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American Economic Journal: Microeconomics 2009, 1:2, 48-59 

http://www. aeaweb. org/articles.php?doi=10.1257/mic. 1.2.48 

Is There a Method of Neuroeconomics?1 

By Aldo Rustichini* 

This note tries to state, precisely, the method ofneuroecomics, and is 
based on the discussion in B. Douglas Bernheim's (2009) appraisal. 
We claim that the theory formulates hypotheses modeling the choice 

process as an algorithmic procedure. The hypothesis of the algorith 
mic procedure imposes restriction on the neural processes imple 
menting it, and, so, a joint test of the hypothesis based on behavioral 
and neural data is possible, increasing the statistical and the explan 

atory power of the theory. (JEL B41, D87) 

I. Methodological Frameworks 

Ihe discussion of B. Douglas Bernheim (2009) introduces two different method 

ological frameworks. 

Neural Evidence and Economic Predictions.?The first framework is familiar. 

There is a variable y to be explained or predicted, which is the economic choice or 

behavior. There are variables, like income or taxes, denoted by x, that are poten 
tial explanatory variables. Economic analysis is an attempt to identify a probability 

fl('\x) on the space of observed variables, conditional on the observed explanatory 
variables. Neuroeconomics can postulate, in addition to the vector x, an additional 

vector of unobservable environmental variables a;, working their way to affect y 

through some variable representing, say, neural activity z, which may be observable 

by the neuroeconomist. 

The effect of the unobserved variables w is treated as noise in standard economic 

analysis, whereas the introduction of the additional observed variable z gives some 

information on the distribution of and on the form of the function producing the 

neural activity. Since neuroeconomics adds observable variables to the analysis we 

have nothing to lose by extending the range of variables we consider, but we may 
also gain very little. However, if the variables in u; are sufficiently uncorrelated with 

x, then the observation and use of the variables z can increase the predictive power 
of the model. 

This may be taken as a weak but reasonable defense of the use of neuroeconomics 

in economic analysis. I think neuroeconomics has much more to offer. 

* 
Department of Economics, University of Minnesota, Hanson Hall, 1925 4th Street South, 4-101, Minneapolis, 

MN 55455 (e-mail: arust@econ.umn.edu). 
f To comment on this article in the online discussion forum, or to view additional materials, visit the articles 

page at http://www.aeaweb.org/articles.php?doi= 10.1257/mic. 1.2.48. 
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Algorithms and Neural Structures.?The second methodological framework is 

more ambitious, and is closer to what neuroeconomists (or at least I) have in mind. 

It is the method of a research program that tries to give a "mechanistic, behavioral, 
and mathematical explanation of choice that transcends the explanations available to 

neuroscientists, psychologists, and economists working alone." (Paul W. Glimcher 

and Rustichini 2004). 
The method is the following. A set of choice correspondences describes all pos 

sible economic behaviors. Each choice correspondence c maps feasible sets into 

choices (elements of the feasible set), and economists try to determine which restric 

tions (or axioms) the c of an individual obeys. Standard decision theory might indi 
cate a utility function u with the property that, when maximized over the feasible 

set, F produces the choice c(F). This u is a purely conceptual device, and testing 
whether the decision maker really selects his choice by maximizing u is a misunder 

standing of the method of economic theory. 

Differently from "mainstream economics," one can hypothesize that the corre 

spondence c is generated by a computational decision algorithm, a. In turn, this 

algorithm is implemented by a neural structure, n. Differently from standard func 

tional representations (like the u function) axiomatized in decision theory, the neu 

ral structure n is now part of the hypothesis, hence evidence concerning the neural 

architecture is admissible in hypothesis testing. 

Joint Testing.?What is hypothesis testing in this framework? Bernheim (2009) 
suggests that the hypothesis we test is that choices satisfy an axiom, call it Ax; 

formally, the hypothesis is that the choice correspondence c belongs to a set CAx 
of correspondences that satisfies some axiom Ax. In mainstream economics, the 

hypothesis is rejected if the observed choices are not compatible with the axiom. In 

the extended framework suggested by Bernheim (2009), the test uses both neural 
evidence and behavioral evidence. The observed choices define a set of neural struc 
tures that are compatible (that is, that can implement), the choice correspondences 
that satisfy the axiom Ax, call them NAx. Evidence from neuroscience selects a set E 

of possible neural structures. If there are neural structures that are compatible with 
the behavioral evidence (that is, are in NAx) and with the neural evidence (are in ?), 
then the hypothesis (that c belongs to a set CAx) is not rejected. 

A. The Method of Neuroeconomics 

Slightly reformulating the formulation of Bernheim, we can summarize the basic 

points of the method: 

Choice is assumed to be produced by an algorithm, that is a procedure describing, 
in detail, every step going from the presentation of the set of options to the sub 

ject, up to the selection of one of the options. Each step of the algorithm is simple 
enough that it is possible to provide a description of its neural implementation. For 

example, maximizing a function over a set is not a simple step. The algorithm is 

general enough that it can produce an output for every economic choice problem. 
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The hypothesis we test is that the algorithm has a specific form; that is, the 

unknown state of the world for the scientist is the algorithm. 

As always in statistical testing, the scientist has experiments available that are 

maps from the unknown state of the world (the set of algorithms) to signals; 
that is the experimental evidence. Within a neuroeconomic investigation, he has 

two types of evidence (signals) available: (i) the choice behavior (which might 
include the option selected out of each feasible set but also the response time, 
the error rate, or even speech acts); and (ii) the evidence on the neural structure 

that is implementing the choices. This includes brain activation in fMRI imaging 
experiments, the effect of pharmacological or TMS treatment, and so on. 

The additional statistical power of the experiment derives from the joint restric 

tion on observed variables coming from the two experiments. The information 

gained may be substantial, and might not be reached with a large number of 

repetitions of one of the two experiments. For instance, if the distribution on 

the space of choice signals, given algorithms a1 and a2, is nontrivial but small, 
whereas the corresponding distributions on the space of neural observations 

are different, then a single neural observation is more informative than many 
behavioral ones, even if we only care about prediction on choice behavior. 

The additional explanatory and predictive power derives from the specific 

algorithmic form given to the choice process. 

Within the conceptual structure presented here, one way of presenting the objec 
tion to the entire research program of neuroeconomics made by Faruk Gul and 

Wolfgang Pesendorfer (2005) may be the following. If the two algorithms a1 and a2 

differ very little in the distribution of signals on the space of choice signals, then we 

should have correspondingly very little interest in the difference, at least as econo 

mists. I disagree with this position. The separation between a1 and a2 may be useful 

in prediction out of sample, or in different environments, like the multi-period exten 

sion of the choice problem of the observed choice. 

How does this method differ form the standard one? The main difference is 

that the functional representation of choice in decision theory is not considered a 

testable hypothesis, whereas the algorithmic specification is. This difference gives 
a new role to the axiomatic method, and does not make it useless. The axiomatic 

method is a condition for clear thinking. I would like to note that many of the fun 

damental paradoxes in the "standard theory" (for instance, M. Allais' and Daniel 

Ellsberg's) have been historically found after, and because a precise theory had 

been formulated. 

I will now argue that the methodological approach suggested here has been in 

use in neuroeconomics, and has produced some of the most interesting results in the 

field. I will use one specific example to illustrate the method, and I will try to explain 

why the method does not only produce a plausible procedure, but also how this pro 
cedure can give a disciplined (non-ad hoc) explanation of observed inconsistencies 

in the decision process. 
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II. Inter-temporal Choice 

I begin with the workhorse of modern standard analysis of dynamic economies. 

The theory of decision in an inter-temporal problem has been largely based on the 

dynamic programming solution of the problem based on the value function associ 

ated with the problem. Let S be the set of states, A the set of actions (both finite, for 

simplicity), and for every pair (s,a), let T^a) e A (5), the probability of the next state. 
The decision maker receives, for every pair of states and action, a current reward 

given by r : S x A ?> R payoff function, and discounts the future by a factor 5. 

A Familiar 'As If" Model.?A rational decision maker that knows the reward 

function r and the transition function T can solve the problem with standard dynamic 

programming techniques that determine the value function 

The optimal choice of action is defined by the maximization problem in (1). The 

prediction of the theory is that the decision maker will choose, in every period, such 

action. This is, of course, an "as if" theory. It does not assume that the optimal action 

is chosen with a conscious and explicit process according to the maximization prob 
lem in (1). It does not explain or assume, in any way, how the decision maker knows 

the function V. The problem of how the decision maker gets to know this function 

is not addressed. 

The model has proved extremely useful in analyzing several issues in microeco 

nomics as well as macroeconomics. It is widely considered an unrealistic abstrac 

tion, however. From the pioneering analysis of Herbert A. Simon (1957), economists 
have attempted to deal with the lack of realism of the model. The task has proved to 
be difficult. Several models have been suggested in the last decades, in the research 

program of bounded rationality. The specific contribution of neuroeconomics is to 

provide a model that has stronger support from the existing evidence, on the basis of 
the method outlined here. Let us begin with the specification of the algorithm. 

A Computational Decision Algorithm.?An algorithmic description of a process 
that in the limit produces the value function V and the optimal policy is the follow 

ing. The decision maker stores an approximation of the value function, and updates 
it in every k iteration. The function is modified only at the state that occurs in the 
current period. The values for the other states are left unchanged in that iteration. 
The adjustment takes the following form. The current state s is observed, the action 
a is taken (how this action is decided is going to be discussed in a moment), and then 
the current reward r and the next state s' are observed. The next state s' is chosen 

by nature according to the probability described by the function T. Note that the 
observer does not need to know the reward function r or the transition function T. He 

just needs to be able to observe the current state, the chosen action, the realization 
of the reward, and the next state. So even if the realized current reward and the next 

(i) 
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state are determined by the two functions r and T, they do not appear in the updating 
functions below, which only use the realized state and reward. 

On the basis of the stored value function Vh the difference between the realized 
and the expected value can be computed. We denote it by PE, for prediction error, 
and we define it formally as: 

(2) PE = r + 8Vk(s') 
- 

Vk(s). 

Given this "error," the next value function can be determined as: 

(3) Vk+i (s) = Vk(s) + XkPE. 

The factor Xk determines the size of the adjustment in every period. Intuitively, the 

adjustment is at least qualitatively correct. For example, if the prediction error is 

positive, then the k?h estimate of the value at s was too low, and it needs to be adjusted 

upward. We can now return to the issue of how the action a is determined. Define the 

Qk value of the pair (s,d) (intuitively, the value of being at state s and choosing a, and 

evaluating the continuation value from the next state according to the approximation 
function Vk) as 

(4) Qk+l (s,a) = Qk(s,a) + \k[r(s,a) + 8Vk(s') 
- 

Qk(s,a)]. 

So, the value of the pair (s,a) is adjusted as the function Vk depending on the current 

prediction error. Just as in the case of the function Vh the function Qk is modified 

only at the state and action that occur in the current period, while the other values 
are left unchanged in that iteration. 

We can now set the probability of choosing the action a as 

(5) P'k(a)~ exP^*M) 
IbeA exp (7(2* 

The function Qh produced at the iteration k, is stored just like the function Vh and is 

updated when the information on the next state sf is available. The quantal response 
function 5 matches the choice behavior well (see, for example, Camillo Padoa 

Schioppa and John A. Assad 2006). 
The equations (2-5), together with our basic model summarized by the functions 

r and T, completely describe a stochastic process on value functions, states, and 

actions. Together they provide a model of adaptive learning that converges to the 

optimal value function 1 used by economists. Just as the model described by the 

optimal value function 1, this is an abstract model, but it provides an algorithm that 

makes explicit how the function V may be learned. The algorithm is known as the 

actor-critic model (see Richard S. Sutton and Andrew G. Barto, 1998). The critic 

learns to predict the reward associated with a state, and the actor keeps information 

about the rewarding outcomes of actions to guide future choices. 
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Compatible Neural Structures.?Is there evidence from research in neuroscience 

and neuroeconomics to support the view that this is the algorithm followed in mak 

ing decisions? This evidence has been cumulating for years, and we review it here 

briefly. 
Behavioral evidence supporting the idea that learning follows such a process is 

provided by the blocking paradigm. If a stimulus A fully predicts a reward r, and a 

stimulus B is then presented together with A, then the association between stimulus 
B and the reward is not learned. This evidence suggests that learning is driven by the 

surprise; that is, by the difference between realized and expected value, the term PE. 
The discovery of dopamine neurons (DN) has clarified the neural structure 

underlying learning by prediction error, and has provided an explanation of how the 

algorithm described in equations (2-5) is implemented. DN synthesize and release a 

neurotransmitter, dopamine. They are located in the ventro-anterior midbrain (sub 
stantia nigra and ventral tegmental area) and project to the striatum, ventral striatum, 
and nucleus accumbens, all structures involved in the evaluation of rewards. The DN 

respond with a short, phasic response (that is, responsive to change in stimulus, not 
to its sustained presentation). 

The key finding (Tomas Ljungberg, Paul Apicella, and Wolfram Schultz 1991, 
1992) is that the activity of the DN is proportional to the difference between the 
realized and the expected value of the reward. Suppose that the subject, a thirsty 

monkey, has learned in repeated trials that a visual cue announces the delivery of a 

reward in the form of a squirt of juice that can be large or small with equal probabil 
ity. Since the animal has been in the experiment repeatedly, it knows the expected 
value E (X) of the random variable X describing the delivery of juice. 

In first approximation (we will see later an important and interesting modification 
of this relation), at the moment in which the juice is delivered, the monkey observes 
a realized value x. The activity of the DN is proportional to the difference between 
the realized and the expected value: 

(6) a = a(x-E(X))9 

which is the core element in the algorithm described by equations (2) and (3). In 
summary, the idea that learning is based on prediction error, as a basic building 
block, seems soundly established. 

For the more general model described by equations (2-5), we now have a wealth 
of results supporting the view that adaptive learning is well described by it. Recent 
results suggest that the striatum contributes in its two anatomical components (ventral 
and dorsal striatum), with the former corresponding to the critic and the latter corre 

sponding to the actor (see, for example, John O'Doherty et al. 2004). The model has 

important applications. For example, it throws light on the problem of addiction, as the 
research of Barry J. Everitt and Trevor W. Robbins (2005) has shown. The research 
in this area is very large and active. The progress to date is reviewed, for instance, in 
Nathaniel D. Daw and Kenji Doya (2006); Doya (2008); O'Doherty, Alan N. Hampton, 
and Hackjin Kim (2007); and Adam Johnson, Matthijs A. A. van der Meer, and A. 
David Redish 2007). Research in the last few years has extended these results from 
rodents and primates, where they were first documented, to humans. See Peter Dayan 
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and Yael Niv (2008) for a review of these recent developments, as well as a list of 

intriguing open problems. 

III. Adaptive Coding 

Does this model help to predict behavior? Let us consider an application. 
Bernheim's favorite instance of an axiom is the weak axiom of revealed prefer 
ences. Just as the model describing behavior in an inter-temporal problem as the 

optimal solution of a dynamic programming problem, the assumption is considered 

unrealistic, and economists are probably willing to agree that context matters. The 

problem is to determine how it matters. We will consider an example to show how 

the new method can throw light on this question, and how the model and the results 

we have reported can shed light on an issue that already has been discussed in deci 

sion theory. Our choices, and the revealed preferences, can depend on the context, or 

on the environment. This may introduce inconsistencies in our behavior that seem 

to contradict standard assumptions. Let us start from a classical example of this 

dependence. 

Errors in Decision Making.?In his foundational book, Leonard J. Savage (Savage 

1972), was aware of possible inconsistencies between the theory he was outlining 
and real human behavior. An interesting example of these inconsistencies is the fol 

lowing "error in decision making." Keep in mind that, of course, the prices are 1954 

prices: 

A man buying a car for $2,134.56 is tempted to order it with a radio 
installed, which will bring the total price to $2,228.41, feeling that the 
difference is trifling. But, when he reflects that, if he already had the car, 
he certainly would not spend $93.85 for a radio for it, he realizes that he 
has made an error. (Savage 1972, 103) 

The example is compelling, and a plausible explanation seems natural. In this 

example, the decision maker is deciding in two different environments, and the 

range of monetary values that are being considered varies widely between the two. 

While he buys a car, the range of values he is considering is in the order of thousands 

of dollars, and the tradeoff between money and a radio is seen from this point of 

view. When he buys the radio alone, the corresponding range is in the order of a few 

dollars. In the second environment, the opportunity cost of money is more finely 

evaluated, so the comparison with the utility of the radio is more precise. 

Response to Environment Changes.?The previous model of reward learning 
allows us to understand this error as the outcome of a design that is optimal under 

constraints. To see this, we need to go back to the monkey evaluating the random 

squirts of juice. Suppose that the animal has been evaluating the prediction error 

according to equation (6) for a while, with the random amounts varying in a fixed 

range. Suppose, now, that this range changes. A new environment or a new experi 
mental condition occurs. For example, the squirts may now be the realization of a 

random variable Y, with values scaled up by a factor of ten with respect to X. The 

signal provided by a is an internal signal that is provided for the correct learning 
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of the value of the state, in the process described in equation (3). For physiological 
reasons, the range of this internal signal is limited. It is bounded below because no 

negative firing rate is possible for the DN, and is bounded above by the physiological 
limits to the firing rate. 

This constraint forces us to give a closer look to the linear form assumed in (6). 
This form can only be approximately true. For extreme values of the prediction 
error, the response to further increases is limited. Let us assume, for simplicity, that 
the response function is linear in the range of feasible responses, and flat when it is 
outside that range. We now consider the problem of choosing optimally the response 
function, if the objective is to maximize the informational value of this internal sig 
nal, given this constraint, and some information on the environment. 

Optimal Adjustments.?Should the constant a in equation (6) be the same when 
the random amounts are realizations of X and of Y, if we want this internal signal to 

be accurate? If it is the same for X and y, then in one of the two cases, the choice is 
not optimal. For example, if it is designed to match the range of the X variable, then, 
when Y is observed, many values fall out of the feasible response range. The optimal 
choice must depend on the environment. 

Is there any evidence that it does? Experimental evidence in which the range of 
the values offered to the monkey is changed suggests that it does (see Philippe N. 

Tobler, Christopher D. Fiorillo, and Schultz 2005). More precisely, the correct equa 
tion when the animal is in the environment X is not equation (6), but instead 

where SD(X) is the standard deviation of X. So the internal coding governing the 
evaluation of the prediction error adjusts to the environment the way an optimal 
designer would prescribe. The error that Savage (1972) pointed out in the example 
may be the consequence of an optimal adjustment on an internal learning mecha 
nism. This error may be learned away, or compensated, but the essential point is that 
what seems a bias is an optimal adjustment to the environment. 

Optimal Coding in Visual Perception.?Since relying on experimental evidence 

may not be satisfactory to all readers, let me point out that the adaptive coding is 
a widespread phenomenon. It was first discovered in the visual system, and a brief 

description of this finding may better illustrate its importance. After a visual stimu 
lus has stimulated the retina, this input is translated by an internal coding into an 

output that is then evaluated. Just as in the case of economic choices, it is important 
to discriminate between rewards, and in this case it is important to discriminate 
between different stimulus intensities. In its natural environment, an animal will 
face a typical distribution of the stimuli, and it is natural to assume that it will adjust 
optimally to this distribution. Let \i be this distribution on the set of real numbers 
/ of inputs, which we may assume to be the unit interval. A neuron carries this 
information downstream to an output /?, also the unit interval, and may adjust in a 

(7) 
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nonlinear way to this stimulus. Call/the nonlinear adjustment. This/corresponds 
to the simple linear adjustment that we have assumed in (6). 

An optimal coding would require that all response levels are used with the same 

frequency, so that the distribution of the output maximizes the entropy. To do this, 
the output should have, no matter what ll is, a uniform distribution on the output 

range.1 Given \i, this requirement puts a very tight constraint of the function/ since 

it has to satisfy the equality 

for any interval [a9b], where U is the uniform distribution over the interval. An easy 

computation shows that the function/that satisfies tequation (8) is the cumulative 
distribution function of the measure //, that is, 

The function/in (9) is derived from an optimality condition on the transmission of 

information. The physiological response function can be measured and compared to 

the hypothesized/ 
Here is a striking fundamental result in neural coding (conjectured in Horace B. 

Barlow 1961, and verified in Simon B. Laughlin 1981). The two functions match, 
so the real response function (operated by the neurons in the visual system of, for 

instance, a blowfly, as in Laughlin 1981) is the optimal adaptive coding to the envi 
ronment. The conjecture that the same coding extends to the evaluation of rewards 

has found supporting evidence in single neuron recording study in the monkey 

(Macaca Fascicularis), see Tobler, Fiorillo, and Schultz (2005). 
There are now three open problems. The first is how these findings extend to 

humans (as opposed to the monkey's) processing of rewards. The second (see Dayan 
and Niv 2008) is to identify the mechanism by which the downstream mechanisms 

can feedback the necessary information on the current range of the stimuli to the 

structures that are devoted to the adjustment of the sensitivity of the receptors. The 

most important problem, however, is to determine the speed and effectiveness of 

the adjustment to a new environmental condition. If the adjustment is too slow com 

pared to the speed of the environmental change, then the decision maker will face 

a new environment with the old sensitivity. Errors in decision making may emerge 
as a result, as in the example presented by Savage (when a decision maker considers 

the purchase of a radio while buying a car, he may fail to adjust to the new, smaller 

range of values and underestimate the cost of a radio). 
A recent literature in economics provides a foundation on evolutionary grounds of 

preferences that take into account relative values instead of simply absolute values, 
and that adjust to the range of the environment (see, for example, Arthur J. Robson 

2001; Ken Binmore 1994, 25; Larry Samuelson 2004; Luis Rayo and Gary S. Becker 

1 A similar procedure is used in the optimal enhancement of digital pictures called Histogram Equalization, 

precisely because it operates a nonlinear transformation that maps the original histogram of shades of gray into 

the flat histogram of the uniform distribution. 

(8) fi({x:f(x)<E[a,b}}) = U({a,b}) 

(9) f(x) = 
fi([0,x}). 
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2007). This research provides a foundation for models of utility based on aspiration 
levels, as well as on the relative comparison with peers' outcome. 

The neuroeconomics results we have seen put strong restrictions on the specific 
form of the dependence on how the happiness function (Rayo and Becker 2007) 

depends on the range of values in the typical environment. They also provide evi 

dence that this is not just the form we might expect evaluations to have, but the 

form they really have. Finally, they also suggest that comparison of one's outcome 

with peers' outcome may have two separate motivations, and possibly two separate 
neural structures. One looks at the outcome of others simply to learn what the best 

action for an individual is. In this view, envy is simply the social equivalent of regret 

(see Nathalie Camille et al. 2004; Giorgio Coricelli et al. 2005). The other motiva 
tion looks at the comparison because it provides information on social ranking (see 

Nadege Bault, Coricelli, and Rustichini 2008). An additional insight from the neu 

roscience and neuroeconomic research is that the neural structures for comparisons 

(with the outcome of the non chosen actions, as in regret, as well as with the outcome 

of the actions chosen by others, as in envy) seem common with at least nonhuman 

primates. So the specific reliance on the hunter-gatherer society to explain these fea 

tures of learning and evaluations in humans may have to solve the problem of why 
such structures are shared. 

IV. Conclusions 

The methodological framework suggested by Bernheim (2009), and slightly 
reformulated here, seems to me new, and different from the one used in mainstream 

economics. It is also very ambitious, and it is for the moment more a target and a 

benchmark than a criterion that is readily applicable. In this respect, it is not differ 
ent from the axiomatic method. It is easy to state the criterion that the behavior of 
an economic decision maker should be summarized by a small set of independent 
axioms that characterize choice as the output of a simple functional representation. It 
is much harder to provide such a system. So it should not be a surprise that the cur 

rent research in neuroeconomics does not follow it in full. In addition to the fact that 

researchers in the field might not agree with the formulation given here, the objective 

difficulty of realizing all the steps in the program is a formidable obstacle. 
Will neuroeconomics eventually achieve what it promises? Bernheim poses a 

challenge that can provide a measure of success or failure: 

Provide an example of a novel economic model derived originally from 
neuroeconomic research that improves our measurement of the causal 

relationship between a standard exogenous environmental condition?one 
with which economists have been historically concerned?and a standard 
economic choice (Bernheim 2009). 

The challenge has several components. Some of them are harder. For example, 
it is not going to be easy to find a novel economic model, and this is a merit of the 

creativity of economic theory. Models addressing a large number of problems have 
not been missing. They are all very useful. For example, the algorithmic model 

presented in (3) is close to several of the adaptive learning models that have been 
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proposed in the past (Dean P. Foster and Rakesh V. Vohra 1999; Sergiu Hart 2005; 
Hart and Andreu Mas-Colell 2000). 

This creativity is also the current weakness of economic theory, particularly in 

the area of decision theory. We do not lack models, we lack the ability to reject some 

of them on the basis of a well formulated strategy research. Neuroeconomics can be 
a valuable tool in this direction. For example, there is now a wide agreement in the 

neuroscience community that the adaptive learning in animals has the form based 

of the prediction error, as described by the equations (2) and (3). These findings put 
a very strong restriction on the type of adaptive learning that is really operative in 

animal learning. An additional fundamental role of neuroeconomics is, in my view, 
that of pruning the multiplicity of models, and to make them closer to the hard 

experimental test we suggested. 
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