that, in some sense, can be as close to linear as desired. In
Superlinearity of the Introduction Time Function, we show that
there can be no schedule whatsoever such that tn grows as OðnÞ.

In The Slow Flashcard Schedule, we show a set of spacing
constraints for which ak and bk grow polynomially in k and for
which infinite perfect learning is possible. With these spacing
constraints based on much smaller ak and bk, the schedule we
construct has a slower rate of learning; tn is bounded below by
Ωðn2Þ and bounded above by Oðn3Þ, in contrast to the schedule
from The Recap Method for which the introduction time function
grows as Θðn log nÞ. The gap between the quadratic lower bound
and the cubic upper bound is an interesting open question; we
give numerical evidence that in fact the lower bound may be tight,
and that tn grows as Oðn2Þ. Much of this analysis is done in the
SI Text.

Following these results, we turn to the second main issue in this
paper, which is to identify general possibility and impossibility
results for satisfying classes of spacing constraints. We first show,
in Flexible Students, that the difficulty in achieving infinite perfect
learning stems, in a sense, from the fact that the numbers ak are
growing: Specifically, we show that for any spacing constraints in
which ak ¼ 1 and bk → ∞, it is possible to construct a schedule
that exhibits infinite perfect learning. The construction intro-
duced here demonstrates a general method that can be adapted
to many sets of spacing constraints with ak > 1 as well.

Thus far, we have only considered spacing constraints that
allow for the construction of schedules that exhibit infinite per-
fect learning. In The Finicky Slow Student, we show that there ex-
ist spacing constraints for which no schedule can exhibit infinite
perfect learning. In particular, we build this impossibility result
from an extreme case, where ak ¼ bk ¼ f ðkÞ and f ðkÞ is a function
that grows slowly in k. These constraints represent a setting in
which the student insists on reviewing material on an extremely
precise and plodding schedule, with no room for error.

The difficulty in constructing a schedule for such a set of con-
straints is that as the knowledge base—the number of educational
units introduced—grows, so does the need to review, and so the
potential for scheduling conflicts increases. The slower the stu-
dent [the slower the growth of f ðkÞ], the fewer educational units
can be put on the back burner, so to speak, while the student
focuses on new units. The more finicky the student (the smaller
the windows bk − ak), the less wiggle room there is in scheduling
review.

All of these points match with intuition. Students who don’t
need to review much and aren’t too picky about when the review
needs to happen can be taught a lot, and fast. But students who
need a lot of review and who only derive benefit from very well-
timed review will be more difficult to teach. The educational
mantra is “every child can learn,” but designers of personalized
educational software may find that scheduling the educational
process for some students is, at the least, more difficult for some
than for others.

In Cramming, we show that every student can cram. More
precisely, we show that, for any set of spacing constraints and
any n, it is possible to construct a finite sequence that exhibits
bounded learning of order n. Consistent with the discussion that
accompanied the definition of bounded learning earlier, the con-
struction assures nothing about whether the sequence can be
extended beyond this moment of “expertise” at its end.

Finally, also in Cramming, we explore the question of how
much can be crammed in a given amount of time. Given a set
of spacing constraints and a finite number T, we derive a nontri-
vial upper bound on those n for which bounded learning of order
n is possible using only T time steps.

The Recap Method.Here we explore spacing constraints that allow
for infinite perfect learning with a rapid learning rate—that is,
where the introduction time function, tn, grows slowly.

Consider the spacing constraints ak ¼ 2k and bk ¼ 2k−1ðkþ 1Þ.
A schedule that allows for infinite perfect learning with respect to
these spacing constraints can be described as follows. To find the
first ðkþ 1Þ · 2k entries of the schedule, consider a depth-first
postorder traversal of a full binary tree of depth k with 2k leaves
labeled u1, u2;…;u2k from left to right. (A depth-first postorder
traversal of a tree is a particular order for visiting the nodes of a
tree, defined as follows. Starting at the root v of the tree, the
depth-first postorder traversal is first applied recursively to each
subtree below v one at a time; after all these traversals are done,
then the root v is declared to be visited.) Begin with an empty
sequence. Every time a leaf is visited, append the sequence with
the corresponding educational unit. Every time a nonleaf node is
visited, append the sequence with the units corresponding to all
of the descendant leaves, in left-to-right order. The resulting
sequence gives the first ðkþ 1Þ · 2k entries in the schedule.

Thus, using k ¼ 2 we have that the first 12 entries of the sche-
dule are u1;u2;u1;u2;u3;u4;u3;u4;u1;u2;u3;u4. We call this schedule
“the recap schedule” because it incorporates periodic review of
everything that has been learned so far, like a teacher saying
“okay, let’s recap.”

In this schedule, the number of time steps between the kth and
ðkþ 1Þst occurrence of any particular unit is always between 2k

and 2k−1ðkþ 1Þ, with both bounds actually achieved for each
k. This fact—along with the fact that infinitely many units occur
infinitely often due to properties of depth-first traversals—estab-
lishes that the recap schedule allows for infinite perfect learning
with respect to the given spacing constraints. Calculations which
establish these facts are shown in the SI Text.

Further calculations, also shown in the SI Text, establish that tn
grows as Θðn log nÞ in this schedule. More precisely,

1

2
· n · ð⌊ log2 n⌋þ 1Þ ≤ tn ≤ n · ð⌊ log2 n⌋þ 1Þ:

By generalizing the construction of the schedule, using a more
general class of trees, we can show that, for a large class of func-
tions rðnÞ, schedules can be constructed that exhibit infinite per-
fect learning for which tn grows as Θðn · r−1ðnÞÞ. The class
includes functions rðnÞ that grow arbitrarily fast, and so in that
sense we can create schedules for which tn grows at a rate that
is as close to linear as desired. The downside of these schedules
is that they require increasingly lax spacing constraints as the
growth rate of tn approaches linearity: The schedules that we
construct for which tn grows as Θðn · r−1ðnÞÞ require bk, as well
as bk − ak, to grow as Θðk · rðkÞÞ. Calculations which establish
these facts, too, are shown in the SI Text.

Superlinearity of the Introduction Time Function.Although our con-
structions are able to achieve introduction times tn that grow
arbitrarily close to linearly in n, we can also show that an actual
linear rate of growth is not achievable: For schedules that exhibit
infinite perfect learning, the introduction time function tn must be
superlinear. More precisely, we show that, for any schedule that
exhibits infinite perfect learning with respect to any spacing con-
straints fðak;bkÞg, there cannot be a constant c such that tn ≤ cn
for all n.

To prove this statement, we consider an arbitrary set of spacing
constraints fðak;bkÞg and an arbitrary schedule that exhibits infi-
nite perfect learning with respect to these constraints, and assume
for the sake of contradiction that there is a constant c such that
tn ≤ cn for all n. Let b̂k ¼ ∑k

j¼1 bj and let n0 be any integer such

that n0 > b̂cþ1. By our assumption, at least n0 educational units
have been introduced by the time step cn0. In general, for any
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schedule that exhibits infinite perfect learning, any unit that has
been introduced by time step t will have occurred k times by time
step tþ b̂k, by the definition of b̂k. Thus at least n0 units will have
occurred cþ 1 times by time step cn0 þ b̂cþ1. So cn0 þ b̂cþ1 ≥
ðcþ 1Þn0 because each time step corresponds to at most one edu-
cational unit. Subtracting cn0 from both sides, we have that
b̂cþ1 ≥ n0, which contradicts our choice of n0. Thus, there cannot
be a constant c such that tn ≤ cn for all n.

The Slow Flashcard Schedule. One can describe the construction
of the recap schedule without using depth-first traversals or full
binary trees, but rather using a deck of flashcards. Doing so will
shed some light on the recap schedule, and will also serve as a
useful jumping-off point for discussing the very different schedule
which is the focus of this section. So we begin our discussion here
by revisiting the recap schedule.

Imagine a deck of flashcards, with the kth card corresponding
to an educational unit uk. Thus the top card corresponds to u1,
the next card corresponds to u2, etc. Then we construct a sche-
dule as follows. At every step, we present to the student the edu-
cational unit corresponding to the top card, and then reinsert the
card into position 2k, where k is the number of times we have
presented the educational unit corresponding to that card, up to
and including this latest time step. Thus first we present u1, then
we remove it from the deck and reinsert it into position 2 in the
deck. Then we present u2, then remove it and reinsert it into posi-
tion 2 in the deck. Then u1 is again on top and so we present it for
a second time and then remove it and reinsert it into position
22 ¼ 4. This process produces the recap schedule.

In this section, we consider a schedule that is much more dif-
ficult to describe explicitly than the recap schedule, but whose
construction can similarly be described in terms of a deck of flash-
cards. Instead of reinserting into position 2k as above, though, we
reinsert into position kþ 1. Carefully applying this rule shows the
first few entries of the schedule to be u1;u2;u1;u2;u3;u1;u3;u2;
u4;u3. Of all schedules that can be constructed with a similar
flashcard-reinsertion scheme using some strictly increasing rein-
sertion function rðkÞ with rð1Þ > 1, it is this schedule, constructed
using rðkÞ ¼ kþ 1, which progresses through the deck the slow-
est. For this reason, we call this schedule “the slow flashcard
schedule.”

In the SI Text, we show that the slow flashcard schedule exhibits
infinite perfect learning with respect to the spacing constraints
with ðak;bkÞ ¼ ðk;k2Þ. Thus the slow flashcard schedule provides
a dramatic alternative to the recap schedule. Whereas bk and
bk − ak both grew exponentially in k in the recap schedule, here
they grow quadratically and yet still allow for infinite perfect
learning.

Numerical simulations shown in the SI Text suggest that this
schedule in fact exhibits infinite perfect learning even with re-
spect to the much tighter spacing constraints with ðak;bkÞ ¼
ðk;2kÞ. If that is the case, the contrast with the recap schedule
would be even more stark.

The trade-off for this slow growth in bk is the speed at which
the knowledge base grows. Whereas tn, the time needed for the
knowledge base to achieve size n, grew as Θðn log nÞ in the recap
schedule, here it is bounded below by Ωðn2Þ. A proof of this fact
can be found in the SI Text, along with numerical evidence that it
in fact grows as Θðn2Þ.

The spacing constraints in The Recap Method and The Slow
Flashcard Schedule are tailored to allow for existence proofs that
certain bounds on tn, bk, and bk − ak can be achieved in the
context of infinite perfect learning. The methods used to describe
the schedules, though, suggest general principles for how to con-
struct schedules with desirable properties. Moreover, we note
that the schedules constructed are relevant to any set of spacing
constraints that are more relaxed than the given ones: If a

schedule exhibits infinite perfect learning with respect to spacing
constraints fðak;bkÞg, then it also exhibits infinite perfect learning
with respect to fða0k;b0kÞg when a0k ≤ ak and b0k ≥ bk for all k.

In the next section, Flexible Students, we begin with a general
class of students and build schedules tailored to each individual
student in the class.

Flexible Students. What if the student did not need to wait at all
in order to derive benefit from studying? In other words, what if
ak ¼ 1 for all k? In this case, we can use a technique for construct-
ing schedules that we call “hold-build”: sequencing the educa-
tional units that are known to the student in a “holding
pattern” so that they meet the spacing constraints, while showing
new educational units in quick repetition (thereby “building”
them up). The only assumptions that are needed for the construc-
tion, besides ak ≡ 1, are that b1 ≥ 2 and that bk → ∞. (Note that
bk is already required to be weakly increasing.)

We define the sequence HBm to be the infinite sequence that
starts with um, contains um in every other entry, and cycles
through units u1;…;um−1 in the remaining entries. So, for exam-
ple,

HB2 ¼ u2;u1;u2;u1;u2;u1;…

HB3 ¼ u3;u1;u3;u2;u3;u1;u3;u2;u3;u1;…

HB4 ¼ u4;u1;u4;u2;u4;u3;u4;u1;u4;u2;u4;…

Now, consider an arbitrary set of spacing constraints such that
ak ≡ 1, b1 ≥ 2, and bk → ∞. For ease of discussion, we say that an
educational unit is at level k when it has been shown exactly k
times. We construct the schedule that assures infinite perfect
learning as follows.

First, present unit u1. Then present units according to HB2. So
far so good; so long as units are presented according to HB2, we
know the spacing constraints will be met, because bk ≥ 2 for all k.
Meanwhile, the levels for u1 and u2 can be built up without
bound.

Continue HB2 as long as necessary until it is feasible to move
on to HB3. In other words, show enough of HB2 so that if the
schedule up to that point were followed by an indefinite run
ofHB3, then the spacing constraints would be met. This condition
is guaranteed to be true after a finite number of time steps
because bk → ∞ and HB2 is periodic.

Thus, once enough of HB2 has been shown, we show as much
of HB3 as necessary until we can afford to move on to HB4. Then
we show as much ofHB4 as necessary until we can afford to move
on to HB5, and we continue building the schedule like this inde-
finitely.

The schedule formed by concatenating hold-build patterns in
this way assures infinite perfect learning, and it applies to any set
of spacing constraints with ak ≡ 1, b1 ≥ 2, and bk → ∞. Thus we
actually have a class of spacing constraints where infinite perfect
learning is possible and yet bk can grow arbitrarily slowly. The
trade-off for an exceedingly slow-growing bk will again be
a fast-growing tn, corresponding to a slow rate of learning. The
exact rate will depend on the exact rate of growth of bk.

To give a concrete example of this hold-build construction and
an accompanying calculation of tn, we can consider the simple
case where bk ¼ kþ 1. (Note that, because we only require that
bk be weakly increasing, there are much slower-growing choices
for bk than this one.) Then, by carrying out the construction
above, we have that the sequence is

u1;u2;u1;u2;u1;u2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
HB2

;u3;u1;u3;u2;u3;u1;u3;u2;u3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
HB3

;u4;u1;…|fflfflfflffl{zfflfflfflffl}
HB4
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with 4k − 3 time steps spent in HBk for every k. Thus, because ui
will be introduced one time step after finishing the HBi−1 part of
the schedule, we have that

tn ¼ 1þ
�
∑
n−1

k¼2

ð4k − 3Þ
�
þ 1 ¼ 2n2 − 5nþ 4.

The idea behind the hold-build construction, namely the meth-
od of putting some units in a holding pattern while others are
being “built up,” could readily be used to construct schedules
assuring infinite perfect learning for many sets of spacing con-
straints with ak > 1 as well (or spacing constraints with b1 ¼ 1,
for that matter). It is a tool that can be used to tailor educational
processes to model students in general.

The Finicky Slow Student.We now give a set of spacing constraints
fðak;bkÞg for which no schedule can exhibit infinite perfect learn-
ing. They are simply the constraints defined by ak ¼ bk ¼ k. We
call this set of constraints “the finicky slow student” because bk −
ak is so small, and because bk grows so slowly as a function of k.
We show that no schedule can exhibit infinite perfect learning
with respect to the finicky slow student.

Suppose, for the sake of contradiction, that there were a sche-
dule that exhibited infinite perfect learning with respect to the
finicky slow student. We say that a schedule incorporates educa-
tional unit ui if the unit occurs infinitely many times, and if the
sequence of occurrences satisfies the spacing constraints. Thus,
given the particulars of the finicky slow student, if a unit ui is in-
corporated, and if it first occurs at step τ, then it must also occur
at steps τ þ 1, τ þ 3, τ þ 6, τ þ 10;….

By assumption, the schedule incorporates infinitely many edu-
cational units. We can assume, without loss of generality, that
educational unit u1 is incorporated and that its first occurrence
is at time step τ0 ¼ 0. (Letting time start at zero here allows
for cleaner calculations.) Then we know that u1 also occurs at
precisely the steps τ1, τ2, τ3;…, where τi ¼ ∑i

k¼1 ak. It will be suf-
ficient to show that no other unit can be incorporated without
creating a scheduling conflict—in other words, without needing
to eventually be scheduled at a step of the form τi.

Suppose another unit, call it u2, were incorporated, with its
first occurrence at step s0. Then we know that u2 must also occur
at precisely the steps s1, s2, s3;…, where si ¼ s0 þ∑i

k¼1 ak.
We show that there must be some step common to both se-

quences fsig and fτig. Thus we will have a contradiction because,
at most, one educational unit can appear in each entry of the
schedule.

We begin by noting that si − τi ¼ s0 for all i, and that siþ1 − si ¼
τiþ1 − τi ¼ aiþ1 for all i. Now choose k large enough so that
τkþ1 − τk > s0. Then τkþ1 > τk þ s0 ¼ sk. Thus for sufficiently
large k, we have that τkþ1 > sk. Now letm be the smallest number
such that τmþ1 > sm. We know m ≥ 1, because τ0 ¼ 0 and τ1 ¼ 1
by construction. We claim that τm ¼ sm−1.

If τm > sm−1, then m would not be the smallest number such
that τmþ1 > sm (because then m − 1 would also qualify), so
τm≯sm−1.

If τm < sm−1, then we have that τm < sm−1 < sm < τmþ1, which
implies that sm − sm−1 ≤ τmþ1 − τm − 2, because all si and τi are
integer valued. Thus am ≤ amþ1 − 2, so amþ1 − am ≥ 2, which is
not possible because akþ1 − ak ¼ 1 for all k. So τm≮sm−1.

Thus we have that τm ¼ sm−1, which is a contradiction, of
course, because only one educational unit can be scheduled
for any given time step. Thus no schedule can exhibit infinite
perfect learning with respect to the finicky slow student; in fact,
the finicky slow student does not even allow for the incorporation
of more than one educational unit.

This proof holds not only for the spacing constraints
ak ¼ bk ¼ k, but for any spacing constraints such that ak ¼ bk ¼

f ðkÞ, where f ðkÞ is an integer sequence such that f ð1Þ ¼ 1,
f ðkþ 1Þ − f ðkÞ ∈ f0;1g, and f ðkÞ → ∞. The exact choice doesn’t
matter; the finickiness (ak ¼ bk) and the slowness [f ð1Þ ¼ 1 and
f ðkþ 1Þ − f ðkÞ ∈ f0;1g] are sufficient to carry out the proof as
written, but with the final argument using akþ1 − ak ≤ 1 instead
of akþ1 − ak ¼ 1.

Cramming. The focus up until now has been on infinite perfect
learning, but there could be less ambitious goals for a student.
We turn our attention now to cramming. At the end of this sec-
tion, we address the question of how much cramming can be done
in a given amount of time. We begin here with a positive result,
showing that for every positive integer n and every set of spacing
constraints with bk → ∞, there exists a sequence that achieves
bounded learning of order n.

We consider an arbitrary set of spacing constraints with
bk → ∞ and proceed by induction on n. It is clear that bounded
learning is possible for n ¼ 1; the sequence consisting simply
of u1 satisfies the definition.

Now, let Sn be a sequence of length Tn that achieves bounded
learning of order n. To complete the induction, we construct a
new sequence, Snþ1 of length Tnþ1, that achieves bounded learn-
ing of order nþ 1.

Recall from Flexible Students that the level of an educational
unit at time t in a sequence is the number of times it has appeared
prior to time t. The basic idea behind the construction of Snþ1 is to
start by building up the level of u1 until it is at a level m such that
bm > Tn. Then we use the next Tn steps to present units u2,
u3;…;unþ1 according to the sequence Sn. When that is done,
the time limit of bm has still not been reached for u1, and hence
the sequence satisfies the definition of bounded learning of
order nþ 1.

Formally, letm be the smallest integer such that bm > Tn. Then
present unit u1 at time t ¼ 0 and at times t ¼ ∑j

i¼1 ai for
j ¼ 1;2;…;m − 1. Present a blank in the sequence at every other
time step in between. Then, starting at time t ¼ 1þ∑m−1

i¼1 ai, pre-
sent units u2;u3;…;unþ1 according to the Tn elements of the se-
quence Sn. This sequence, through time Tnþ1 ¼ Tn þ∑m−1

i¼1 ai, is
our new sequence Snþ1. By construction it satisfies the conditions
of bounded learning of order nþ 1. By induction, then, bounded
learning of order n is possible for all positive integers n for any set
of spacing constraints with bk → ∞.

In the construction above, it is entirely possible that one or
more units would begin to violate the spacing constraints even
one time step later. Little is assured other than the educational
units having met the scheduling constraints up to a certain time
step. We call this sort of construction cramming because it pre-
sents the material with a particular target time in view and with-
out regard to the scheduling of material after this target time, like
a student cramming for a final exam who doesn’t worry about how
much will be retained after the test.

Condition (ii) of our definition of bounded learning models the
notion of studying up to a point in time and then being able to
remember everything that was studied for at least one more time
step, as if there were a quiz lasting one time step which would
occur in the time step immediately following the cramming se-
quence. We could similarly model the notion of a quiz that lasts
d time steps by requiring that if a unit’s last occurrence is s time
steps from the end of the sequence, and the unit occurs a total of
k times in the sequence, then sþ d must be less than or equal to
bk. We note that our results regarding cramming sequences could
be adapted to such an alternative model.

We turn now to the issue of how much can be crammed in a
given amount of time. Given a set of spacing constraints
fðak;bkÞg, and a positive integer T, we can put an upper bound
on the numbers n for which bounded learning of order n is pos-
sible in T time steps. If we let mðiÞ denote the smallest integer k
such that bk ≥ i, then it can be shown that n must satisfy
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∑n
i¼1 mðiÞ ≤ T and

�
∑mðnÞ−1

j¼1 aj

�
þ n ≤ T. Each inequality impli-

citly bounds n from above. These bounds reflect the constraints
imposed by the limited number of time steps available, and the
notions that fakg and fbkg represent limitations on how fast the
level of an educational unit can be built up and how long educa-
tional units can be remembered. Details can be found in the
SI Text.

Despite the negative connotations associated with cramming,
the basic idea can actually be useful in a number of settings in real
life. A traveler may only care to learn a language enough to travel
in a foreign country just once, for example, or a performer may
only need to have a certain skill set on the day of a performance
and not necessarily after that. Perhaps educational software of
the future will have tunable parameters that allow the student
(or teacher or parent) to set the goal of the educational process.
This way the software may not only adapt to the natural abilities
of the students, but also to their personal goals.

Conclusion
The possibilities for future work seem limitless. A more complete
theory of infinite perfect learning could be one goal. Such a the-
ory would include more techniques for constructing educational
processes tailored to students, and a more complete theory relat-
ing ak and bk to the maximum rate at which the model student can
accrue knowledge.

A major goal should be a truly adaptive educational process:
one that adapts to the student in real time. For example, in this
paper we model the educational process as a sequence designed
to satisfy a set of constraints fixed in advance, but an alternate
approach would be to test the student’s knowledge throughout
the process, and for the schedule to be controlled by an online
algorithm that chooses the next unit based on the answers the
student has given. Such a system would model the process of a
teacher observing student progress before deciding what to teach
next.

Modeling this situation would be an exciting challenge. The
interaction between the two online algorithms, one modeling the
student and the other modeling the teacher, promises to be com-

plex and fascinating, and hopefully enlightening and useful to
future designers and engineers of educational software. There is
much opportunity here for mathematical modeling, theoretical
calculations, and numerical simulations that shed light on what
makes an effective teacher and how educational software can
adapt in real time to user behavior.

Another area for future work is the design and analysis of
models that are tailored to specific subjects. Perhaps a model in-
volving a network of educational units could be used to investi-
gate the phenomenon that it is often easier to learn a set of facts
that somehow “reinforce” each other than a set of unrelated
facts. Introducing relationships between educational units calls
for new models of the student’s reception of the units, which
in turn call for different educational processes.

Yet another avenue of research is empirical work. The techni-
ques and intuitions gained from theoretical work should be put to
use to create actual educational software. Then data from real
students can be collected and the process of using the data to
validate and refine the models can begin.

Finally, the mathematics of managing spacing constraints in
sequences could find additional applications beyond those con-
sidered above, for example, to task management in parallel pro-
cessing or the study of multitasking in humans.

The models presented in this paper are simple and theoretical.
Designers of educational software will likely need to implement
models and algorithms that are more complex and tailored to the
educational content being delivered. It is our hope that work on
simple theoretical models will provide the foundations of intui-
tion for designers of educational software, in much the same
way that algorithmic game theory does for engineers who work
in online ad auctions and other related fields.

With the current boom in educational software—not to men-
tion the humanoid robot teacher industry (14)—it is clear that the
time has come to develop a theory of algorithmic education.
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SI Text
The Recap Method. In The Recap Method in the paper, we de-
scribed a schedule in terms of a depth-first traversal of a full
binary tree, and claimed that it conformed to the spacing con-
straints

ak ¼ 2k

bk ¼ 2k−1ðkþ 1Þ:
We also claimed that for this schedule, which we refer to as the
recap schedule, the number of time steps before n distinct educa-
tional units have been introduced, denoted in the paper as tn,
grows as Θðn log nÞ, and that for a certain class of functions
rðnÞ we can explicitly construct schedules for which tn grows
as Θðn · r−1ðnÞÞ.

First we prove the results about the original recap schedule in
The Recap Schedule, and then we generalize these results in The
Generalized Recap Schedule. In both subsections we use notation
slightly different from the paper by subtracting one from all the
indices of the educational units, so that the lowest index is zero.
This notational change will make calculations easier and will
allow for a cleaner generalization later on.

The recap schedule. We begin by reiterating how to construct the
recap schedule. To find the first ðkþ 1Þ2k entries of the schedule,
consider a depth-first postorder traversal of a full binary tree of
height k with 2k leaves labeled u0, u1;…;u2k−1 from left to right
(see Fig. S1). Begin with an empty sequence. Every time a leaf is
visited, append the sequence with the corresponding educational
unit. Every time a nonleaf node is visited (after both children
have been visited), append the sequence with the units corre-
sponding to all of the descendant leaves, in left-to-right order.
To be clear, we mean for the leaves to have height zero, their
parents to have height one, etc.

Thus, using k ¼ 2, we have that the first 12 entries of the sche-
dule are

u0;u1;u0;u1;u2;u3;u2;u3;u0;u1;u2;u3:

It should be noted that, by the properties of depth-first post-
order traversal, this description defines a unique sequence, be-
cause the first ðkþ 1Þ2k elements of the sequence are the same
regardless of whether one considers a tree of height k or one of
height greater than k. Thus in the discussion and proofs below we
simply assume that the tree being discussed is always of sufficient
height to include all of the relevant nodes.

The following lemma, which should be clear from the diagram
in Fig. S1, is justified by the fact that a depth-first postorder tra-
versal of a tree will visit, in order of increasing height, each node
on the path from any given leaf to the root. The lemma follows
from this fact and from basic properties of a full binary tree.

Lemma 1. (The Recap Lemma). In the construction of the recap
schedule, the left-most node at height k corresponds to the ðkþ 1Þst
occurrences of units u0, u1;…;u2k−1, and the sibling of that node
corresponds to the ðkþ 1Þst occurrences of units u2k ;…;u2kþ1−1.

To make the discussion below more concise, we introduce
some notation. Let TiðkÞ be the index of the kth occurrence of
unit ui in the sequence. Note that tn ¼ Tnð1Þ by this definition.
Thus the recap lemma states that in the recap schedule, the
left-most node at height k corresponds to Tiðkþ 1Þ for

i ∈ ½0;2k − 1�, and the sibling of that node corresponds to
Tiðkþ 1Þ for i ∈ ½2k;2kþ1 − 1�.

We are now ready to prove the statements about the recap
schedule from the paper.

Theorem 1. (Asymptotics of the Introduction Time Function.) In the
recap schedule, tn ¼ Tnð1Þ grows as Θðn log nÞ.

Proof:By the recap lemma and properties of depth-first postorder
traversal, at time step T2k ð1Þ units u0, u1;…;u2k−1 have each
occurred exactly kþ 1 times, and nothing else has occurred at
all. Therefore,

T2kð1Þ ¼ 2k · ðkþ 1Þ;

and so

Tnð1Þ ¼ n · ðlog2 nþ 1Þ
for n of the form n ¼ 2k, which establishes that Tnð1Þ grows as
Θðn log nÞ when considered as a function of integers of the form
n ¼ 2k.

Because Tnð1Þ increases monotonically in n, it follows that that
Tnð1Þ grows as Θðn log nÞ when considered as a function of all
positive integers.

Theorem 2. (Bounds on the Introduction Time Function.) In the
recap schedule,

Tnð1Þ ≤ n · ð⌊ log2 n⌋þ 1Þ

and

1

2
· n · ð⌊ log2 n⌋þ 1Þ ≤ Tnð1Þ

for all n.

Proof: In general, by time step Tnð1Þ, only units u0, u1;…;un−1
have already occurred at all, by the properties of depth-first post-
order traversal, and each at most ⌊ log2 n⌋þ 1 times, by the recap
lemma. Therefore,

Tnð1Þ ≤ n · ð⌊ log2 n⌋þ 1Þ:
Furthermore, by time step Tnð1Þ, all units with index less than 1

2
n

have occurred exactly ⌊ log2 n⌋þ 1 times, again by the properties
of depth-first postorder traversal and the recap lemma. There-
fore,

1

2
· n · ð⌊ log2 n⌋þ 1Þ ≤ Tnð1Þ:

Theorem 3. (Adherence to Spacing Constraints.) The recap schedule
adheres to the spacing constraints

ak ¼ 2k

bk ¼ 2k−1ðkþ 1Þ:
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Proof: Our goal is to show that

ak ≤ Tiðkþ 1Þ − TiðkÞ ≤ bk;

for all i, k. We will establish these bounds by calculating the mini-
mum and maximum possible values of Tiðkþ 1Þ − TiðkÞ.

Because the tree is a full binary tree, we have that for any k
all the subtrees with roots at height k are identical. Therefore
all values of Tiðkþ 1Þ − TiðkÞ which occur in the context of
any given subtree at height k must occur in the context of the
subtree rooted at the left-most node at height k. Thus, for any
k, we only need to consider i < 2k in order to find the minimum
and maximum values of

Tiðkþ 1Þ − TiðkÞ:

By construction

Tjðkþ 1Þ − Tiðkþ 1Þ ¼ j − i

whenever i < j < 2k. Also, because TiðkÞ is monotonic in i,

TjðkÞ − TiðkÞ ≥ j − i

whenever i < j. Therefore, for all i and j such that i < j < 2k we
have that

Tjðkþ 1Þ − TjðkÞ ≤ Tiðkþ 1Þ − TiðkÞ:

Thus, the maximum value of Tiðkþ 1Þ − TiðkÞ must occur when
i ¼ 0 and the minimum value must occur when i ¼ 2k − 1.

Thus if we can show that

T2k−1ðkþ 1Þ − T2k−1ðkÞ ≥ 2k

and that

T0ðkþ 1Þ − T0ðkÞ ≤ 2k−1ðkþ 1Þ

for all k, then we will be done. We will in fact show that we have
equality in both cases; we will show that

T2k−1ðkþ 1Þ − T2k−1ðkÞ ¼ 2k

and

T0ðkþ 1Þ − T0ðkÞ ¼ 2k−1ðkþ 1Þ

for all k.
By construction, the last entry of the schedule due to the left-

most node at height k corresponds to T2k−1ðkþ 1Þ, and the last
entry of the schedule due to the right child of that node corre-
sponds to T2k−1ðkÞ. Because in depth-first postorder traversal
each node is visited immediately after its right child, we have that

T2k−1ðkþ 1Þ − T2k−1ðkÞ ¼ 2k;

corresponding to the 2k entries of the schedule due to the left-
most node at height k.

Meanwhile, T0ðkþ 1Þ and T0ðkÞ refer to the first entry of the
schedule due to the left-most nodes at heights k and k − 1, respec-
tively. Thus T0ðkþ 1Þ − T0ðkÞ will be equal to the number of
entries in the schedule due to the left-most node at height
k − 1, plus the number of entries due to the subtree whose root
is the right sibling of the left-most node at height k − 1.

The first quantity is 2k−1, by construction. As for the second
quantity, because the subtree in question corresponds to k occur-
rences of 2k−1 units, we have that the second quantity is equal to
k · 2k−1. Thus

T0ðkþ 1Þ − T0ðkÞ ¼ 2k−1 þ k · 2k−1

¼ 2k−1ðkþ 1Þ:

Corollary 1. (Window Growth.) The minimal window length required
for the general recap schedule, bk − ak, grows as Θðk · 2kÞ.

Proof: This proof follows from the bounds above, because

bk − ak ¼ 2k−1ðkþ 1Þ − 2k

¼ 2k−1ðkþ 1 − 2Þ

¼ 1

2
· 2k · ðk − 1Þ:

The generalized recap schedule. We now move on to generalizing
these results by considering a class of schedules which we call
the “generalized recap schedule.” To that end, we consider a class
of trees more general than the full binary tree; we consider trees
where at any given height all of the nodes have the same number
of children, but where this number is not necessarily two for every
height (as it is in a full binary tree).

To construct a generalized recap schedule, begin with any
sequence of positive integers

fqðiÞg;

such that qðiÞ ≥ 2 for all i. Then define a sequence

frðiÞg

by setting rð0Þ ¼ 1 and letting

rðiÞ ¼
Yi
j¼1

qðjÞ

for i ≥ 1.
Now, to find the first ðkþ 1ÞrðkÞ entries of the schedule, con-

sider a depth-first postorder traversal of a tree of height k with
rðkÞ leaves labeled u0, u1;…;urðkÞ−1 from left to right, and such
that all the nodes at height j have exactly qðjÞ children. Begin with
an empty sequence. As before, every time a leaf is visited, append
the sequence with the corresponding educational unit. Every time
a nonleaf node is visited (after all of its children have been vis-
ited), append the sequence with the units corresponding to all of
the descendant leaves, in left-to-right order. Again, we mean for
the leaves to have height zero, their parents to have height
one, etc.

Thus, for example, using qðiÞ≡ 2, we simply have the original
recap schedule, whereas using

fqðiÞg ¼ 3;2;…;

as in the diagram in Fig. S2, we have that the first 18 entries of the
schedule are

u0;u1;u2;u0;u1;u2;
u3;u4;u5;u3;u4;u5;
u0;u1;u2;u3;u4;u5:
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Again it should be noted that, by the properties of depth-first
postorder traversal, this description defines a unique sequence,
because the first ðkþ 1ÞrðkÞ elements of the sequence are the
same regardless of whether one considers a tree of height k or
one of height greater than k. Thus in the discussion and proofs
below, we simply assume that the tree being discussed is always of
sufficient height to include all the relevant nodes.

We would like to extend r−1 so that it has an inverse defined for
all positive integers. Where r−1 is not naturally defined [i.e., for
positive integers n such that rðiÞ ≠ n for any i], we define r−1ðnÞ to
simply be r−1ðmÞ where m is the largest number less than n such
that rðiÞ ¼ m for some i. [Thus, for example, if qðkÞ≡ 2, then we
have that rðkÞ ¼ 2k and r−1ðnÞ ¼ ⌊ log2 n⌋.]

We note that r−1ðnÞ þ 1 can be interpreted as the height of the
lowest ancestor of leaf un that is the left-most node at that height.
Thus, by the properties of depth-first postorder traversal, when
leaf un is visited, only nodes of height less than or equal to
r−1ðnÞ have already been visited.

The generalization of the recap lemma is evident from the
diagram in Fig. S2.

Lemma 2. (The Recap Lemma—Generalized.) The left-most node at
height k corresponds to the ðkþ 1Þst occurrences of units

u0;u1;…;urðkÞ−1;

and in general the jth node at height k, counting from left to right,
corresponds to the ðkþ 1Þst occurrences of units

uðj−1ÞrðkÞ;…;ujrðkÞ−1:

In other words, the left-most node at height k corresponds to
Tiðkþ 1Þ for i ∈ ½0;rðkÞ − 1�, and the jth node at height k corre-
sponds to Tiðkþ 1Þ for

i ∈ ½ðj − 1ÞrðkÞ;jrðkÞ − 1�:

With this lemma in hand, we prove the main results about the
generalized recap schedule. The structure of all of the proofs
mirrors the structure of analogous proofs in The Recap Schedule.

Theorem 4. (Asymptotics of the Introduction Time Function—
Generalized.) In the generalized recap schedule, Tnð1Þ grows as
Θðn · r−1ðnÞÞ.

Proof: By the properties of depth-first postorder traversal and the
recap lemma, at time step TrðkÞð1Þ, units u0, u1;…;urðkÞ−1 have
each occurred exactly kþ 1 times, and nothing else has occurred
at all. Therefore,

TrðkÞð1Þ ¼ rðkÞ · ðkþ 1Þ;

and so

Tnð1Þ ¼ n · ½r−1ðnÞ þ 1�

for n of the form n ¼ rðkÞ for some positive integer k. Thus Tnð1Þ
grows as Θðn · r−1ðnÞÞ when considered as a function over inte-
gers of the form n ¼ rðkÞ.

Because Tnð1Þ increases monotonically in n, it follows that
Tnð1Þ grows as Θðn · r−1ðnÞÞ when considered as a function of
all positive integers, so long as ðnþ 1Þ · r−1ðnþ 1Þ grows as
Θðn · r−1ðnÞÞ. This last statement is true because r−1ðnÞ grows
at most logarithmically [because, by construction, rðkÞ ≥ 2k for
all k], and so we are done.

Theorem 5. (Bounds on the Introduction Time Function—General-
ized.) In the generalized recap schedule,

Tnð1Þ ≤ n · ½r−1ðnÞ þ 1�

and

1

2
· n · ½r−1ðnÞ þ 1� ≤ Tnð1Þ

for all n.

Proof: In general, by time step Tnð1Þ only units u0, u1;…;un−1 have
already occurred at all, by the properties of depth-first postorder
traversal, and each at most r−1ðnÞ þ 1 times. Therefore,

Tnð1Þ ≤ n · ½r−1ðnÞ þ 1�:

Furthermore, by time step Tnð1Þ, all units with index less than
1
2
n have occurred exactly r−1ðnÞ þ 1 times. To see why, consider

an arbitrary n and let j represent the left-to-right index
of the ancestor of leaf un that is at height r−1ðnÞ. [Thus, if the
ancestor of leaf un at height r−1ðnÞ is immediately to the right
of the left-most node at that height, then j ¼ 2, whereas if it is
the right-most sibling of the left-most node at that height, then
j ¼ qðr−1ðnÞ þ 1Þ. Note that j ≥ 2 because, as noted earlier,
r−1ðnÞ þ 1 is the height of the lowest ancestor of un that is the
left-most node at that height.]

By the properties of depth-first postorder traversal, when leaf
un is visited, all j − 1 nodes at height r−1ðnÞ to the left of the
ancestor of un at that height will have been visited already, as will
all of the descendants of these j − 1 nodes. Such leaves will have
indices zero through

ðj − 1Þ · rðr−1ðnÞÞ − 1.

[Note that by construction, rðr−1ðnÞÞ is not generally equal to n,
but rather to the greatest numberm less than n such that rðkÞ ¼ m
for some k.] Thus, at Tnð1Þ, we have that all units with index less
than

ðj − 1Þ · rðr−1ðnÞÞ

have been seen r−1ðnÞ þ 1 times. Because

n < j · rðr−1ðnÞÞ

and j ≥ 2, it follows that at least 1
2
· n units have been seen at least

r−1ðnÞ þ 1 times by Tnð1Þ. Thus

1

2
· n · ½r−1ðnÞ þ 1� ≤ Tnð1Þ:

Theorem 6. (Adherence to Spacing Constraints—Generalized.) The
recap schedule adheres to the spacing constraints

ak ¼ rðkÞ
bk ¼ rðk − 1Þ · ðkþ 1Þ:

Proof: Our goal is to show that

rðkÞ ≤ Tiðkþ 1Þ − TiðkÞ ≤ rðk − 1Þ · ðkþ 1Þ;
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for all i, k. We will establish these bounds by calculating the mini-
mum and maximum possible values of Tiðkþ 1Þ − TiðkÞ.

For any k, all the subtrees with roots at height k are identical
except for a shift in the labels on the leaves, by construction.
Therefore all values of Tiðkþ 1Þ − TiðkÞ that occur in the context
of any given subtree at height k must occur in the context of
the subtree rooted at the left-most node at height k. This subtree
corresponds to units u0;…;urðkÞ−1. Thus, for any k, we only need to
consider i < rðkÞ in order to find the minimum and maximum
values of

Tiðkþ 1Þ − TiðkÞ:

By construction

Tjðkþ 1Þ − Tiðkþ 1Þ ¼ j − i

whenever i < j < rðkÞ. Also, because TiðkÞ is monotonic in i,

TjðkÞ − TiðkÞ ≥ j − i

whenever i < j. Therefore, for all i and j, such that i < j < rðkÞ,
we have that

Tjðkþ 1Þ − TjðkÞ ≤ Tiðkþ 1Þ − TiðkÞ:

Thus, the maximum value of Tiðkþ 1Þ − TiðkÞ must occur when
i ¼ 0 and the minimum value must occur when i ¼ rðkÞ − 1.

Thus if we can show that

rðkÞ ≤ TrðkÞ−1ðkþ 1Þ − TrðkÞ−1ðkÞ

and that

T0ðkþ 1Þ − T0ðkÞ ≤ rðk − 1Þ · ðkþ 1Þ

for all k, then we will be done. We will in fact show that we have
equality in both cases; we will show that

TrðkÞ−1ðkþ 1Þ − TrðkÞ−1ðkÞ ¼ rðkÞ

and

T0ðkþ 1Þ − T0ðkÞ ¼ rðk − 1Þ · ðkþ 1Þ

for all k.
By construction, the last entry of the schedule due to the left-

most node at height k corresponds to TrðkÞ−1ðkþ 1Þ, and the last
entry of the schedule due to the right-most child of that node
corresponds to TrðkÞ−1ðkÞ. Because in a postorder depth-first
traversal each node is visited immediately after its right-most
child, we have that

TrðkÞ−1ðkþ 1Þ − TrðkÞ−1ðkÞ ¼ rðkÞ;

corresponding to the rðkÞ entries of the schedule due to the left-
most node at height k.

Meanwhile, T0ðkþ 1Þ and T0ðkÞ refer to the first entry of the
schedule due to the left-most nodes at heights k and k − 1, respec-
tively. Thus T0ðkþ 1Þ − T0ðkÞ will equal the number of entries in
the schedule due to the left-most node at height k − 1, plus the
number of entries due to all the subtrees whose roots are siblings
of the left-most node at height k − 1.

The first quantity is rðk − 1Þ, by construction. As for the second
quantity, because the subtrees in question each correspond to k
occurrences of rðk − 1Þ units, we have that the second quantity is
equal to k · rðk − 1Þ. Thus

T0ðkþ 1Þ − T0ðkÞ ¼ rðk − 1Þ þ k · rðk − 1Þ
¼ rðk − 1Þ · ðkþ 1Þ:

The Slow Flashcard Schedule. Here we examine the slow flashcard
system in detail. In particular, we show that the slow flashcard
schedule adheres to the spacing constraints

ak ¼ k

bk ¼ k2:

We also present evidence which suggests that the slow flashcard
schedule even adheres to the more stringent constraints

ak ¼ k

bk ¼ 2k:

We also show that for the slow flashcard schedule, tn is bounded
below by Ωðn2Þ and bounded above by Oðn3Þ, and we present
evidence that in fact tn grows as Θðn2Þ.

We begin by reexamining the construction. We consider an in-
finite deck of flashcards, indexed by positions 1, 2, 3,… We call
position 1 the top or the front of the deck, we say that a flashcard
in position i is behind another flashcard in position j if and only if
i > j. Otherwise, it is in front of the other flashcard. Each flash-
card corresponds to an educational unit ui, and at the beginning
of the construction, flashcard u1 is in position 1, flashcard u2 is in
position 2, etc.

We construct the schedule as follows. At a given time step t,
suppose that the flashcard at the top of deck corresponds to edu-
cational unit ui, and that ui has appeared in the sequence k − 1
times so far. Then we include ui in the sequence at time step t
(resulting in its kth occurrence), and we move the flashcard con-
taining ui to position kþ 1 in the deck of flash cards.

Thus the configurations of the deck in the first few time steps
are as follows:

u1;u2;u3;u4;u5;u6;…
u2;u1;u3;u4;u5;u6;…
u1;u2;u3;u4;u5;u6;…
u2;u3;u1;u4;u5;u6;…
u3;u1;u2;u4;u5;u6;…
u1;u3;u2;u4;u5;u6;…
u3;u2;u4;u1;u5;u6;…
u2;u4;u3;u1;u5;u6;…
u4;u3;u1;u2;u5;u6;…
u3;u4;u1;u2;u5;u6;…

resulting in the schedule

u1;u2;u1;u2;u3;u1;u3;u2;u4;u3;…;

which simply corresponds to the units at the top of the deck (the
left entries in the sequences above) at each time step.

As in the last section, we let TiðkÞ be the time step of the kth
occurrence of unit ui in the schedule. Thus, for example, here we
have that T2ð3Þ ¼ 8, T4ð1Þ ¼ 9, and T3ð3Þ ¼ 10.

Note that, by construction, at every time step, each flashcard
except for the one being reinserted either maintains its position
or moves up in the deck, decreasing its position by one. The for-
mer happens if the presented flashcard is reinserted in front of
the flashcard in question, and the latter happens if the presented
flashcard is reinserted behind the flashcard in question. We call
this the “slow marching property,” because informally it says that
once a flashcard is inserted into position n, it will “slowly march”
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to the front of the deck, moving up at a rate of at most one posi-
tion per time step.

Note also that if ub is behind ua in the deck at time step t, then
ub will also be behind ua at time step tþ 1, unless ua is in position
1 at time step t, and is reinserted behind ub at the end of time
step t. We call this the “no-passing property.”

Now we move on to proving the main results of this section.

Theorem 7. (Adherence to Spacing Constraints.) The slow flashcard
schedule adheres to the spacing constraints

ak ¼ k

bk ¼ k2:

Proof: To prove the theorem, we need to show that

n ≤ Tiðnþ 1Þ − TiðnÞ ≤ n2

for all i and n. The left inequality follows from the slow marching
property as follows. At TiðnÞ, the flashcard ui has been reinserted
into position nþ 1 of the deck, by construction. Thus it will be at
least n time steps until it is in position 1 by the slow marching
property; it will be at least n time steps until Tiðnþ 1Þ. So

Tiðnþ 1Þ ≥ TiðnÞ þ n;

and from this we get the left inequality.
For the right inequality, again consider the time step TiðnÞ,

where ui is presented for the nth time and then removed from
the deck and reinserted into position nþ 1. Immediately after
TiðnÞ, flashcard ui is in position nþ 1. Because there is no pas-
sing, the part of the schedule in between TiðnÞ and Tiðnþ 1Þ will
consist only of the flashcards that are in front of ui at TiðnÞ.

Each time one of these flashcards is presented, it may be re-
inserted either in front of or behind ui. Once it has been rein-
serted behind, it will not be shown again until at least Tiðnþ 1Þ,
again by the no-passing property. Meanwhile, each time it is re-
inserted, it is reinserted further back in the deck than the previous
time it was reinserted, by construction. Thus any flashcard can be
presented/reinserted at most n times in between TiðnÞ and
Tiðnþ 1Þ, one time for every position less than nþ 1 into which
it could be reinserted. So in between TiðnÞ and Tiðnþ 1Þ, the pos-
sible reinsertions are limited to each of the n flashcards that are
in positions 1, 2,…, n at TiðnÞ, each being reinserted at most n
times. Thus

Tiðnþ 1Þ − TiðnÞ ≤ n2:

In fact, because flashcards cannot be reinserted into position 1,
we have

Tiðnþ 1Þ − TiðnÞ ≤ nðn − 1Þ:

In any case, our proof is done.

Theorem 8. (Asymptotics of the Introduction Time Function.) In the
slow flashcard schedule, Tnð1Þ grows as Ωðn2Þ and Tnð1Þ grows
as Oðn3Þ.

Proof: We prove this by first showing that

T1ðn − 1Þ < Tnð1Þ < T1ðnÞ

and then showing that T1ðnÞ grows as Ωðn2Þ and T1ðnÞ grows
as Oðn3Þ.

First, note that

T1ðnÞ < TiðnÞ

for i > 1, for all n. Thus the first flashcard to be inserted into any
given position will be the one corresponding to u1. Thus for any n,
flashcard un, which began in position n, will remain in position n
until flashcard u1 is reinserted into position n, at T1ðn − 1Þ. Only
after that can un make its way to the front of the deck and be
presented for the first time. Thus,

T1ðn − 1Þ < Tnð1Þ:

At time T1ðn − 1Þ þ 1, flashcard u1 is right behind flashcard un.
By the no-passing property, then, we get that

Tnð1Þ < T1ðnÞ:

Thus we have that

T1ðn − 1Þ < Tnð1Þ < T1ðnÞ:

Now note that, from the theorem above, we have that

n ≤ Tiðnþ 1Þ − TiðnÞ ≤ n2:

Thus T1ðnþ 1Þ − T1ðnÞ grows asΩðnÞ and asOðn2Þ, and so T1ðnÞ
grows as Ωðn2Þ and as Oðn3Þ.

We believe that both results above can be strengthened, and so
we finish with two conjectures.

Conjecture 1. For the slow flashcard schedule, Tnð1Þ grows as Oðn2Þ,
which would imply Tnð1Þ grows as Θðn2Þ.

This conjecture is true if and only if Tnþ1ð1Þ − Tnð1Þ grows as
OðnÞ, and so as evidence for this conjecture, we plot in Fig. S3
Tnþ1ð1Þ − Tnð1Þ against n.

Conjecture 2. The slow flashcard schedule would exhibit infinite
perfect learning with respect to spacing constraints with ak ¼ k
and bk ¼ 2k.

This would be true if and only if

n ≤ Tiðnþ 1Þ − TiðnÞ ≤ 2n

for all i and n. So as evidence for this conjecture, we plot in Fig. S4
Tiðnþ 1Þ − TiðnÞ for all i.

Cramming. Here we establish bounds on how much can be
crammed in a limited amount of time. Assume that spacing con-
straints fakg and fbkg are given, as well as a positive integer T,
and suppose there is a cramming sequence of length T that ex-
hibits bounded learning of order n with respect to the given
spacing constraints. We will derive an upper bound on n.

By the definition of bounded learning of order n, (i) the se-
quence adheres to the spacing constraints, and (ii) the sequence
contains at least n distinct educational units such that, if the unit
occurs a total of k times in the sequence, then its last occurrence is
within bk positions of the end of the sequence. (To be clear, this
is to be interpreted to mean that the last element in the sequence
is defined to be one position from the end of the sequence,
not zero.)

Assume, without loss of generality, that these n units are la-
beled in reverse order of their last occurrences in the sequence.
Thus unit u1 is the last unit to appear in the sequence. Unit u2
occurs for the last time before unit u1 occurs for the last time, and
so u2 occurs for the last time at time step t ¼ T − 1 at the latest. In
general, for each i, unit ui must appear for the last time at time
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step t ≤ T − iþ 1 at the latest—that is, at least i time steps from
the end of the sequence.

Let mðiÞ denote the smallest number k such that bk ≥ i. Then,
for every i, unit ui must occur at least mðiÞ times in the sequence,
because otherwise the sequence would not satisfy part (ii) of the
definition of bounded learning.

Because each of the n units must occur at least mðiÞ times in
the sequence, where i represents the label of the educational unit,
and because each time step can afford at most one occurrence of
one educational unit, we have that

∑
n

i¼1

mðiÞ ≤ T:

This represents an upper bound on n, because nmust be such that
this inequality holds true. [Note that the function mðiÞ depends
implicitly on the numbers in fbkg.]

Now consider just unit un. When it occurs last, it is for at least
the mðnÞth time. Because the spacing constraints must have been
adhered to with respect to un, it follows that the mðnÞth occur-
rence of un must occur after a minimum of

∑
mðnÞ−1

j¼1

aj

time steps. And because it can occur no later than n time steps
from the end of the sequence (that is, at time step t ¼ T − nþ 1),

we have another statement on the minimum possible length of
the sequence. Namely,

�
∑

mðnÞ−1

j¼1

aj

�
þ n ≤ T:

Thus we have two inequalities, each of which represents an
upper bound on n. In the language of scheduling theory, the first
inequality represents a “volume bound,” assuring that there is
enough time for every unit to be seen as many times as it needs
to be seen, and the second inequality represents a “path bound,”
assuring that the sequence is long enough to allow for even the
unit which requires the longest time from the first occurrence to
the end of the sequence.

Together the bounds incorporate the spacing constraints as
well as the given amount of time. Nevertheless, for a given set of
spacing constraints and a given T, the actual maximal n (that is,
the maximal n such that a sequence of length T can exhibit
bounded learning of order n with respect to the given spacing
constraints) could be lower than the lower of these two upper
bounds. This is because the bounds do not address the actual con-
struction of cramming sequences, which appears in general to be
a difficult scheduling problem that hinges on the particulars of
the spacing constraints. How to design general and efficient algo-
rithms for constructing sequences which provably maximize
cramming, so to speak, remains an open problem.

Fig. S1. The full binary tree on the left has each node labeled with the corresponding educational units in the construction of the recap schedule. The tree on
the right is identical, except the nodes are labeled with the corresponding time steps. The corresponding schedule, up to and including the left-most node at
height k ¼ 2, is u0;u1;u0;u1;u2;u3;u2;u3;u0;u1;u2;u3;…

Fig. S2. A tree made using qð1Þ ¼ 3, qð2Þ ¼ 2, and qð3Þ ¼ 3, with each node labeled with the corresponding educational units in the construction
of the general recap schedule. The corresponding schedule, up to and including the left-most node at height k ¼ 2, is
u0;u1;u2;u0;u1;u2;u3;u4;u5;u3;u4;u5;u0;u1;u2;u3;u4;u5…
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Fig. S3. This figure shows Tnþ1ð1Þ − Tnð1Þ plotted against n. The data are taken from the first 1 million time steps of the slow flashcard schedule. A linear
regression gives a line with slope 1.7, with a correlation coefficient of r > 0.9997.

Fig. S4. This figure shows Tiðnþ 1Þ − TiðnÞ plotted against n, for all i for which data were collected. The data are taken from the first 100,000 time steps of the
slow flashcard schedule. Also shown are the lines going through the origin with slopes 1 and 2. All data points lie between the two lines.
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