Álgebra

Problemas de matrices propuestos en los modelos de Selectividad Matemáticas CCSS, UNED 2013

Modelo 2, 4, 6, 10

1. (3 puntos). Dadas las matrices:

$$A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & x \\ x & 0 \end{pmatrix} \ y \ C = \begin{pmatrix} -1 & -1 \\ -1 & 5 \end{pmatrix}$$

- a) Encuentre el valor de x, tal que $B^2 = A$
- b) Encuentre el valor de x, tal que $B + C = A^{-1}$
- c) Encuentre el valor de x, tal que $A + B + C = 6 \cdot l_2$, siendo l_2 la matriz identidad de orden 2.

Modelo 20

(3 puntos).Dadas las matrices:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} x & 2 \\ 0 & x \end{pmatrix} y C = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}$$

- a) Encuentre el valor de x, tal que $B^2 = A$
- b) Encuentre el valor de x, tal que $A + B + C = 2 \cdot I_2$, siendo I_2 la matriz identidad de orden 2.

Modelo 7, 11

1. (3 puntos). Utilizando las propiedades de las matrices obtenga las matrices
$$X$$
 e Y tales que $-2X + Y = A$, siendo $A = \begin{pmatrix} -3 & -4 & -7 \\ 4 & 1 & -2 \end{pmatrix}$ y $B = \begin{pmatrix} 2 & 2 & 4 \\ -3 & -1 & 0 \end{pmatrix}$

Modelo 17

(3 puntos). Utilizando las propiedades de las matrices obtenga las matrices X e Y tales que

$$\begin{array}{ll}
-2X + Y = A \\
X - Y = B
\end{array}$$
, siendo $A = \begin{pmatrix} -3 & -3 & 1 \\ 4 & -2 & 2 \end{pmatrix}$ y $B = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 1 & -2 \end{pmatrix}$

Modelo 7B

(3 puntos). Calcule todos los productos posibles de dos factores con las matrices:

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 2 \\ 1 & 3 \\ -2 & 1 \\ 3 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 \\ 0 & 2 \\ -1 & 2 \end{pmatrix}$$

Modelo 11

1. (3 puntos). Calcule todos los productos posibles de dos factores con las matrices:

$$A = \begin{pmatrix} 2 & -1 & 2 \\ 3 & -1 & 3 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 3 \\ 4 & 3 \\ -2 & 3 \\ 3 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 2 \\ 0 & 3 \\ -1 & 1 \end{pmatrix}$$

Modelo 9

1. (3 puntos). Calcule todos los productos posibles de dos factores con las matrices:

$$A = \begin{pmatrix} 1 & -1 & 2 \\ -3 & 1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 2 \\ 1 & 0 \\ -2 & 1 \\ 3 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 \\ 1 & 0 \\ -1 & 2 \end{pmatrix}$$

Modelo 19

(3 puntos). Calcule todos los productos posibles de dos factores con las matrices:

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 3 & -1 & 10 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 2 \\ 1 & 3 \\ 2 & 1 \\ 3 & 2 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 \\ 1 & -1 \\ -1 & 2 \end{pmatrix}$$

1

Modelo 8, 10

1. (2 puntos). Resuelva la siguiente ecuación matricial:

$$X \cdot \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -3 \\ 0 & 5 \\ -1 & 7 \end{pmatrix}$$

Modelo 12

1. (2 puntos). Calcule la matriz X para que se verifique :

$$5X - 2\left[\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 0 & 9 \\ 2 & 3 \end{pmatrix} \right] = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 3 \\ -1 & 0 \end{pmatrix}$$

Modelo 14, 16, 18

2. (2 puntos). Dadas las matrices $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} x & 1 \\ 0 & x \end{pmatrix}$ y $C = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$

- a) Determinar x para que $A = B^2$.
- b) Determinar x para que $A + B C = 3 \cdot I_2$, siendo I_2 la matriz identidad de orden 2.

Modelo 1

 (3 puntos). Una tienda de juegos ha vendido las siguientes cantidades, de puzzles y tangram, en los últimos años (matriz A), a los siguientes precios de venta (matriz B):

2010	2011	2012		P	'uzzles	Tangram	
$A = \binom{1850}{2000}$	2011 1800 1900		Puzzles Tangram	$B = \left(\right.$	4,50	5,50\	2010
				B =	4,00 3,70	5,20 4,50	2011 2012
				\	/ //	4.50/	2012

- a) Obténgase la matriz B · A. ¿Cuánto se ingresó por la venta de ambos juegos en el año 2011? ¿Qué elemento de la matriz B · A nos da esa información?
- b) ¿Obtener los ingresos por la venta de puzzles durante los 3 años? ¿Qué elemento de la matriz nos da esa información? ¿A cuánto ascienden los ingresos por la venta de los juegos en los 3 años?

Modelo 5, 19

 (3 puntos). Un distribuidor informático vende por internet entre otro productos, impresoras láser y de inyección de tinta. Ha vendido las siguientes cantidades en los últimos años (matriz A), a los siguientes precios de venta (matriz B)

$$A = \begin{pmatrix} 85 & 80 & 100 \\ 100 & 90 & 125 \end{pmatrix} \quad \begin{array}{c} L \text{ `aser } \quad Inyección \\ Inyección \\ B = \begin{pmatrix} 450 & 350 \\ 400 & 325 \\ 375 & 325 \end{pmatrix} \quad \begin{array}{c} 2010 \\ 2011 \\ 2012 \\ 2012 \\ \end{array}$$

- a) Calcule la matriz que relaciona las ventas brutas totales por años, y especifique las ventas del año 2012, así como la posición que ocupa en la matriz.
- b) Calcule la matriz que relaciona las ventas totales por productos, y especifique las ventas por impresoras láser, así como la posición que ocupa en la matriz.

Modelo 13, 15

 (3 puntos). Una perfumería ha vendido las siguientes cantidades de perfume para hombre y para mujer en los últimos años (matriz A), a los siguientes precios de venta (matriz B):

$$A = \begin{pmatrix} 2010 & 2011 & 2012 \\ 875 & 780 & 1100 \\ 1225 & 975 & 1250 \end{pmatrix} \quad \begin{array}{c} Hombre \\ Mujer \\ Mujer \end{array} \qquad B = \begin{pmatrix} 45 & 55 \\ 40 & 50 \\ 35 & 45 \end{pmatrix} \quad \begin{array}{c} 2010 \\ 2011 \\ 2012 \\ \end{array}$$

- a) Obténgase la matriz $B \cdot A$. ¿Cuánto se ingresó por la venta de perfumes en el año 2011? ¿Qué elemento de la matriz $B \cdot A$ nos da esa información?
- b) ¿En qué orden habría que multiplicar las matrices para obtener los ingresos por la venta de perfumes de mujer durante los 3 años? ¿Qué elemento de la matriz nos da esa información? ¿A cuánto ascienden los ingresos por la venta de perfumes de mujer?

Modelo 14, 16, 18

1. (3 puntos). Un exportador de cítricos ha vendido las siguientes cantidades (Tm) de naranjas y limones en los últimos años (matriz A), a los siguientes precios de venta (matriz B):

$$A = \begin{pmatrix} 2010 & 2011 & 2012 \\ 1850 & 1800 & 2000 \\ 2000 & 1900 & 2250 \end{pmatrix} \begin{array}{c} Naranjas \\ Limones \\ Limones \\ \end{pmatrix} B = \begin{pmatrix} 450 & 550 \\ 400 & 520 \\ 370 & 450 \end{pmatrix} \begin{array}{c} 2010 \\ 2011 \\ 2012 \\ \end{pmatrix}$$

- a) Obténgase la matriz $B \cdot A$. ¿Cuánto se ingresó por la venta de naranjas y limones en el año 2011? ¿Qué elemento de la matriz $B \cdot A$ nos da esa información?
- b) ¿En qué orden habría que multiplicar las matrices para obtener los ingresos por la venta de naranjas durante los 3 años? ¿Qué elemento de la matriz nos da esa información? ¿A cuánto ascienden los ingresos por la venta de naranjas?

Modelo 17

Repite uno similar al del Modelo 5

Álgebra

4

Problemas de matrices propuestos en los modelos UNED 2012

Modelo 01

1. (3 puntos). Sean la matrices:

$$A = \begin{pmatrix} \alpha & 1 \\ -\alpha & 3 \end{pmatrix} y B = \begin{pmatrix} 1 & 3 & 1 \\ -1 & 4 & 2 \end{pmatrix}$$

- a) Calcule \propto para que $A^{-1} = \frac{1}{12}A$.
- b) Para $\propto = -3$, determine la matriz X tal que $A^TX = B$, siendo A^T la matriz transpuesta de A.

Modelo 02

1. (3 puntos).Dadas las matrices:

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & x \\ x & 0 \end{pmatrix} y C = \begin{pmatrix} 0 & -1 \\ -1 & 2 \end{pmatrix}$$

- a) Encuentre el valor de x, tal que $B^2 = A$
- b) Encuentre el valor de x, tal que $B + C = A^{-1}$
- c) Encuentre el valor de x, tal que $A + B + C = 3I_2$, siendo I_2 la matriz identidad de orden 2.

Modelo 05

1. (3 puntos). Una fábrica de electrodomésticos exporta lavadora (L), frigoríficos (F) y lavavajillas (V) a dos países, P y Q. La siguiente matriz, A, expresa, en miles, las unidades de cada tipo de electrodomésticos

$$A = \begin{pmatrix} 125 & 275 & 230 \\ 250 & 104 & 375 \end{pmatrix} \quad \stackrel{P}{Q}$$

El precio de cada electrodoméstico, en euros, durante los últimos tres años viene dado por la matriz C:

$$C = \begin{pmatrix} 2009 & 2010 & 2011 \\ 360 & 400 & 390 \\ 540 & 570 & 570 \\ 420 & 430 & 435 \end{pmatrix} \quad \frac{L}{V}$$

- a) Calcule la matriz que relaciona las ventas brutas totales del último trienio con los países a los que se exporta.
- b) ¿En qué país es mayor el valor de lo exportado?

Modelo 07A

1. (3 puntos). Utilizando las propiedades de las matrices obtenga las matrices X e Y tales que

$$2X + 3Y = A
-X - Y = B$$

siendo
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 1 & 2 \end{pmatrix}$$
 y $B = \begin{pmatrix} -1 & 0 \\ -1 & -3 \\ 1 & -1 \end{pmatrix}$

Modelo 07B

1. (3 puntos). Calcule todos los productos posibles de dos factores con las matrices:

$$A = \begin{pmatrix} 1 & -3 & 4 \\ 2 & -1 & 5 \end{pmatrix} B = \begin{pmatrix} -2 & 1 \\ 0 & 4 \\ 3 & 1 \\ 1 & 0 \end{pmatrix} C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 0 & -1 \end{pmatrix}$$

Modelo 08

1. (2 puntos). Resuelva la siguiente ecuación matricial:

$$X\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -3 \\ 0 & 5 \\ -1 & 7 \end{pmatrix}$$

Modelo 11

1. (3puntos). Halle las matrices X e Y tales que:

$$\begin{aligned}
-X + Y &= A \\
2X + Y &= B
\end{aligned}$$
Siendo $A y B$ las matrices $A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ -1 & 2 \end{pmatrix} y B = \begin{pmatrix} 3 & 1 \\ 1 & 0 \\ 0 & -1 \end{pmatrix}$

Modelo 12

1. (2 puntos). Calcule la matriz X para que se verifique :

$$3X - 4\left[\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} - 3\begin{pmatrix} 0 & 1 \\ 1 & 4 \end{pmatrix} \right] = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -2 \\ 3 & 6 \\ 1 & -2 \end{pmatrix}$$

Modelo 14

2. (2 puntos). Dadas las matrices

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} x & 1 \\ 0 & x \end{pmatrix} y C = \begin{pmatrix} 1 & -3 \\ 0 & 2 \end{pmatrix}$$

- a) Determinar x para que $A = B^2$.
- b) Determinar x para que $A + B + C = I_2$, siendo I_2 la matriz identidad de orden 2.

Modelo 20

1. (3 puntos). Dadas las matrices

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} x & 1 \\ 0 & x \end{pmatrix} y C = \begin{pmatrix} -1 & -3 \\ 0 & -1 \end{pmatrix}$$

- a) Determine x para que $A = B^2$.
- b) Determine x para que $A + B + C = 5I_2$, siendo I_2 la matriz identidad de orden 2.