Preservation Guidelines for CCGT & Conventional Power Plant during Short- and Long-Term Shutdowns

(Acronym: Power Plant Preservation)

Final Report/ Guidelines

ETD Report No: 1274-gsp-188

Authors: W Moore, J Ford, T Callagy, Dr D G Robertson

Report checked by: Dr D G Robertson and Dr A Shibli

June 2013
Preservation Guidelines for CCGT & Conventional Power Plant during Short- and Long-Term Shutdowns

(Acronym: Power Plant Preservation)

Final Report/ Guidelines

ETD Report No: 1274-gsp-188

ETD Project No: 1274-gsp-proj13

European Technology Development Limited
Leatherhead, Surrey
United Kingdom
etd@etd-consulting.com
www.etd-consulting.com

Disclaimer: Neither European Technology Development Ltd (ETD) nor anyone acting on behalf of ETD makes any warranty, expressed or implied in any way, with respect to the use of any information, data, advice or methodology disclosed in this report. ETD or anyone acting on behalf of ETD do not accept any liabilities with respect to the use of, or for any damages resulting from the use of, any information, data, advice or methodology disclosed in this report.

Copyright: This Report has been produced by European Technology Development Limited (ETD) for the project sponsors, or any other body authorized in writing by ETD, only for use within their own organisation or on their clients’ plant. No parts of this document may be photocopied or otherwise reproduced for distribution, sale, publication or use outside the sponsor’s organisation without prior permission, in writing, from ETD.
Executive Summary

In recent years, the rapidly increasing price of natural gas, overbuilding of new generating capacity and increasing contribution of renewable energy have been forcing more and more Combined Cycle Gas Turbine (CCGT) and Conventional Power Plant (CPP) units to be operated in cycling mode or to be shut down for extended periods of up to several months or more. The major issue with long periods of inactivity is prevention of corrosion damage during the shutdown period, thereby minimizing the impact on the plant’s reliability during the recommissioning phase and subsequent service. Failure to apply proper lay-up or preservation techniques during the shutdown period will result in significant corrosion damage to plant equipment during the shutdown period, and damage accumulation during operation will be exacerbated.

It is important when planning a lay-up to consider the whole unit and not just the obvious components such as the boiler. There are many areas of plant to be considered. For a conventional station the items may include the plant areas shown below.

- Fuel systems
- Boiler water-side
- Boiler gas-side
- Steam turbine – steam-side
- Steam turbine – oil system and periodic rotation of rotors
- Generators
- Condensers
- Feed water systems
- Cooling water systems
- Water treatment plant and water storage
- Transformers
- Switchgear
- Ash systems
- Dust systems
- Flue gas treatment systems.

Excluding the fuel / ash and dust systems, and with the obvious addition of the GT and replacement of a boiler by the HRSG, the plant areas listed above also cover CCGT units.

As conventional stations are usually fired by heavy fuel oil or coal then these fuel systems will need some preparation and care during a lay-up. Similarly coal-fired stations have ash and dust removal systems. Some have flue gas treatment systems (such as flue gas desulphurisation), all of which need some work for lay-up.

Many of the lay-up procedures are designed to avoid corrosion of metal components with all of the subsequent issues that this can bring. For corrosion to take place it is generally necessary to have moisture and oxygen present. Removing either the moisture or the oxygen will significantly reduce if not totally eliminate corrosion.

The length of the lay-up and the climate (atmospheric conditions) will both have a very significant impact on the lay-up methods used and potential problems to be faced both during the lay-up and upon return to service. In general, ‘wet lay-up’ is preferred for short shutdown periods and ‘dry lay-up’ is preferred for longer periods, although the choice may be complicated by various factors. Lay-ups will in some situations be determined by grid demand with little or no prior notice and, similarly, the likely duration of the lay-up will be unknown.
with only a short notice period prior to return to service. The confidence of the estimation of
the length of the lay-up or the desire to retain the ability to return the plant quite quickly to
service may influence some of the methods used.

This study covers the preservation techniques used for CCGT and CPP units that will be shut
down for short or extended periods, i.e. both the wet and dry storage methods. Information on
lay-up practices and preservation techniques has been brought together from published and
unpublished sources and critically analysed by ETD preservation experts and in addition a
survey of plant operator experience was carried out to examine the preservation procedures that
have been/ are being used by some of the participating utilities. Further to critically analysing
and putting together above knowledgebase and experience, the experience of ETD’s own
experts in power plant chemistry, corrosion and operation/ maintenance of mechanical plant
and electrical equipment played a crucial role in formulating these guidelines.

To make it easier for the power plant engineers and management to implement these
Guidelines a Summary Table and a set of Diagrams/ Flow Charts have been produced.
Furthermore, a set of fifteen Appendices has been provided to help the user in implementing
various procedures described in the Guidelines.
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>List of Tables</td>
<td>8</td>
</tr>
<tr>
<td>List of Figures</td>
<td>8</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td>2. GENERAL CONSIDERATIONS</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Lay-up Monitoring and Maintenance</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Start-up</td>
<td>12</td>
</tr>
<tr>
<td>3. BOILERS / HRSGs & FEED SYSTEMS, STEAM TURBINES & CONDENSERS</td>
<td>13</td>
</tr>
<tr>
<td>3.1 Reasons and Options for Storage</td>
<td>13</td>
</tr>
<tr>
<td>3.1.1 General</td>
<td>13</td>
</tr>
<tr>
<td>3.1.2 Shutdown Period</td>
<td>15</td>
</tr>
<tr>
<td>3.1.3 Outline of the Lay-up Options</td>
<td>16</td>
</tr>
<tr>
<td>3.1.4 References / Bibliography</td>
<td>17</td>
</tr>
<tr>
<td>3.2 Dry Storage</td>
<td>24</td>
</tr>
<tr>
<td>3.2.1 General</td>
<td>24</td>
</tr>
<tr>
<td>3.2.2 Complete Dry-Out</td>
<td>24</td>
</tr>
<tr>
<td>3.2.3 The Process Details</td>
<td>25</td>
</tr>
<tr>
<td>3.2.4 Other Dry StorageMethods</td>
<td>26</td>
</tr>
<tr>
<td>3.3 Wet Storage</td>
<td>27</td>
</tr>
<tr>
<td>3.3.1 General</td>
<td>27</td>
</tr>
<tr>
<td>3.3.2 Different Lay-up Requirements for Feed and Condensate Systems and Boilers</td>
<td>28</td>
</tr>
<tr>
<td>3.3.3 Volatile Chemical Wet Storage Solutions</td>
<td>28</td>
</tr>
<tr>
<td>3.3.4 Non-Volatile Wet Storage Solutions</td>
<td>29</td>
</tr>
<tr>
<td>3.3.5 Inspection and Testing</td>
<td>30</td>
</tr>
<tr>
<td>3.3.6 Sampling</td>
<td>30</td>
</tr>
<tr>
<td>3.3.7 Results and Action Required</td>
<td>30</td>
</tr>
<tr>
<td>3.3.8 Cold Weather Storage</td>
<td>30</td>
</tr>
<tr>
<td>3.3.9 Disposal of Lay-up Solutions</td>
<td>31</td>
</tr>
<tr>
<td>3.4 Storage Techniques for Partially Drained Plant</td>
<td>31</td>
</tr>
<tr>
<td>3.4.1 Nitrogen Filling</td>
<td>31</td>
</tr>
</tbody>
</table>
APPENDIX 5: HUMIDITY AND DEHUMIDIFICATION 50

APPENDIX 6: DRY-OUT USING CONDENSER VACUUM PUMPS 51

APPENDIX 7: LAY-UP WHEN AUSTENITIC AND CUPROUS ALLOYS ARE PRESENT 52

APPENDIX 8: BOILER FIRESIDE 53
 A.8.1 Fireside Corrosion Losses 53
 A.8.2 CCGT Start-up Emissions 54
 A.8.3 Stack Corrosion 54
 A.8.4 Treatment Options 55

APPENDIX 9: HYDRAULIC TESTING 58

APPENDIX 10: LAY-UP OF STEAM TURBINES 59
 A.10.1 General 59
 A.10.2 Short Turnaround using Hot Dry Storage 59
 A.10.3 Long-Term Lay-Up using Cold Dry Conditions 60

APPENDIX 11: ALTERNATORS 61

APPENDIX 12: PUMPS 62

APPENDIX 13: DEAERATORS 63

APPENDIX 14: CONDENSERS, HEAT EXCHANGERS AND AIR-EJECTORS 64
 A.14.1 Air-Cooled Condensers 64

APPENDIX 15: POURBAIX EXPLANATION OF PASSIVATION 65
 A.15.1 Construction of a Pourbaix Diagram 65
 A.15.2 The Nernst Equation 65
 A.15.3 Applying the Pourbaix Diagrams to Iron and Copper/Brass 65
 A.15.4 Second Stage Passivation 68
 A.15.5 Chromium Steel Turbine Blades 68
LIST OF TABLES

TABLE 1: SUMMARY OF STORAGE PROCEDURES 18

LIST OF FIGURES

DIAGRAM 1: PRE-COMMISSIONING PLANT STORAGE 19
DIAGRAM 2: POST-SERVICE BOILERS AND ASSOCIATED PIPEWORK 20
DIAGRAM 3: POST-SERVICE FEED SYSTEMS 21
DIAGRAM 4: POST-SERVICE CONDENSERS AND STEAM TURBINES 22
DIAGRAM 5: PRE-SERVICE AND POST-SERVICE FIRESIDE 23