
1

Rob Miles
Department of Computer Science

2

Agenda

• Getting started writing an XNA game

• Getting input

• Writing Text

• Making sounds

3

XNA

• XNA is a framework for writing games

• Includes a set of professional tools for game production and
content management

• It works within Visual Studio

– There are XNA project types in the same way we have
Console project types

Getting Started with XNA

4

Running Games

• Games can be run on the PC, Xbox 360 or Windows Phone
7.5device

• There is an Open Source version of XNA called MonoGame
that will run on Windows 8, Windows Phone 8. Android, IOS
and PlayStation Vita

• You can use this for your Three Thing Game project, but you
can use any other framework if you prefer

Getting Started with XNA

5

XNA Versions

• The latest version of XNA is 4.0

– This works with Visual Studio 2010

• You can obtain this from http://create.msdn.com

• This also contains the development environment for
Windows Phone and Xbox 360

• Not all installations of Visual Studio on campus have the
XNA components installed

• The Fenner Computer Suite and the labs in the Robert
Blackburn Building have XNA

Getting Started with XNA

6

Creating a Game

• Visual Studio in the Fenner Lab has XNA 4.0 installed

• You need to create a Windows Game

Getting Started with XNA

7

The Game Project

• The solution explorer shows the
items that make up our game
project

• At the moment there are a
couple of class files which are
created automatically

• The solution will also contain
any content that we add to the
game project

Getting Started with XNA

8

Empty Game Display

• At the moment all our empty game does is display a blue
screen

• This is because the behaviour of the Draw method in a brand

new project is to clear the screen to blue

Getting Started with XNA

9

How Games Work

• Every game that has ever been written has these
fundamental behaviours:

• Initialise all the resources at the start

– fetch all textures, models, scripts etc

• Repeatedly run the game loop:

– Update the game world

• read the controllers, update the state and position of game
elements

– Draw the game world

• render the game elements on the viewing device

10

Methods in an XNA game

• The XNA Game class contains methods that will provide
these behaviours

• Initialise all the resources at the start

– The Initialize and LoadContent methods

• Repeatedly run the game loop:

– Update the game world

• The Updatemethod

– Draw the game world

• The Drawmethod

11

Getting Started with XNA

• When you create a new XNA game project you are provided
with empty versions of the game methods

• Creating an XNA game is a matter of filling in these methods
to get the game behaviours that are required

• We are going to start by getting some clouds moving around
the display

• Then we are going to add some complication and see where
it gets us

12

Cloud and Games

• Apparently the future of
computing is “in the cloud”

• Perhaps the future of games is
too

• We can start with a drawing
of a cloud and see where this
takes us

• For me this is the fun of
making games

13

Creating a Game World

// Game World

Texture2D cloudTexture;

Vector2 cloudPosition;

• A game needs a “Game World” which holds all the objects
in the game

• LoadContent will put content into them

• Update will update their state

• Draw will draw them

• To start with our game just contains a cloud texture and
position

14

Loading the Cloud Texture
protected override void LoadContent()
{

spriteBatch = new SpriteBatch(GraphicsDevice);
cloudPosition = new Vector2(0, 0);
cloudTexture = Content.Load<Texture2D>("Cloud");

}

• This code loads our cloud texture

• It also sets the draw position for the cloud

• It also makes a SpriteBatch, which is used by XNA to
batch up drawing operations

15

Drawing the Cloud Texture

protected override void Draw(GameTime gameTime)
{

GraphicsDevice.Clear(Color.CornflowerBlue);
spriteBatch.Begin();
spriteBatch.Draw(cloudTexture, cloudPosition,

Color.White);
spriteBatch.End();
base.Draw(gameTime);

}

• This code uses the spriteBatch to draw our cloud

• It also draws a blue sky as a background

1: Simple Cloud

17

Adding Movement

• A cloud that doesn’t move is rather boring

• We need to make it do things

– Perhaps it could drift across the screen

• To do this we use the Update method

• This is called by XNA 60 times a second to update the
position of elements in the game

18

Drifting our Cloud
Vector2 cloudSpeed = new Vector2(1.5f, 0);

protected override void Update(GameTime gameTime)
{

cloudPosition += cloudSpeed;

base.Update(gameTime);
}

• The Update method is called 60 times a second

• We can use it to drift the cloud across the screen

• Note that XNA provides a Vector type which we are using
to position the sprite

• We can also perform Vector arithmetic to move it around

2: Drifting Cloud

20

Creating Game Components

public interface ISprite
{

void Draw(CloudGame game);
void Update(CloudGame game);

}

// Game World
List<ISprite> gameSprites = new List<ISprite>();

• We really need more than one cloud

• We can make a ISprite component which has Draw and
Update behaviours

• We can then make a list of these to use in our game

21

An overview of the Cloud Class

class Cloud : CloudGame.ISprite
{

public Texture2D CloudTexture;
public Vector2 CloudPosition;
public Vector2 CloudSpeed;

public void Draw(CloudGame game) ...

public void Update(CloudGame game) ...

public Cloud(Texture2D inTexture,
Vector2 inPosition,
Vector2 inSpeed) ...

}

22

Making Random Clouds

Vector2 position =
new Vector2(rand.Next(GraphicsDevice.Viewport.Width),

rand.Next(GraphicsDevice.Viewport.Height));

Vector2 speed = new Vector2(rand.Next(0, 100) / 100f, 0);

Cloud c = new Cloud(cloudTexture, position, speed);

gameSprites.Add(c);

• The Cloud class has a constructor that takes a texture,
position and speed and creates a Cloud instance

• This is then added to the sprites for this game

23

Updating Sprites

protected override void Update(GameTime gameTime)
{

foreach (ISprite sprite in gameSprites)
sprite.Update(this);

base.Update(gameTime);
}

• The Update behaviour works through each game
component and updates it

• The component is given a reference to the game so that it
can affect the game state if required (e.g. update the score)

• There is a similar loop for Draw

3: Lots of Clouds

25

Sprite Update Behavior

public void Update(CloudGame game)
{

CloudPosition += CloudSpeed;

if (CloudPosition.X > game.GraphicsDevice.Viewport.Width)
CloudPosition.X = -CloudTexture.Width;

}

• The sprite has its own Update behaviour

• This moves the cloud and then puts it back on the left
when it falls off the screen

26

Adding a Dark Cloud

• I want the player to be able to hunt the cloud

– They will control the “dark cloud”

• I want something like a cloud, but with slightly different
Draw and Update behaviours

– The Draw will draw the cloud darker
– The Update will allow the player to control the cloud

• C# lets us create a new class, based on Cloud but with these
behaviours replaced

Getting Started with XNA

27

Dark Cloud Draw

• The replacement Draw method draws the cloud, but uses the
colour DarkGrey instead of white

• The cloud is now shown darker on the screen

• You can use this technique to “colour in” draw items

Getting Started with XNA

public override void Draw(CloudGame game)
{

game.spriteBatch.Draw(CloudTexture,
CloudPosition, Color.DarkGray);

}

28

Dark Cloud Update

• The replacement Update method uses the keyboard state to

create a vector that allows the player to control the cloud
movement

Getting Started with XNA

public override void Update(CloudGame game)
{

Vector2 moveVector = Vector2.Zero;

if (game.CurrentKeyboardState.IsKeyDown(Keys.Right))
moveVector.X = CloudSpeed.X;

if (game.CurrentKeyboardState.IsKeyDown(Keys.Left))
moveVector.X = -CloudSpeed.X;

CloudPosition = CloudPosition + moveVector;

}

29

Adding Rectangles

• A the moment the game just draws the texture in the size
that it was supplied

• This is not very sensible

• XNA provides a Rectangle class that can be used to position
things on the screen

• It only uses integers for position, and so the game must
convert the floating point vector values

• You can check for Rectangle intersection

Getting Started with XNA

4: Bursting Clouds

31

Displaying Text

• An XNA game can draw text on the screen

• It does this by rendering a font which contains the character
designs

• The font is called a SpriteFont and contains a set of textures
which are created when the program is built

• This font is loaded into the program when it runs

• It behaves as any other item of content

32

Adding a SpriteFont

• To add a font:

– Select the Content Project in Solution Explorer
– Select Project>Add New Item
– Select SpriteFont from the dialog

Creating Gameplay with XNA

33

SpriteFont XML

• The font used and the size are set in an XML file

• You can edit this to get different sizes and styles

Creating Gameplay with XNA

34

Loading a Font

• The Content Manager will fetch the font

• The font can be stored in a variable which a member of the
game class

• You can use multiple fonts if you want different text styles

SpriteFont font;

protected override void LoadContent()
{

// Load the bat and ball textures
font = Content.Load<SpriteFont>("MessageFont");

}

Creating Gameplay with XNA

35

Sound output

• A sound is just another item of content

• You can use most kinds of files

• I prefer WAV files

• If you are looking for a good audio
program I suggest one called Audacity:

http://audacity.sourceforge.net/

• It is free and provides lots of useful effects

Getting Started with XNA

36

Using a SoundEffect

• Calling the Play method on a sound effect causes it to play

• You can have lots of sound effects and play them
simultaneously if required

public SoundEffect PopSound;

//Load the sound in LoadContent

PopSound = Content.Load<SoundEffect>("Pop");

//Play the sound in the game

PopSound.Play();

Creating Gameplay with XNA

37

Creating Games

• This set of sprites can be used as the basis of a game

– Remember that you don’t need to have the same texture
for every sprite

– You can draw using different coloured “light”
– You can make a very big texture that fills the screen, and

use that as the background

• Since one sprite can make use of information in another you
can make sprites that chase each other, or avoid each other

– This is the basis of Artificial Intelligence (AI)

Getting Started with XNA

5: Completed Game

39

The final demo

• The final game also has a Red Cloud that will chase you

• This means that we can make a simple game mechanic
where you have to burst all the clouds before the Red Cloud
catches you

• This means that the player has to plan a route to the clouds
without being caught, so there is a balance between risk and
reward

• This is how games are

40

Getting Going

• Feel free to use the sample games in any way you like

• They are free to download from the Three Thing Game
website

• Good luck, and have fun!

Getting Started with XNA

