Guidelines for High-Temperature Weld Repairs - Review of Worldwide Plant and R&D Experience
- Covering 2.25CrMo, 0.5CrMoV, 1CrMoV, P91 and Type 316 Steels

(Acronym: Weld Repair Guidelines)

Final Report

ETD Report No: 1063-gsp-171

Compiled and edited by:
C A Smith, Dr D G Robertson

Report checked by: Dr I A Shibli

October 2012
Guidelines for High-Temperature Weld Repairs - Review of Worldwide Plant and R&D Experience

-Covering 2.25CrMo, 0.5CrMoV, 1CrMoV, P91 and Type 316 Steels

(Acronym: Weld Repair Guidelines)

Final Report

ETD Report No: 1063-gsp-171

ETD Project No: 1063-gsp-proj10

European Technology Development Limited
Leatherhead, Surrey
United Kingdom
etd@etd-consulting.com
www.etd-consulting.com

Disclaimer: Neither European Technology Development Ltd (ETD) nor anyone acting on behalf of ETD makes any warranty, expressed or implied in any way, with respect to the use of any information, data, advice or methodology disclosed in this report. ETD or anyone acting on behalf of ETD do not accept any liabilities with respect to the use of, or for any damages resulting from the use of, any information, data, advice or methodology disclosed in this report.

Copyright: This Report has been produced by European Technology Development Limited (ETD) for the project sponsors, or any other body authorized in writing by ETD, only for use within their own organisation or on their clients’ plant. No parts of this document may be photocopied or otherwise reproduced for distribution, sale, publication or use outside the sponsor’s organisation without prior permission, in writing, from ETD.
Executive Summary

Due to privatisation and competition in the electricity and petrochemical industry there is now a great deal of emphasis on extending plant life by better plant maintenance and conducting weld repairs wherever and whenever necessary and appropriate. With the improvement of welding techniques and procedures, the application of weld repair has become even more common in high temperature plant. The use of cold weld repair techniques, which avoid post-weld heat treatment (PWHT), has also become more widespread. The cold welding method was initially considered to be a temporary measure until the next outage, but the technique has been developed such that cold weld repairs can be considered more permanent, depending on the circumstances.

The objectives of this project were to review the plant experience and R&D findings in the field of weld repairs to high temperature components, with particular emphasis on 2½Cr-1Mo, ½CrMoV, 1CrMoV, P91 and Type 316 steel welds. Information has been collated on weld repair practices adopted by plant operators and service providers in Europe, North America and worldwide. The service experience together with the recent work carried out by researchers has been reviewed and compiled to provide guidelines and an information resource on weld repair procedures and integrity/life assessment for use by high temperature plant owners, operators and service providers.

This study has been conducted by accessing published (journals, conference proceedings, etc) and unpublished (through ETD contacts) information from a number of European, Japanese, North American and other sources. Surveys of plant operator experience have also been carried out, and available information from R&D work funded by individual organisations, national bodies, European Commission, etc, has been reviewed, thus building up a dossier of information and experience. ETD was one of the main partners in the European project ‘Integrity’ (2000 to 2004) and the results of this investigation, which included full-scale component testing and integrity assessment of repair welds in P22, P91 and Type 316 steels, are included in this report.

This report is comprised of 13 sections as summarized below. Each section of the report includes a comprehensive list of references.

- Section 1 sets the scene with an introduction to the operation of power plant, the typical features of welds, the typical damage that may affect welds in service and the consequent need for weld repair.

- Section 2 provides an introduction to the main aspects of weld repairs, from the excavation design and geometry of weld repair (full repair or partial repair) to the welding processes, and welding and PWHT requirements of the construction codes that relate to repair by welding.

- Section 3 describes conventional weld repair techniques, summarizing typical weld repair procedures for 2½Cr-1Mo, P91 and 316L(N) steels, and discusses the methods for performance assessment of repair welds: (i) examination of procedural welds, simple room temperature properties and assessment of the inspection records; (ii) laboratory-based uniaxial and cross-weld testing of repair welds; (iii) case histories based on stress analysis methods; (iv) evaluation of repair welds through the use of full-size repair-welded component tests; and (v) examination of plant damage,
failures and repair performance in practice. (These assessment methods are further discussed and elaborated upon in subsequent sections of the report.)

- Section 4 addresses the controlled deposition welding processes, discussing the principles of microstructural control within weldments, the reheating and refinement of structures by subsequent welding passes, and describing controlled deposition welding processes using matching filler metals (for example, two-layer refinement and temperbead processes).

- Section 5, following on from the previous section, reviews the cold weld repair techniques and the experience with using nickel-based filler metals. Cold weld repair using matching (ferritic) consumable is compared with the use of nickel-based filler metal.

- Section 6 considers the qualification and validation of repair welds, starting from a consideration of the structures developed within a weldment and the properties of the different zones and then discussing the assessment of the creep performance of repair welds by cross-weld testing, large-scale model or full-size component tests. Results from testing programmes are presented and discussed.

- Section 7, following on from the previous section, provides a detailed review of laboratory testing of weld-repaired components and evaluation of the creep life using cross-weld testing and data extrapolation. Results from major R&D programmes involving weld repairs that have been conducted in Europe, USA and elsewhere are presented and discussed.

- Section 8 concerns the prediction of weld repair life using stress analysis methods. The findings of case histories based on stress analysis methods are summarised, and the results of a number of specific cases studied by workers in the UK and Europe are reviewed in detail. Attention is also given to residual stresses in repair welds.

- Section 9 discusses the weld repair of low alloy ferritic steels, including typical piping grades 2¼Cr-1Mo (P22) and ½CrMoV. Firstly, typical forms of damage/cracking experienced in service by components/welds are described and examples of cracking in plant are discussed, including cracking in headers and seam-welded pipes and transverse weld metal cracking. Guidelines are provided for conventional weld repair of 2¼Cr-1Mo, 1Cr-½Mo / ¼Cr-½Mo and ½CrMoV steel welds. Cold weld repair methods are also covered. Major research programmes on weld repairs to low alloy ferritic steels are summarised (elaborating on the details given in Section 7). Research investigations have included component tests to study the influence of weld repair on performance and to evaluate the effects of omission of PWHT, additional (end) loadings and use of matching or under-matching filler metals. A review of published case histories of weld repair performance evaluation using uniaxial creep testing is provided. The results of 2¼Cr-1Mo component tests carried out in the European ‘Integrity’ project are presented and discussed, including data from cross-weld creep tests and crack growth tests as well as full-size component testing and damage modelling. Finally, this section of the report addresses the new 2Cr steels, T23 and T24, and also considers weld repairs to 1CrMoV turbine rotors.
• Section 10 provides a detailed review of the weld repair procedures and practices applied to 1CrMoV steam turbine casings. Details of welding procedures, welding consumables and weld heat treatment are given. The service experience with repair welds in turbine casings and associated cast 1CrMoV turbine components (steam chests and valve bodies) is reviewed based on published and unpublished cases and also an ETD survey of plant operator experience with stress-relieved weld repairs and cold weld repairs.

• Section 11 considers the weld repair of martensitic steels by focussing on modified 9Cr-1Mo steel, i.e. P91. Firstly, the plant experience with damage and cracking in P91 steel weldments is reviewed, including the early UK industry experience and also providing examples of cracking in P91 dissimilar metal welds. Guidelines are provided for conventional weld repair of P91 welded components. Cold weld repair of P91 is also discussed and the potential problems that may arise when PWHT is omitted are highlighted. The results of full-size P91 component tests carried out in the European ‘Integrity’ project are reviewed in detail, and data are presented from cross-weld creep tests and crack growth tests as well as full-size component testing and damage modelling. This study included creep testing and life assessment of a weld-repaired P91 T-piece. Finally, this section of the report considers two aspects of particular significance to users of P91 steel: (i) the number of repairs by welding that may be possible for P91 material, and (ii) the repair of P91 welds with abnormal hardness levels.

• Section 12 provides a review of weld repairs in austenitic steels, with particular reference to Type 316 stainless steel. The types of damage and cracking experienced by austenitic welded components in service are described. Guidelines are provided for weld repairs of Type 316. The results of 316L component tests carried out in the European ‘Integrity’ project, including cross-weld creep tests and crack growth tests as well as component testing (cracked plates) and damage modelling, are presented and discussed.

• Section 13 is the concluding section of the report and it considers the current state and future development of weld repair techniques and guidelines, including alternative welding processes and development of filler metals that provide a better match to the properties of service-exposed material.

In summary, this review of worldwide industry and R&D experience in weld repairs of high-temperature plant components, covering low alloy ferritic, martensitic and austenitic steels, provides a wealth of information on weld repair procedures and the performance, integrity and life assessment of weld repairs.
Contents

Executive Summary ... 3

1 **INTRODUCTION** ... 10

1.1 Operation of Plant and Factors Contributing to the Need for Repair 10
1.2 Simplified Features of the Welding Process ... 13
1.3 Typical Plant and Weld Damage ... 15
1.4 References ... 19

2 **WELD REPAIR** ... 21

2.1 Category of Weld Repair ... 21
2.2 Excavation Design ... 22
2.3 Specific Repair Geometries ... 23
2.3.1 Full Repair Weld (frw) ... 24
2.3.2 Partial Repair Weld (prw1, prw2) .. 24
2.4 Component Geometry Factors .. 25
2.5 Choice of Welding Process ... 27
2.6 Application of Codes to Fabrication and Repair by Welding 27
2.7 References ... 31

3 **CONVENTIONAL WELD REPAIR TECHNIQUES** ... 33

3.1 Weld Repair Procedures .. 33
3.2 Performance Assessment of Conventional Repair Welds ... 35
3.2.1 Examination of Procedural Welds, Simple Room Temperature Properties and Assessment of the Inspection Records ... 35
3.2.2 Laboratory Based Uniaxial and Cross-Weld Testing of Repair Welds 35
3.2.3 Case Histories based on Stress Analysis Methods ... 37
3.2.4 Component Testing .. 39
3.2.5 Examination of Plant Damage and Failures .. 39
3.3 References ... 42

4 **CONTROLLED DEPOSITION WELDING PROCESSES** 47

4.1 Principles of Microstructural Control within Weldments ... 47
4.2 Controlled Deposition Welding Processes .. 52
4.2.1 Controlled Deposition using a Matching Filler Metal 54
4.3 References ... 56

5 **COLD WELD REPAIR TECHNIQUES** ... 58

5.1 Introduction to Cold Weld Repairs .. 58
5.2 Repair without Preheat and PWHT using Nickel-Based Filler Metals 60
5.3 Comparison of Matching and Nickel-Based Filler Metal for Cold Weld Repair ... 62
6 REPAIR QUALIFICATION & VALIDATION ... 66
 6.1 Properties Developed within the Weldment .. 66
 6.2 Assessment of the Creep Performance of Repair Welds - Validation 70
 6.3 Summary of Weld Repair Performance .. 78
 6.4 References ... 79

7 LABORATORY TESTING OF WELD-REPAIRED COMPONENTS 83
 7.1 Selection of Post Exposure Material and Components ... 83
 7.2 Methods used for Evaluating Creep Life of Pedigree Repair Welds 85
 7.3 Major Research and Development Programmes ... 85
 7.3.1 “Welding of Thermally Modified Structures”, Australia 86
 7.3.2 Programme by the Netherlands, Denmark and Italy .. 89
 7.3.3 Repair Welding of Low Alloy Ferritic High Temperature Steels, EPRI 99
 7.4 References ... 108

8 PREDICTION OF REPAIR WELD LIFE USING STRESS ANALYSIS
 METHODS ... 111
 8.1 Case Histories based on Stress Analysis Methods .. 112
 8.2 Specific Published Test Cases for Life Estimation of Repair Welds 114
 8.3 Residual Stresses in Repair Welds .. 127
 8.4 References ... 132

9 LOW ALLOY FERRITIC STEELS .. 134
 9.1 Introduction ... 134
 9.2 Damage / Cracking in Low Alloy Ferritic Steels .. 134
 9.2.1 Examples of Cracking in Plant ... 140
 9.3 Weld Repair Methods ... 144
 9.3.1 Conventional Weld Repair Options for 2.25Cr-1Mo (P22) Welds 144
 9.3.2 Cold Weld Repair Options for 2.25Cr-1Mo (P22) Welds 145
 9.3.3 1Cr-0.5Mo, 1.25Cr-0.5Mo Steels ... 147
 9.3.4 Low Alloy CrMoV Steels .. 148
 9.4 Research Projects ... 148
 9.4.1 Overheated Superheater Header Section Tested to Failure 149
 9.4.2 Component Tests Studying the Influence of Weld Repair on Performance 152
 9.4.3 Weld Repair Performance Evaluation using Uniaxial Testing 160
 9.4.4 Repair Welding of 2.25Cr-1Mo (P22) in ‘Integrity’ Project 175
 9.5 Modified 2.25Cr Bainitic Steels (T/P23, T/P24) ... 190
 9.6 1CrMoV Turbine Rotors ... 191
 9.7 References ... 192
10 CrMoV CASTINGS ... 197
10.1 Introduction ... 197
10.2 Experience of Cracking in Service ... 197
10.3 Welding Procedures, Welding Consumables and Weld Heat Treatment 198
10.3.1 Preheat .. 200
10.3.2 Weld Repair Processes ... 202
10.3.3 Filler Metal Selection ... 202
10.3.4 Post Weld Heat Treatment ... 203
10.4 Service Experience with Stress-Relieved Weld Repairs ... 205
10.5 Service Experience with Non-Stress-Relieved Weld Repairs 213
10.6 Survey of Operator Experience .. 218
10.6.1 Repair versus Replacement Decision-Making .. 218
10.6.2 Welding Procedures, Weld Consumables and Weld Heat Treatment 218
10.6.3 Cost and Time Period for the Weld Repair (Planned Repair) 220
10.6.4 Service Experience with Weld Repairs ... 221
10.6.5 Regulatory, Insurance and Warranty Issues .. 221
10.7 Summary ... 222
10.8 References .. 223

11 MARTENSITIC STEELS ... 225
11.1 Introduction .. 225
11.2 Damage / Cracking in P91 Steel Weldments ... 225
11.3 Conventional Weld Repair of P91 ... 229
11.4 Cold Weld Repair of P91 ... 231
11.4.1 Cold Weld Repair of T91 Tubing ... 234
11.5 Research Projects .. 236
11.5.1 Repair Welding of P91 in ‘Integrity’ Project ... 236
11.5.2 Life Assessment of a Weld Repaired P91 T-Piece ... 257
11.5.3 Repeat Weld Repairs ... 263
11.5.4 Repair of P91 Welds with Abnormal Hardness Levels .. 264
11.6 Summary ... 266
11.7 References .. 267

12 AUSTENITIC STEELS ... 269
12.1 Damage / Cracking in Austenitic Steel Weldments ... 269
12.1.1 Cracking in Austenitic Steel Headers and Pipework .. 269
12.2 Weld Repair Methods ... 271
12.3 Weld Repair of Type 316 Austenitic Steel in ‘Integrity’ Project 271
12.3.1 Material Characterisation and Repair Welding Procedures 272
12.3.2 Constitutive Equations and Damage Modelling ... 273
12.3.3 Experimental Investigation .. 276
12.3.4 Model Development and Finite Element Simulations ... 285
12.3.5 Assessment using Existing Procedures and Recommendations for Improved Procedures .. 288
12.4 References ... 288

13 CURRENT & FUTURE DEVELOPMENTS .. 290
13.1 Current State of Repair Welding Guidelines ... 290
13.2 Future Developments in Weld Repairs .. 292
 13.2.1 Alternative Welding Processes for Use in Weld Repair 293
 13.2.2 Weaker Variants of Weld Metal to Match Service-Exposed Material 295
13.3 References .. 297