

Windows Phone
Programming

in C#

Rob Miles
Version 1.0 January 2011

 i

Contents

Introduction 3

Welcome ... 3
What you need to have before you start .. 3

1 Windows Phone 7 4

1.1 The Windows Phone hardware ... 4
1.2 The Windows Phone ecosystem ... 11
1.3 Windows Phone program execution ... 12
1.4 Windows Phone application development .. 14
What we have learned ... 16

2 Introduction to Silverlight 18

2.1 Program design with Silverlight ... 18
2.2 Understanding XAML .. 28
2.3 Creating an application with Silverlight ... 31
What we have learned ... 37

3 Introduction to Visual Studio 2010 38

3.1 Projects and Solutions .. 38
3.2 Debugging Programs .. 52
What we have learned ... 58

4 User Interface Design with Silverlight 60

4.1 Improving the user experience ... 60
4.2 Data manipulation and display ... 73
4.3 Pages and Navigation ... 82
What we have learned ... 87

5 Consuming Data Services 89

5.1 Connecting to a data service ... 89
5.2 Using LINQ to read structured data ... 92
5.3 Using Network Services ... 102
What we have learned ... 108

6 XNA Overview 109

6.1 XNA in context .. 109
6.2 Making an XNA program ... 110
6.3 Using the accelerometer in games .. 121
6.4 Adding sound to a game ... 125
6.5 Playing Sound in a Silverlight Program ... 128
6.6 Managing screen dimensions and orientation ... 130
What we have learned ... 132

7 Creating Windows Phone Applications 134

7.1 The Windows Phone icons and Splash Screens.. 134

 ii

7.2 Persisting data in isolated storage ... 136
7.3 Persisting application state ... 141
7.4 Launchers and Choosers ... 147
What we have learned ... 151

8 Windows Phone Marketplace 153

8.1 How the Marketplace works ... 153
8.2 Marketplace membership ... 154
8.3 Deploying and testing to hardware ... 154
8.4 The Submission and approval process .. 157
What we have learned ... 157
Program Ideas ... 158

Welcome

 Introduction 3

Introduction

Welcome
These notes are an introduction to Windows Phone development for anyone

learning to program. They assume some knowledge of programming

fundamentals, but they will teach you programming concepts in the framework

of Windows Phone development.

These notes do not teach programming from first principles. I am going to

assume that you already know how to write and run simple C# programs on a

Windows PC.

What you need to have before you start
All the development tools that you need can be downloaded for free from here:

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=04704acf-

a63a-4f97-952c-8b51b34b00ce

If you have your own Windows Phone device you can use this to run programs if

you become a registered Windows Phone developer. This is free for students,

and also lets you sell programs that you have written in the Windows Phone

Marketplace. However, to get started writing programs you don‟t need to have a

physical device, you can use the emulator that is supplied with the development

tools.

Version 1.0 January 2011 © Rob Miles and Microsoft

The Windows Phone hardware

 Windows Phone 7 4

1 Windows Phone 7

In this chapter you are going to find out about the Windows Phone platform as a

device for running programs. You will learn the key features of the platform

itself, how programs are written and also how you can sell your programs via the

Windows Marketplace.

1.1 The Windows Phone hardware
In this section we are going to take a look at the actual hardware that makes up a

Windows Phone. This is particularly important as we need to put the abilities of

the phone into context and identify the effect of the physical limitations imposed

by platform that it uses.

A Windows Phone as a computer

Pretty much everything these days is a computer. Mobile phones are no

exception. When you get to the level of the Windows Phone device it is

reasonable to think of it as a computer that can make telephone calls rather than

a phone that can run programs.

The Windows Phone device has many properties in common with a “proper”

computer. It has a powerful processor, local storage, fast 3D graphics and plenty

of memory. It also has its own operating system which looks after the device and

controls the programs that run on it. If you have used a PC you are used to the

Windows 7 operating system which starts running when you turn the computer

and even turns the computer off for you when you have finished.

The Windows Phone 7 series is a complete break with previous versions of

Windows Mobile devices. You could write programs and run them on earlier

versions but you did not use the Silverlight or XNA environments to do this. The

number 7 in the name of the product reflects the fact that this is also the 7
th

incarnation of the Windows Mobile platform. It does not mean that the device

shares its underpinnings with desktop PCs running Windows 7. However, as we

shall see, it is perfectly possible to take a program you have created for

Windows Phone and run it on the Windows desktop, and vice versa.

If you are familiar with computer specifications, then the specifications below

are pretty impressive for a portable device. If you are not familiar, then just bear

in mind that nobody in the world had a computer like this a few years ago, and

now you can carry one around in your pocket.

The Windows Phone hardware platform

Before we start programming we can take a look at the hardware we will be

working with. This is not a text about computer hardware, but it is worth putting

some of the phone hardware into context. All Windows Phones must have a

particular minimum specification, so these are the very least you can expect to

find on a device.

It is quite likely that different phone manufacturers will add their particular

“take” on the platform, so you will find devices with more memory, faster

processors, hardware keyboards and larger screens.

Note that a hardware keyboard is not guaranteed to be present on the device (it

might be just a touchscreen based phone) and that if you are an XNA game

developer you will be wondering where the gamepad has gone. There are some

The Windows Phone hardware

 Windows Phone 7 5

changes to the hardware that you will have to get used to when writing for this

platform, but there are also some very interesting input options (particular for

game development) where you can use the accelerometer and the touch screen to

good effect. We will look at these later in the text.

The Windows Phone Processor

The Central Processing Unit (CPU) of a computer is the place where all the

work gets done. Whenever a program is running the CPU is in charge of fetching

data from memory, changing the data and then putting it back (which is really all

computers do). The most popular speed measure in a computer is the clock

speed. A CPU has a clock that ticks when it is running. At each clock tick the

processor will do one part of an operation, perhaps fetch an instruction from

memory, perform a calculation and so forth.

The faster the clock speed the faster the computer. Modern desktop computers

have clocks that tick at around 3 GHz (that is around 3 thousand, million times a

second). This is actually incredibly fast. It means that a single clock tick will

last a nanosecond. A nanosecond is the time that light takes to travel around 30

cm. If you were wondering why we don‟t have big computers any more, it is

because the time it takes signals to travel around a circuit is a serious limiting

factor in performance. Making a computer smaller actually makes it go faster.

A Windows Phone has a clock that ticks at around 1GHz. You might think that

this means a Windows Phone will run around a third the speed of a PC, but this

turns out not to be the case. This is because of a number of things:

Firstly, clock speed is not directly comparable between processors. The

processor in the Windows PC might take five clock ticks to do something that

the Windows Phone processor needs ten ticks to perform. The Windows PC

processor might be able to do things in hardware (for example floating point

arithmetic) which the Windows Phone processor might need to call a software

subroutine to perform, which will be much slower. You can regard clock speed

as a bit like engine size in cars. A car with a bigger engine might go faster than

one with a smaller one, but lots of other factors (weight of car, gearbox, tires)

are important too.

Secondly, a Windows PC may well have multiple processors. This doesn‟t mean

a Windows PC can go faster, any more than two motorcycles can go faster than

one, but it does mean they can process more data in a given time (two

motorcycles can carry twice as many people as one). At some point we will get

multiple-processor phones (and the Windows Phone operating system can

support this), but at the moment they all have a single processor unit.

Finally, a Windows PC has unlimited mains power. It can run the CPU at full

speed all the time if it needs to. The only real problem with doing this is that the

processor must be kept cool so that it doesn‟t melt. The faster a processor runs

the more power it consumes. If the phone ran the processor at full speed all the

time the battery life would be very short. The phone operating system will speed

up and slow down the processor depending on what it needs to do at any given

instant. Although the phone has a fast processor this speed is only actually used

when the phone has something to do which requires very fast response.

The result of these considerations is that when you are writing a Windows Phone

program you cannot regard processing power as an unlimited resource. Desktop

PC programmers do not see processor speed as much of an issue but Windows

Phone programmers have to remember that poor design can have consequences,

both in terms of the experience of the user and the battery life of the phone. The

good news for us is that worrying about these things will cause us to turn into

better programmers.

The Windows Phone hardware

 Windows Phone 7 6

The Windows Phone operating system

The operating system in a Windows Phone is called Windows CE (CE stands for

“Compact Edition”). It was specially designed to run on portable computer

systems and is very good at getting performance and good battery life out of a

device. As we shall see later this puts some constraints on your programs,

however the good news is that as far as we are concerned the underlying

operating system is pretty much irrelevant. Our program will run on the

Windows Phone in pretty much the same way as they do on the full sized

Windows PC.

Graphical Display

The Windows Phone has a high resolution display made up of a very large

number of pixels. This provides good quality graphics and also allows lots of

text to be displayed on the screen. The more pixels you have on your screen the

higher the quality of image that you can display. However, the more dots you

have the greater the amount of memory that you need to store an image, and the

more work the computer has to do to change the picture on the screen. This is

particularly significant on a mobile device, where more work for the hardware

translates to greater power consumption and lower battery life. The display

resolution is a compromise between battery life, cost to manufacture and

brightness of the display (the smaller the dots the less light each can give out).

The first generation versions of Windows Phone will have a screen resolution of

at least 800x480 pixels. This can be used in both landscape (800 wide and 480

high) and portrait (480 wide by 800 high) modes. The phone contains an

accelerometer that detects how the phone is being held. The Windows Phone

operating system can then adjust the display to match the orientation. Our

programs can decide when they run what orientations they can support. If we

design our programs to work in both landscape and portrait mode they can be

sent messages to allow them to adjust their display when the user changes the

orientation of the device.

One problem faced by phone developers is the multitude of different screen sizes

that are available. A program would have usually have to be customised for each

different sized screen. The Windows Phone screen hardware includes a feature

that allows it to scale the screen of an application to fit whatever screen size the

device supports. A game can specify that it must have a particular sized screen

(say 400x280) and then the display hardware will scale that size to fit whatever

physical size is fitted on the device being used. This is very useful and makes it

possible to create games that will work on any device including ones with screen

sizes that have not been made yet.

The Windows Phone Graphical Processor Unit

In the very first computers all the work was performed by the computer

processor itself. This work included putting images on the display. Computer

hardware engineers soon decided that they could get faster moving images by

creating custom devices to drive the screen. A Graphical Processor Unit (GPU)

is given commands by the main processor and takes away all the work involved

in drawing the screen. More advanced graphical processors have 3D support and

are able to do the floating point and matrix arithmetic needed for three

dimensions. They also contain pixel shaders which can be programmed to

perform image processing on the each dot of the screen at high speed as it is

drawn, adding things such as lighting effects and blur.

Until quite recently only desktop PC systems and video game consoles had

graphical processors, but they are now appearing in mobile phones. The

Windows Phone platform contains a graphics processing chip which is used to

provide 3D animation effects for the phone display and can also be used from

The Windows Phone hardware

 Windows Phone 7 7

within the XNA game development environment to create fast moving 3D

games.

Touch input

Older portable devices used resistive touch input screens. When the user touches

a resistive touch screen the plastic surface bends and makes a connection with

the layer below it. A simple circuit then measures the electrical resistance to the

point of contact and uses this to determine where on the screen the touch took

place. Resistive touch screens are cheap to make and work very well with a

stylus. However the way they work makes it very difficult to detect multiple

simultaneous touches on the screen. It is also difficult to make a resistive screen

out of a very hard material, for example glass, as the screen must bend to make

the contact that detects the input point.

A capacitive touch screen works in a different way. An array of conductors

underneath the screen surface detects the change in capacitance caused by the

presence of a finger on the surface. The touch screen hardware then works out

where on the screen that the touch input took place. Capacitive touch screens are

more expensive to make as they require extra hardware to process the input

signals but the sensor circuits can be printed on the back of a glass screen to

make a much tougher display. A capacitive touch screen is not quite as precise

as a resistive screen which uses a stylus, but you can build a capacitive screen

that can detect multiple inputs on different parts of the display.

All Windows Phone devices have touch input which is capable of tracking at

least four input points. This means that if you create a Windows Phone piano

program it will be able to detect at least four notes being pressed at the same

time.

The move to multi-touch input is an important step in the evolution of mobile

devices. The user can control software by using multi-touch gestures such as

“pinch”. The Windows Phone operating system provides built in support for

gesture recognition. Your programs can receive events when the user performs

particular types of gesture. We will be using this feature later.

Location Sensors

The Windows Phone device is location aware. It contains a Global Positioning

System (GPS) device that receives satellite signals to determine the position of

the phone to within a few feet. Since the GPS system only works properly when

the phone has a clear view of the sky the phone will also use other techniques to

determine position, including the location of the nearest cell phone tower and/or

the location of the WIFI connection in use. This is called “assisted” GPS.

The Windows Phone operating system exposes methods our programs can call to

determine the physical position of the device, along with the level of confidence

and resolution of the result supplied. Our programs can also make use of

mapping and search facilities which can be driven by location information. We

will be exploring this later.

The actual phone hardware also contains an electronic compass, although there

is not a software interface to this in the present version of the Windows Phone

operating system.

Accelerometer

The accelerometer is a hardware device that measures acceleration, so no

surprises there. You could use it to compare the performance of sports cars if

you wish. You can also use the accelerometer to detect when the phone is being

shaken or waved around but the thing I like best is that you can also use it to

detect how the phone is being held. This is because the accelerometer detects the

The Windows Phone hardware

 Windows Phone 7 8

acceleration due to gravity on the earth. This gives a phone a constant

acceleration value which always points downwards. Programs can get the

orientation of the phone in three axes, X, Y and Z.

This means we can write programs that respond when the user tips the phone in

a particular direction, providing a very useful control mechanism for games. It is

very easy for programs to obtain accelerometer readings, as we shall see later.

Camera

All mobile devices have cameras these days, and the Windows Phone is no

exception. A phone camera will have at least 5 mega pixels or more. This means

that it will take pictures that contain 5 million dots. This equates to a reasonable

resolution digital camera (or the best anyone could get around five years ago). A

5 megapixel picture can be printed on a 7”x5” print with extremely good quality.

We can write Windows Phone applications that use the camera, but there are a

few things that we need to remember.

Firstly, programs can‟t have access to the live video stream from the camera in

the current version of the Windows operating system. This means that we can‟t

make “augmented reality” type applications where the program displays a

camera view and then overlays program output onto it. We also can‟t make

video recorder programs because of this issue (although the Windows Phone

camera application can record video).

Secondly, programs are not allowed to take photographs without the user being

involved in the process. This is a privacy protection measure, in that it stops

programs being distributed that take clandestine pictures without the program

user being aware the software is doing anything. When your program wants the

user to take a picture this task will be performed by the Windows Phone camera

application that will guide the user through framing the picture and taking the

shot.

Pictures that are taken by the user are stored as part of the media content on the

phone. Our programs can open these images and work with them.

Hardware buttons

All Windows Phone systems share a common user interface. As part of this

design there are a number of physical buttons which are fitted to every Windows

Phone that will always perform the same function, irrespective of the make or

model of the phone.

Start: The start button is pressed to start a new activity. Pressing the start

button will always return the user to the program start screen, where

they can select a new program and begin to run it. When the user

presses the Start button this causes the currently running application to

be stopped (we will discuss this more a bit later). However, the

Windows Phone operating system “remembers” which application was

stopped so that the user may return to it later by pressing the Back

button.

Back: The back button is pressed to move back to the previous menu in a

particular application. It is also used to stop one application and return

to the one that was previously running. The back button makes the

phone very easy to work with. A user can start a new application (for

example they could decide to send an email message in the middle of

browsing the web) and then once the message has been sent they can

press Back to return to the browser. Within the mail application the

Back button will move the user in and out of the various input screens

and menus used to create and send the message. Once the message has

been sent the user can press Back at the top menu of the email

The Windows Phone hardware

 Windows Phone 7 9

application and return to the start menu and either run another program

or press Back to return to browsing.

Lock: Pressing the lock button will always lock the phone and turn off the

display to save the phone battery. The currently running application

will be stopped. When the user presses the lock or start button again

the phone will display the lock screen. A phone can be configured to

automatically lock after a number of minutes of inactivity.

Search: Pressing the search button will start a new search. Precisely what

happens when search is pressed depends on what the user is doing at

the time. If the user presses search during a browsing session they will

see a web search menu. If they press Search when the “People”

application is active they can search for contacts. A program can get a

“user has pressed search” message which will allow it to respond in a

useful way.

Camera: If the user presses the camera button this will stop the currently

executing program and start the camera application to take a new

picture.

The way these buttons will be used has implications for the programs that we

write. A program must be able to cope with the possibility that it will be

removed from memory at any time, for example if the user decides to take a

photograph while playing our game the game program will be removed from

memory. When they have taken their picture they will expect to be able to

resume their game just as they left it. The user should not notice that the game

was stopped.

Programs that are about to be stopped are given a warning message and the

Windows Phone operating system provides a number of ways that a program can

store state information. We will explore how to do this later in the text.

Not all Windows Phone devices will have a physical keyboard for entering text

but all devices will be able to use the touch screen for text entry.

Memory and Storage

Memory is one of the things that computer owners have been known to brag

about. Apparently the more memory a computer has the “better” it is.. Memory

actually comes in two flavors. There is the space in the computer itself where

programs run and then there is the “mass storage” space that is used to store

programs and data on the device. On a desktop computer these are determined

by the amount of RAM (Random Access Memory) and the amount of hard disk

space. A modern desktop computer will probably have around 2 gigabytes (two

thousand megabytes) of RAM and around 500 gigabytes of hard disk storage. A

megabyte is a million bytes (1,000,000). A gigabyte is a thousand million bytes

(1,000,000,000). As a rough guide, a compressed music track uses around six

megabytes, a high quality picture around three megabytes and an hour of good

quality video will occupy around a gigabyte.

The minimum specification Windows Phone will have at least 256 megabytes of

RAM and 8 gigabytes of storage. This means that a base specification Windows

Phone will have an eighth the amount of memory and around a fiftieth of the

amount of storage of a desktop machine. The Windows Phone operating system

has been optimized to work in slightly smaller amounts of memory (although

you must remember that a few years ago this amount of storage would have been

regarded as extravagantly large but it does make sure that users always get a

responsive device by imposing a few limitations on the way that programs run,

of which more later.

The Windows Phone hardware

 Windows Phone 7 10

Network Connectivity

A mobile phone is actually the most connected device you can get. The one

device has a range of networking facilities:

WiFi: All Windows Phones will support wireless networking. WiFi provides a

high speed networking connection, but only works if you are quite near

to a network access point. Fortunately these are appearing all over the

place now, with many fast food outlets and even city centres being WiFi

enabled.

3G: The next thing down from WiFi in performance is the 3G (Third

Generation) mobile phone network. The speed can approach WiFi, but

is much more variable. 3G access may also be restricted in terms of the

amount of data a mobile device is allowed to transfer, and there may be

charges to use this connectivity.

GPRS: In many areas 3G network coverage is not available. The phone will

then fall back to the GPRS mobile network, which is much slower.

The networking abilities are exposed as TCP/IP connections (we will explore

what this means later in the text). Unfortunately, as you will have undoubtedly

experienced, network coverage is not universal, and so software running on the

phone must be able to keep going even when there is no data connection. Ideally

the software should also cope with different connectivity speeds.

The Windows Phone also provides support for Bluetooth networking. This is

used in the context of connecting external devices such as headsets and car audio

systems and is not something our programs are able to access in the present

version of Windows Phone.

Platform Challenges

The Windows Phone hardware is very powerful for a mobile device, but it is still

constrained by the way that it musts be portable and battery power is limited. To

make matters worse, users who are used to working with high speed devices

with rich graphical user interfaces expect their phone to give them the same

experience.

As software developers our job is to provide as much of that experience as

possible, within the constraints of the environment provided by the phone. When

we write programs for this device we need to make sure that they work in an

efficient way that makes the most of the available platform. I actually see this as

a good thing, I am never happy when programmers are allowed to get away with

writing inefficient code just because the underlying hardware is very powerful.

Whenever we do something in this course we will consider the implications on

the phone. I hope you will see that one effect of this is to make us all into much

better programmers.

The Good News

The last few sections read like a list of the bad things, limitations and

compromises that surround mobile development. While you have to remember

all these issues, it is also the case that writing for mobile devices is actually great

fun. The range of features that the device provides and the fact that it is portable

make it possible for you to create genuinely new applications that have never

been done before.

Also, the tools that we will use to write the program and the built in features

provided with the tools make it possible to create really nice looking

applications very easily. So don‟t give up on Windows Phone development just

yet.

The Windows Phone ecosystem

 Windows Phone 7 11

1.2 The Windows Phone ecosystem
The Windows Phone is not designed as a device that stands by itself. It is

actually part of an ecosystem which contains a number of other software systems

that work around it to provide the user experience.

The Zune media management software

A Windows Phone device is connected to a Windows PC by means of the Zune

software. This provides a way of managing media and transferring it to and from

the phone device. The Zune software is also the means by which the firmware of

the Windows Phone can be updated as new versions come along. The Zune

software also provides the link between the Visual Studio development

environment and the phone itself.

The programs that we write can make use of the media loaded onto the phone

via the Zune software. It is very easy to write programs that load pictures or

playback music and videos stored on the phone.

Windows Live and Xbox Live

The owner of a Windows Phone can register the phone to their Windows Live

account. If their Windows Live account is linked to their Xbox Live gamertag

their gamer profile is imported onto their device and so they can participate in

handheld gaming using the same identity as they use on their console.

A Windows Phone program can use the Windows Live identity of the owner and

XNA gamertag information.

Bing Maps

We know that a phone contains hardware that allows it to be aware of its

location. The Microsoft Bing maps service provides maps which cover most of

the earth. A Windows Phone program can use its network connection to contact

the Bing maps service and download maps and aerial views. There is even a

Silverlight mapping control that makes it very easy for a program to add location

displays. We will do this later in the course.

Windows Notification Server

Although a phone has a wide range of networking technologies available there

will still be occasions when the phone is unable to connect to a network.

Windows Phone provides a notification service which allows programs to get

notifications from the network even when the program is not active. The user is

given a notification on the phone that they can use to start the application.

Notifications are stored and managed by a notification service which will buffer

them if the phone is not connected to the network when the notification is raised.

For example, you might have a sales system that needs to tell a customer when

an item they have reserved is in stock. The ordering application on the phone can

register with the notification service and then your stock management server has

a means of sending a notification to the customer when the item becomes

available. This system can also be used in gaming, where one player wants to

send a challenge to another. Getting this to work involves a very interesting

exploration of some programming issues, and is something we will do later in

the course.

Windows Phone program execution

 Windows Phone 7 12

Using the Ecosystem

It is important to remember that a phone is not just a phone these days. The

connected nature of the application means that it will function in conjunction

with remote services which are available over the network connection. Other

parts of the phone make use of this connected ability too. The phone has a

Facebook client built in and the camera application and picture storage elements

can upload your pictures to Windows Live Skydrive or Facebook.

You can also use the network features of the phone to create your own client and

server applications. You will need to write two programs to do this, one will run

on the Windows Phone and the other can run on any computer connected to the

internet, or even on a system in the “cloud”.

1.3 Windows Phone program execution
The Windows phone provides a platform to run programs, some of which can be

ones that we have written. It is worth spending some time considering how the

programs are made to run on the phone and some of the implications for the way

that we write them.

Multi-tasking on Windows Phone

One limitation of the present version of the platform is that it can only run a

single program at one time. While the operating system is perfectly capable of

executing multiple programs this ability is not enabled for programs that we

write. There are a number of sound technical reasons for this, only having a

single program active will conserve memory and improve battery life. The

limitation might be removed in a later version of the Windows Phone operating

system.

In my opinion this is not a huge problem for the user in practice, as long as it is

quick and easy to resume an application. Because a phone screen is very small it

is unlikely that you would be able to see two applications running at the same

time anyway.

However, the implication for developers is that they must live with the

possibility that at any point their program might be removed from the system to

make way for another. They must also make sure that if a user comes back to an

application that was previously suspended in this way it looks exactly as it did

when they left.

We will have add behaviours to our programs to give the user the illusion that

our program was never stopped and started when they return to it from working

with another application. A program is given a message when it is about to be

removed and it has access to storage that it can use to retain state information.

We will find out how to do this later on.

Windows Phone and Managed Code

In the early days a computer ran a program just by, well, running a program. The

file containing the program instructions was loaded into memory and then the

computer just obeyed each one in turn. This worked OK, but this simple

approach is not without its problems.

The first problem is that if you have a different kind of computer system you

have to have a different file of instructions. Each computer manufacturer made

hardware that understood a particular set of binary instructions, and it was not

possible to take a program created for one hardware type and then run it on

another.

Windows Phone program execution

 Windows Phone 7 13

The second problem is that if the instructions are stupid/dangerous the computer

will obey them anyway. Stupid instructions in the file that is loaded into memory

may cause the actual hardware in the computer to get stuck (a bit like asking me

to do something in Chinese). Dangerous instructions could cause the program to

damage other data in the computer (a bit like asking me to delete all the files on

my computer).

The Microsoft Intermediate Language (MSIL)

Microsoft .NET addresses these problems by using an intermediate language to

describe what a program wants to do. When a C# program is compiled the

compiler will produce a file containing instructions in this intermediate

language. When the program actually runs these instructions are compiled again,

this time into the low level instructions that are understood by the target

hardware in use. During the compilation process the instructions are checked to

make sure they don‟t do anything stupid and when the program runs it is closely

monitored to make sure that it doesn‟t do anything dangerous.

Microsoft .NET programs are made up of individual components called

asssemblies. An assembly contains MSIL code along with any data resources

that the code needs, for example images, sounds and so on. An assembly can

either be an executable (something you can run) or a library (something that

provides resources for an application). A Windows Phone can run C# executable

assemblies and libraries produced from any .NET compatible compiler. This

means that you could write some of the library code in your application in

another language, for example Visual Basic, C++ or F#. It also means that if you

have libraries already written in these languages you can use them in phone

applications.

The idea behind .NET was to provide a single framework for executing code

which was independent of any particular computer hardware or programming

language. The standards for .NET specify what the intermediate language looks

like, the form of the data types stored in the system and also includes the designs

of the languages C# and Visual Basic .NET.

Just in Time Compilation

When a program actually gets to run something has to convert the MSIL (which

is independent of any particular computer hardware) into machine code

instructions that the computer processor can actually execute. This compilation

process is called Just In Time compilation because the actual machine code for

the target device is compiled from the intermediate instructions just before it

gets to run. The way in which the program runs within a monitored environment

is called managed code. The compilation happens in the instant before the

program runs, i.e. the user of the phone selects a program from the start page, the

MSIL is loaded from storage and then compiled at that time.

The downside of this approach is that rather than just run a file of instructions

the computer now has to do more work to get things going. It must load the

intermediate language, compile it into machine code and then keep an eye on

what the program itself does as it runs. Fortunately modern processors

(including the one inside the Windows Phone) can achieve this without slowing

things down.

The upside is that the same intermediate code file can be loaded and executed on

any machine that has the .NET system on it. You can (and I have) run exactly

the same compiled program on a mobile device, Windows PC and Xbox 360,

even though the machines have completely different operating systems and

underlying hardware.

Another advantage is that this loading process can be expanded to ensure that

programs are legitimate. .NET provides mechanisms by which programs can be

“signed” using cryptographic techniques that make it very difficult for naughty

Windows Phone application development

 Windows Phone 7 14

people to modify the program or create “fake” versions of your code. If you

become a marketplace developer you will be assigned your own cryptographic

key that will be used to sign any applications that you create.

Finally, the use of an intermediate language means that we can use a wide range

of programming languages. Although the programming tools for Windows

Phone are focused on C# it is possible to use compiled code from any

programming language which has a .NET compiler. If you have existing

programs in Visual Basic, C++ or even F# you can use intermediate code

libraries from these programs in your Windows Phone solutions. Remember

though that you will need to use C# for the Silverlight or XNA “front end” for

these programs.

Managed Code

Programs that you create on Windows Phone run within the “managed”

environment provided by the operating system. You will write your C#

programs and then they will run inside a safe area in the phone provided by the

operating system. Your program will not be allowed direct access to the

hardware. This is good news because it stops people from writing programs that

stop the proper operation of the phone itself. As far as the developer is

concerned this actually makes no difference. When a program calls a method to

put a picture on the screen the underlying systems will cause the picture to

appear.

Developer Implications

As far as a developer is concerned there is an element of good news/bad news

about all this. The good news is that you only need to learn one programming

language (C#) to develop on a range of platforms. Programs that you write will

be isolated from potential damage by other programs on a system and you can be

sure that software you sell can‟t be easily tampered with.

The bad news is that all this comes at the expense of extra work for the system

that runs your application. Starting up a program is not just a case of loading it

into memory and obeying the instructions it contains. The program must be

checked to ensure that it has not been tampered with and then “just in time”

compiled into the instructions that will really do the work. The result of all this

is that the user might have to wait a little while between selecting the application

and getting the first screen displayed.

Fortunately the power of Windows Phone means that these delays are not

usually a problem but it does mean that if we have very large programs we might

want to break them into smaller chunks, so that not everything is loaded at once.

But then again, as sensible developers we would probably want to do this kind of

thing anyway.

1.4 Windows Phone application development
You write Windows Phone applications in exactly the same way as you write

other applications for the Windows desktop. You use the Visual Studio IDE

(Integrated Development Environment). You can debug a program running in a

Windows Phone device just as easily as you can debug a program on your PC

desktop. You can also create solutions that share components across the desktop,

Windows Phone and even Xbox platforms.

You can take all your Windows Desktop development skills in Silverlight and

your console skills in XNA and use them on the phone. If you learn how to use

the Windows Phone you are also learning how to write code for the desktop

(Silverlight) or console (XNA). This is great news for you as it means that you

can write (and even sell) programs for Windows Phone without having to learn a

lot of new stuff. If you have previously written programs for desktop computers

Windows Phone application development

 Windows Phone 7 15

then the move to Windows Phone development will be a lot less painful than

you might expect.

The Windows Phone Emulator

The Windows Phone development environment is supplied with an emulator

which gives you a Windows Phone you can play with on your PC desktop. If

you have a PC system that supports multi-touch input you can even use this with

the emulator to test the use of multi-touch gestures with your Windows Phone

programs.

While the emulator is feature complete, in that it behaves exactly like a real

phone would in response to the requests from your software, it does not mimic

the performance of the actual phone hardware. Programs running on the

emulator are using the power of your PC, which may well be much greater than

the processor in the phone. This means that although you can test the

functionality of your programs using the emulator you only really get a feel for

how fast the program runs, and what the user experience feels like, when you

run your program on a real device.

Accessing Windows Phone facilities

The Windows Phone platform provides a library of software resources that let

your programs make use of the features provided by the device itself. Your

programs can make use of the camera in the phone, place phone calls and even

send SMS messages. They can also make use of the GPS resources of the phone

to allow you to create location aware applications. The facilities are divided into

Launchers which let your program transfer to another application and Choosers

which use the system to select an item and then return control to your program.

We will see how to use these later in this text.

Windows Phone Connectivity

As you might expect, programs on a Windows Phone are extremely well

connected. Applications on the phone can make use of the TCP/IP protocol to

connect to servers on the internet. Programs can use Web Services and also set

up REST based sessions with hosts. The present version of the operating system

does not support direct socket connections. If you are not sure what any of this

means, don‟t worry. We will be exploring the use of network services later in the

text.

Silverlight and XNA Development

There are essentially two flavours to Windows Phone development. If you are

creating an application (for example a word processor, email client or cheese

calculator) then you can use Silverlight. This provides a whole range of features

just for creating such programs. If you are creating a game then you can use

XNA. XNA provides all the facilities for creating 2D and 3D games with high

performance graphics.

You are not forced to work this way. You could create your cheese calculator in

XNA or (perhaps more sensibly) you can create simple games (for example

word puzzles) very successfully in Silverlight.

You select the type of application you are creating when you make a new project

with Visual Studio. It is not possible to make a single program that combines

both types of application.

What we have learned

 Windows Phone 7 16

Development Tools

The tools that you need to get started are free. You can download a copy of

Visual Studio 2010 Express Edition and be started writing Windows Phone

applications literally within minutes. Developers who have more advanced, paid

for, copies of Visual Studio 2010 can use all the extra features of their versions

in mobile device development by adding the Windows Phone plugin to their

systems. We will see in detail how to get started with Visual Studio later in the

text.

Windows Marketplace

Windows Marketplace is where you can sell programs that you have created. It

is moderated and managed by Microsoft to ensure that applications meet certain

minimum standards of behaviour. If you want to sell an application you must be

a registered developer and submit your program to an approvals process.

It costs $99 to register as a developer, but students can register for free via the

Dreamspark programme. Developers can register their Windows Phone devices

as “development” devices. Visual Studio can deploy applications to a developer

device and you can even step through programs running in the device itself.

You can distribute free applications as well as paid ones. A registered developer

can distribute up to five free applications in any year. If you want to distribute

more than five free applications you must pay a $20 fee for each additional free

application. You can also create applications that have a “demo” mode which

can be converted into a “full” version when the user purchases them. Your

program can tell when it runs whether it is operating in full or demo mode.

When you submit an application to be sold in the marketplace it will go through

an approvals process to make sure that it doesn‟t do anything naughty and that it

works in a way that users expect. If the approvals process fails you will be given

a diagnostic report. Before you send an application into the system you should

read the certification guidelines of the marketplace.

What we have learned
1. Windows Phone is a powerful computing platform.

2. All Windows Phone devices have a core specification. This includes a

particular size of display, capacitive touch input that can track at least

four points, Global Positioning System support, 3D graphics

acceleration, high resolution camera and ample memory for program

and data storage.

3. The Windows Phone device is connected to a Windows PC by means

of the Zune PC software, which provides a media management system

for the PC and also allows media to be synchronised to the phone.

4. Windows Phone systems can make use of network based services to

receive notifications, determine their position and perform searches.

5. When developing programs for Windows Phone the Zune software is

used to transfer programs into the phone for testing. The Zune software

is also used to upgrade the firmware in the phone.

6. The Windows Phone operating system supports full multi-tasking, but

to preserve battery life and conserve memory only one user application

can be active at one time.

7. The Windows Phone runs programs that have been compiled into

Microsoft Intermediate Language (MSIL). This MSIL is compiled

inside the phone just before the program runs. The programs

What we have learned

 Windows Phone 7 17

themselves run in a “managed” environment which stops them from

interfering with the operating of the phone itself.

8. When developing software for Windows Phone you can create

Silverlight and XNA applications. These are written in C# using Visual

Studio 2010. Programmers can use a Windows Phone emulator that

runs on Windows PC and provides a simulation of the Windows Phone

environment.

9. Programs have access to all the phone facilities and can place calls,

send SMS messages etc.

10. The free, Express, version of Visual Studio can be used to create

Windows Phone applications. However, to deploy applications to a

phone device you must be a registered Windows Phone Developer. This

costs $99 per year but registration is free to students via the Microsoft

Dreamspark initiative. A registered developer can upload their

applications to Windows Phone Marketplace for sale.

Program design with Silverlight

 Introduction to Silverlight 18

2 Introduction to Silverlight

A user interface is a posh name for the thing that people actually see when they

use your program. It comprises the buttons, text fields, labels and pictures that

the user actually works with to get their job done. Part of the job of the

programmer is to create this “front end” and then put the appropriate behaviors

behind the screen display to allow the user to drive the program and get what

they want from it. In this section we are going to find out about Silverlight, and

how to use it to create a user interface for our programs.

2.1 Program design with Silverlight
It turns out that most programmers are not that good at designing attractive user

interfaces (although I‟m sure that you are). In real life a company will employ

graphic designers who will create artistic looking front ends. The role of the

programmer will then be to put the code behind these displays to get the required

job done. Silverlight recognises this process by enforcing a very strong

separation between the screen display design and the code that is controlled by

it. This makes it easy for a programmer to create an initial user interface which

is subsequently changed by a designer into a much more attractive one. It is also

possible for a programmer to take a complete user interface design and then fit

the behaviours behind each of the display components.

Development Tools

The user interface designer uses the Expression Blend tool and the programmer

uses the Visual Studio tool to create the code. The Silverlight system provides a

really easy way for combining user interface designs with code. A good way to

work is for the programmer to use a “placeholder” design to create the program

behaviours and then incorporate the final designs later in the production process.

The Windows Phone SDK (Software Development Kit) includes versions of

Visual Studio and Expression Blend that can be used in this way.

The Metro Design Style

From a design point of view a nice thing about Windows Phone is that it brings

with it a whole set of design guidelines which are referred to as “Metro”. This

sets out how controls are supposed to look and establishes a set of criteria that

your applications should meet if they are to be “good looking” Windows Phone

applications. This style regime is carried over into the built in components that

are provided for you to use in your programs. The happy consequence of this is

that if you use the Buttons, TextFields and other components that are supplied

with Visual Studio you will be automatically adhering to the style guidelines.

This is a great help those of us who are not very good at design because it means

that we are only ever going to use things that look right. Of course you can

completely override the properties of the supplied components if you really want

purple text on an orange background but I would not really advise this.

There is actually a Metro style document you can read if you really want to

know how to make “proper looking” programs. This is well worth a look if you

want to publish your programs in the Marketplace, where people will have

certain expectations of how things should look and work. You can find the

document here:

Program design with Silverlight

 Introduction to Silverlight 19

http://download.microsoft.com/download/D/8/6/D869941E-455D-4882-A6B8-
0DBCAA6AF2D4/UI%20Design%20and%20Interaction%20Guide%20for%20Windows%20Phone%207%20
Series.pdf

For the purpose of this course we are going to use the Silverlight design tools in

Visual Studio. These do not give all the graphical richness that you can achieve

with Expression Blend, but for programmers they are more than adequate. This

should make sure that our applications adhere to the Metro guidelines and are

clean and simple to use.

Silverlight elements and objects

From a programming point of view each of the elements on the screen of a

display is actually a software object. We have come across these before. An

object is a lump of behaviours and data. If we were creating an application to

look after bank accounts we could create a class to hold account information:

public class Account
{
 private decimal balance ;
 private string name ;

 public string GetName ()
 {
 return name;
 }

 public bool SetName (string newName){
 {
 // Final version will validate the name
 name = newName;
 return true;
 }

 // Other get and set methods here

}

This class holds the amount of money the account holder has (in the data

member called balance) and the name of the account holder (in the data

member called Name). If I want to make a new Account instance I can use the

new keyword:

Account rob = new Account();
rob.SetName("Rob");

This makes a new Account instance which is referred to by the reference rob.

It then sets the name member of this Account to “Rob”. We are used to creating

objects which match things we want to store. When we make games we will

invent a Sprite class to hold the picture of the sprite on the screen, the position

of the sprite and other information. Objects are a great way to represent things

we want to work with. It turns out that objects are also great for representing

other things too, such as items on a display. If you think about it, a box

displaying text on a screen will have properties such as the position on the

screen, the colour of the text, the text itself and so on.

Consider the following:

Program design with Silverlight

 Introduction to Silverlight 20

This is a very simple Windows Phone program that I‟ve called an “Adding

Machine”. You can use to perform very simple sums. You just enter two

numbers into the two text boxes at the top and then press the equals button. It

then rewards you with the sum of these two numbers. At the moment it is

showing us that 0 plus 0 is 0. Each individual item on the screen is called a

UIElement or User Interface element. I‟m going to call these things elements

from now on.There are seven of them on the screen above:

1. The small title “Adding Machine”. This is known in the Windows

Phone style guidelines as the „Application Title‟.

2. The larger title “Add”. This is known as the „Page Title‟.

3. The top textbox, where I can type a number.

4. A text item holding the character +.

5. The bottom textbox, where I can type another number.

6. A button, which we press to perform the sum.

7. A result textbox, which changes to show the result when the button is

pressed.

Each of these items has a particular position on the screen, particular size of text

and lots of other properties too. We can change the colour of the text in a text

box, whether it is aligned to the left, right or centre of the enclosing box and lots

of other things too.

There are three different types of element on the screen:

1. TextBox – allows the user to enter text into the program.

2. TextBlock – a block of text that just conveys information.

3. Button – something we can press to cause events in our program.

If you think about it, you can break the properties of each of these elements

down into two kinds, those that all the elements need to have, for example

position on the screen, and those that are specific to that type of element. For

example only a TextBox needs to record the position of the cursor where text is

being entered. From a software design point of view this is a really good use for

a class hierarchy.

Program design with Silverlight

 Introduction to Silverlight 21

FrameworkElement

TextBlock

TextBox ContentControl

ButtonBase

Button

Control

Above you can see part of the hierarchy that the Silverlight designers built. The

top class is called FrameworkElement. It contains all the information that is

common to all controls on the screen. Each of the other classes is a child of this

class. Children pick up all the behaviours and properties of their parent class and

then add some of their own. Actually the design is a bit more complex than

shown above, the FrameworkElement class is a child of a class called

UIElement, but it shows the principles behind the controls.

Creating a class hierarchy like this has a lot of advantages. If we want a custom

kind of textbox we can extend the TextBox class and add the properties and

behaviours that we need. As far as the Silverlight system is concerned it can treat

all the controls the same and then ask each control to draw itself in a manner

appropriate to that component.

So, remember that when we are adjusting things on a display page and creating

and manipulating controls we are really just changing the properties of objects,

just as we would change the name and balance values of a bank account object.

When we design a Silverlight user interface we set the data inside the display

elements to position them on the display. Next we are going to find out how to

do this.

The toolbox and design surface

We could start by investigating how the Adding Machine above was created. It

turns out to be really easy (we will take a really detailed look at Visual Studio in

the next section). When we create a brand new Silverlight project we get an

empty page and we can open up a ToolBox which contains all the controls that

we might want to add to the page:

Program design with Silverlight

 Introduction to Silverlight 22

We can assemble the user interface by simply dragging the controls out of the

toolbox onto the design surface.

Above shows the effect of dragging a TextBox out of the Toolbox area and

dropping it onto the Windows Phone page. If we run the program now we can

see our textbox on the screen:

Program design with Silverlight

 Introduction to Silverlight 23

This is the Windows Phone emulator running our program, which is showing the

textbox on the screen.

If you have ever done any Windows Forms development (perhaps using earlier

versions of .NET) then this will all be very familiar to you. If you haven‟t then it

is a quick and easy way to build up a user interface. Because all the controls are

already styled in the Metro style, just like the Windows Phone user interface,

you are automatically building an application that looks like a “real” one. The

designer has lots of nice features that make it very easy to align your controls

too, which is nice.

Managing element names in Visual Studio

Once we have put some elements on the screen we need to set the names of them

to sensible values. The designer will give each element a meaningless name like

“TextBox1”, which I like to change to something which has meaning in the

context of the system being created.

We can change the properties of things on the screen by clicking on the item in

the designer and then seeking out the Properties pane in Visual Studio for that

item.

Program design with Silverlight

 Introduction to Silverlight 24

Above you can see the properties window for the top TextBox on the page. The

name of an element is given at the very top of the window.

I have changed the name of this textbox to firstNumberTextBox. You‟ll

never guess what the second text box is called. Note that the name of a property

in this context is actually going to set the name of the variable declared inside

the adding machine program. In other words, as a result of what I‟ve done above

there will now be the following statement in my program somewhere:

TextBox firstNumberTextBox;

Visual Studio looks after the declaration of the actual C# variables that represent

the display elements that we create and so we don‟t need to actually worry about

where the above statement is. We just have to remember that this is how the

program works.

Properties in Silverlight elements

Once we have given our TextBox variable a proper name we can move on to

give it all the properties that are required for this application. We can also

change lots of properties for the textbox including the width of the textbox, the

margin (which sets the position) and so on. The values that you see in the

properties windows above are ones that reflect the current position and size of

the item on the screen. If I drag the item around the margin values will change.

If I change the values in the window above I will see the item move in the design

surface. Again, if you are a Windows Forms kind of person you will see nothing

strange here. But you must remember that all we are doing is changing the

content of an object. The content of the properties window will change

depending on what item you select

Silverlight properties and C# properties

When we talk about the “properties” of Silverlight elements on the page (for

example the text displayed in a TextBox) we are actually talking about property

values in the class that implements the TextBox. In other words, when a

program contains a statement such as:

resultTextBlock.Text = "0";

Program design with Silverlight

 Introduction to Silverlight 25

- this will cause a Set method to run inside the resultTextBlock object

which sets the text on the TextBlock to the appropriate value. At this point it is

worth refreshing our understanding of properties in C# so that can get a good

understanding of what is happening here.

C# classes and properties

C# classes can contain member data (the name of the person owning a particular

bank account) and behaviours (methods called GetName and SetName that let a

program find out this name and change it). Properties provide a way of

representing data inside a class that is easier to work with than using Get and

Set methods . They are used extensively in managing Silverlight elements, and

therefore worth a refresher at this point.

A property is a member of a class that holds a value. We have seen that we can

use a member variable to do this kind of thing, but we need to make the member

value public. For example, the bank may ask us to keep track of staff members.

One of the items that they may want to hold is the age of the bank account

holder. We could do it like this:

public class Account
{
 public int Age;
}

The class contains a public member. I can get hold of this member in the usual

way:

Account s = new Account ();
s.Age = 21;

I can access a public member of a class directly; just by giving the name of the

member. The problem is that we have already decided that this is a bad way to

manage our objects. There is nothing to stop things like:

s.Age = -100210232;

This is very naughty, but because the Age member is public we cannot stop it.

Creating Get and Set methods

To get control and do useful things we can create get and set methods which are

public. These provide access to the member in a managed way. We then make

the Age member private and nobody can tamper with it:

public class Account
{
 private int age;
 public int GetAge()
 {
 return this.age;
 }
 public void SetAge(int inAge)
 {
 if ((inAge > 0) && (inAge < 120))
 {
 this.age = inAge;
 }
 }
}

We now have complete control over our property, but we have had to write lots

of extra code. Programmers who want to work with the age value now have to

call methods:

Program design with Silverlight

 Introduction to Silverlight 26

Account s = new Account ();
s.SetAge(21);
Console.WriteLine ("Age is : " + s.GetAge());

Using Properties

Properties are a way of making the management of data like this slightly easier.

An age property for the StaffMember class would be created as follows:

public class Account
{
 private int ageValue;

 public int Age
 {
 set
 {
 if ((value > 0) && (value < 120))
 ageValue = value;
 }
 get
 {
 return ageValue;
 }
 }
}

The age value has now been created as a property. Note how there are get and

set parts to the property. These equate directly to the bodies of the get and set

methods that I wrote earlier. The really nice thing about properties is that they

are used just as the class member was:

Account s = new Account ();
s.Age = 21;
Console.WriteLine ("Age is : " + s.Age);

When the Age property is given a value the set code is run. The keyword

value means “the thing that is being assigned”. When the Age property is being

read the get code is run. This gives us all the advantages of the methods, but

they are much easier to use and create.

Data validation in properties

If we set an age value to an invalid one (for example we try to set the age to 150)

the set behaviour above will perform validation and reject this value (nobody

over 120 is allowed to have an account with our bank), leaving the age as it was

before. A program that is using our Age property has no way of knowing

whether an assignment to the property has failed unless it actually checks that

the assignment worked.

Account s = new Account ();
int newAge = 150;
s.Age = newAge;
if (s.Age != newAge)
 Console.WriteLine ("Age was not set");

The code above sets the age to 150, which is not allowed. However, the code

then tests to see if the value has been set. In other words, it is up to the users of

your properties to make sure that values have been set correctly. In the case of a

Set method the method itself could return false to indicate that the set has failed,

here the user of the property has to do a bit more work.

Program design with Silverlight

 Introduction to Silverlight 27

Multiple ways of reading a property

Properties let us do other clever things too:

public int AgeInMonths
{
 get
 {
 return this.ageValue*12;
 }
}

This is a new property, called AgeInMonths. It can only be read, since it does

not provide a set behaviour. However, it returns the age in months, based on the

same source value as was used by the other property. This means that you can

provide several different ways of recovering the same value. You can also

provide read-only properties by leaving out the set behaviour. Write only

properties are also possible if you leave out the get.

Properties and notifications

You may be asking the question “Why do we use properties in Silverlight

elements?” It makes sense to use them in a bank account where I want to be able

to protect the data inside my objects but in a Silverlight program, where I can

put any text I like inside a TextBlock, there seems to be no point in having

validation of the incoming value. In fact running this code will slow down the

setting process. So, by making the Text value a public string we could make the

program smaller and faster, which has to be a good thing. Right?

Well, sort of. Except that when we change the text on a TextBlock we would

like the text on the Silverlight page in front of the user to change as well. This is

how our adding machine will display the result. If a program just changed the

value of a data member there would be no way the Silverlight system could

know that the message on the screen needs to be updated.

However, if the Text member is a property when a program updates it the set

behaviour in the TextBlock will get to run. The code in the set behaviour can

update the stored value of the text field and it can also trigger an update of the

display to make the new value visible. Properties provide a means by which an

object can get control when a value inside the object is being changed, and this

is extremely important. The simple statement:

resultTextBlock.Text = "0";

- may cause many hundreds of C# statements to run as the new value is stored in

the TextBlock and an update of the display is triggered to make the screen

change.

Page design with Silverlight

We can complete the page of our Adding machine by dragging more elements

onto the screen and setting their properties. Remember that the first thing I do

after dragging an item onto the page is set the name of that element. One of the

first symptoms of a badly written program (for me) is a page that contains lots of

elements called “Button1” and “Button2”.

From the sequence above I hope you can see that designing a page looks quite

easy. You just have to drag the elements onto the page and then set them up by

using the properties of each one. If you read up on the Silverlight language you

will find that you can give elements graphical properties that can make them

transparent, add images to their backgrounds and even animate them around the

screen. At this point we have moved well beyond programming and entered the

realm of graphic design. And I wish you the best of luck.

Understanding XAML

 Introduction to Silverlight 28

2.2 Understanding XAML
In the above section we saw that Silverlight design can be broken down into

some element manipulation using the Visual Studio designer and some property

setting on the elements that you create. Once you know how to do these things,

you can create every user interface you need.

It is perfectly true that you can work this way, and you could even think about

making every program you ever need without touching XAML, although I think

you would be missing out on some of the most powerful features of Silverlight.

At the moment everything seems quite sensible and we are all quite happy (at

least I hope so). So this would seem a good point to confuse everybody and start

to talk about XAML. The letters stand for “Extensible Application Markup

Language” which I‟m sure makes everything clear. Or not. XAML is the

language used by Silverlight to describe what a page should look like.

Why have XAML?

You might be wondering why we have XAML. If you have used Windows

Forms before you might think that you managed perfectly well without this new

language getting in the way. XAML provides a well-defined interface between

the look of an application (the properties of the display elements that the user

sees) and the behaviour of the application (what happens behind the display to

make the application work).

The split is a good idea because, as we have mentioned before, there is no

guarantee that a good programmer will be a good graphic designer. If you want

to make good looking applications you really have to have both designers and

programmers working on your solution. This leads to a problem, in that ideally

you want to separate the work of the two, and you don‟t want the programmer

unable to do anything until the graphical designer has finished creating all the

menu screens.

XAML solves both these problems. As soon as the requirements of the user

interface have been set out (how many text boxes, how many buttons, what is

there on each page etc) then the designer can work on how each should look,

while the programmer can focus on what they do. The XAML files contain the

description of the user interface components and the designer can work on the

appearance and position of these elements to their heart‟s content while the

programmer gets one with making the code that goes behind them. There is no

need for the programmer to give the designer their code files since they are

separate from the design, and vice versa.

XAML file content

A XAML file for a given page on the display will contain constructions that

describe all the elements on it. Each description will contain a set of named

properties. The line of XAML that describes our first TextBox is as given

below:

<TextBox Height="72" HorizontalAlignment="Left"
Margin="8,19,0,0" Name="firstNumberTextBox" Text="0"
VerticalAlignment="Top" Width="460" TextAlignment="Center" />

If you compare the information in the Properties pane with the values in the

XAML above you will find that they all line up exactly. The name of the

TextBox is firstNumberTextBox, the width is 460 and so on.

If you were wondering how the page and the properties pane kept themselves

synchronised it is because they both used the XAML description file for the

page. When I move things around the page the editor updates the XAML with

the new positions. The properties window reads this file and updates its values

accordingly.

Understanding XAML

 Introduction to Silverlight 29

XAML is described as a declarative language. This means it just tells us about

stuff. It is designed to be understandable by humans, which is why all the

properties above have sensible names. If you want to, you can edit the text

contents of the XAML files within Visual Studio and change both the

appearance in the designer and also the property values.

XAML turns out to be very useful. Once you get the hang of the information

used to describe components it turns out to be much quicker to add things to a

page and move them about by just editing the text in the XAML file, rather than

dragging things around or moving between property values. I find it particularly

useful when I want a large number of similar elements on the screen. Visual

Studio is aware of the syntax used to describe each type of element and will

provide Intellisense support help as you go along.

When an application is built the XAML file is converted into a file containing

low level instructions that create the actual display components when the

program runs. This means that declaring a control inside the XAML file for a

page will mean that the control will exist as an object our program can use.

XAML looks a lot like XML, an eXtensible MarkUp language you may have

heard of. The way that items and elements are expressed is based on XML

syntax and it is quite easy to understand.

Extensible Markup Languages

At this point you may be wondering what an eXtensible Markup Languge

actually is. Well, it is a markup language that is extensible. I‟m sure that helped.

What we mean by this is that you can use the rules of the language to create

constructions that describe anything. English is a lot like this. We have letters

and punctuation which are the symbols of English text. We also have rules

(called grammar) that set out how to make up words and sentences and we have

different kinds of words. We have nouns that describe things and verbs that

describe actions. When something new comes along we invent a whole new set

of word to describe them. Someone had to come up with the word “computer”

when the computer was invented, along with phrases like “boot up”, “crash” and

“too slow”.

XML based languages are extensible in that we can invent new words and

phrases that fit within the rules of the language and use these new constructions

to describe anything we like. They are called markup languages because they are

often used to describe the arrangement of items on a page. The word markup

was originally used in printing when you wanted to say things like “Print the

name Rob Miles in very large font”. The most famous markup language is

probably HTML, HyperText Markup Language, which is used by the World

Wide Web to describe the format of web pages.

Programmers frequently invent their own data storage formats using XML. As

an example, a snippet of XML that describes a set of high scores might look as

follows:

<?xml version="1.0" encoding="us-ascii" ?>
<HighScoreRecords count="2">
 <HighScore game="Breakout">
 <playername>Rob Miles</playername>
 <score>1500</score>
 </HighScore>
 <HighScore game="Space Invaders">
 <playername>Rob Miles</playername>
 <score>4500</score>
 </HighScore>
</HighScoreRecords>

This is a tiny XML file that describes some high score records for a video game

system. The HighScoreRecords element contains two HighScore items, one

Understanding XAML

 Introduction to Silverlight 30

for Breakout and one for Space Invaders. The two high score items are

contained within the HighScoreRecords item. Each of the items has a

property which gives the name of the game and also contains two further

elements, the name of the player and the score that was achieved. This is quite

easy to us to understand. From the text above it is not hard to work out the high

score for the Space Invaders game.

The line at the very top of the file tells whatever wants to read the file the

version of the XML standard it is based on and the encoding of the characters in

the file itself. XAML takes the rules of an extensible markup language and uses

them to create a language that describes components on a page of a display.

<TextBox Height="72" HorizontalAlignment="Left"
Margin="8,19,0,0" Name="firstNumberTextBox" Text="0"
VerticalAlignment="Top" Width="460" TextAlignment="Center" />

If we now take a look at the description of a TextBox I think we can see that the

designers of XAML have just created field names that match their requirements.

XML Schema

The XML standard also contains descriptions how to create a schema which

describes a particular document format. For example, in the above the schema

for the high score information would say that a HighScore must contain a

PlayerName and a Score property. It might also say things like the

HighScore can contain a Data value (the date when the high score was

achieved) but that this is not required.

This system of standard format and schema means that it is very easy for

developers to create data formats for particular purposes. This is helped by the

fact that there are a lot of design tools to help create documents and schemas.

The .NET framework even provides a way by which a program can save an

object as a formatted XML document. In fact the Visual Studio solution file is

actually stored as an XML document.

As far as we are concerned, it is worth remembering that XML is useful for this

kind of thing, but at the moment I want to keep the focus on XAML itself.

XAML and pages

A file of XAML can describe a complete page of the Windows Phone display.

When you create a brand new Windows Phone project you get a page that just

contains a few elements. As you put more onto the page the file grows as each

description is added. Some elements work as containers which means that they

can hold other components. They are very useful when you want to lay things

out, for example there is a Grid element which can hold a set of other elements

in a grid arrangement. The XAML code can also contain the descriptions of

animations and transitions that can be applied to items on the page to make even

more impressive user interfaces.

One thing you need to bear in mind at this point is that XAML has no concept of

hierarchy. It is not possible to create an XAML element which is derived from

another. We do this in software so that we can create a new object which is

similar to an existing one. We know that Silverlight elements are represented in

software terms by an object which is part of a class hierarchy. However, when

they are written in a XAML file they are all expressed as items which are at the

same level.

We are not going to spend too much time on the layout aspects of XAML;

suffice it to say that you can create incredibly impressive front ends for your

programs using this tool. There is also a special design tool called “Expression

Blend” for use by graphical designer. However, it is important to remember that

at the end of the day the program is working in terms of objects that expose

properties and methods that we can use to work on the data inside them. In the

Creating an application with Silverlight

 Introduction to Silverlight 31

case of our user interface elements, if we change the properties of the element

the display the user sees will change to reflect this. The objects represent the

items on the screen of our program.

2.3 Creating an application with Silverlight
Now that we know that items on the screen are in fact the graphical realisation of

software objects, the next thing we need to know is how to get control of these

objects and make them do useful things for us in our application. To do this we

will need to add some C# program code that will perform the calculation that the

adding machine needs.

Whenever Visual Studio makes a XAML file that describes a page on the

Windows Phone display it also makes a program file to go with it. This is where

we can put code that will make our application work. If you actually take a look

in the file MainPage.xaml.cs above you will find that it doesn‟t actually

contain much code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using Microsoft.Phone.Controls;

namespace AddingMachine
{
 public partial class MainPage : PhoneApplicationPage
 {
 // Constructor
 public MainPage()
 {
 InitializeComponent();
 }
 }
}

Most of the file is using statements which allow our program to make direct

use of classes without having to give the fully formed name of each of them. For

example, rather than saying System.Windows.Controls.Button we can say

Creating an application with Silverlight

 Introduction to Silverlight 32

Button, because the file contains the line using

System.Windows.Controls.

The only method in the program is the constructor of the MainPage class. As

we know, the constructor of a class is called when an instance of the class is

created.

All the constructor does is call the method InitializeComponent. If you go

take a look inside this method you will find the code that actually creates the

instances of the display elements. This code is automatically created for you by

Visual Studio, based on the XAML that describes your page. It is important that

you leave this call as it is and don‟t change the content of the method itself as

this will most likely break your program.

Note that at this point we are deep in the “engine room” of Silverlight. I‟m only

really telling you about this so that you can understand that actually there is no

magic here. If the only C# programs you have seen so far start with a call of the

Main method then it is important that you understand that there is nothing

particularly special about a Silverlight one. There is a Main method at the base

of a Silverlight application; it starts the process of building the components and

putting them on the screen for the user to interact with.

The nice thing as far as we are concerned is that we don‟t need to worry about

how these objects are created and displayed, we can just use the high level tools

or the easy to understand XAML to design and build our display.

Building the application

We can now see how to create the user interface for our number adding program.

If we add all the components and then start the application it even looks as

though it might do something for us. We can type in the numbers that we want to

add, and even press the equals button if we like:

If we touch inside a TextBox item the keyboard appears and we can type

numbers into the box. If we then touch anywhere else on the screen the keyboard

moves out of the way. We seem to have got a lot of behaviour for very little

effort, which is nice. However, we need to add some business logic of our own

now to get the program to work out the answer and display it.

Creating an application with Silverlight

 Introduction to Silverlight 33

Calculating the result

At the moment our program looks good, but doesn‟t actually do anything. We

need to create some code which will perform the required calculation and

display the result. Something like this.

private void calculateResult()
{
 float v1 = float.Parse(firstNumberTextBox.Text);
 float v2 = float.Parse(secondNumberTextBox.Text);

 float result = v1 + v2;

 resultTextBlock.Text = result.ToString();
}

The TextBox objects expose a property called Text. This can be read or

written. Setting a value into the Text property will change the text in the

textbox. Reading the Text property allows our program to read what has been

typed into the textbox.

The text is given as a string, which must be converted into a numeric value if our

program is to do any sums. You may have seen the Parse method before. This

takes a string and returns the number that the string describes. Each of the

numeric types (int, float, double etc) has a Parse behaviour which will take a

string and return the numeric value that it describes. The adding machine that we

are creating can work with floating point numbers, so the method parses the text

in each of the input textboxes and then calculates a result by adding them

together.

Finally it takes the number that was calculated, converts it into a string and then

sets the text of the resultTextBlock to this string. ToString is the reverse

of Parse, the “anti-parse” if you like. It provides the text that describes the

contents of an object. In the case of the float type, this is the text that describes

that value.

Now we have our code that works out the answer, we just have to find a way of

getting it to run when the user presses the equals button.

Events and Programs

If you have done any kind of form based programming you will know all about

events. If you haven‟t then don‟t worry, we now have a nice example of a

situation where we need them, and they are not that frightening anyway. In the

olden days, before graphical user interfaces and mice, a program would

generally start at the beginning, run for a while and then finish.

But now we have complicated and rich user interfaces with lots of buttons and

other elements for the user to interact with. The word processor I am using at the

moment exposes hundreds of different features via buttons on the screen and

menu items. In this situation it would be very hard to write a program which

checked every user element in turn to see if the user has attempted to use that.

Instead the system waits for these display elements to raise an event when they

want attention. Teachers do this all the time. They don‟t go round the class

asking each child in turn if they know the answer. Instead they ask the children

to raise their hands. The “hand raising” is treated as an event which the teacher

will respond to.

Using events like this makes software design a lot easier. Our program does not

have to check every item on the screen to see if the user has done anything with

it, instead it just binds to the events that it is interested in.

To make events work a programing language needs a way of expressing a

reference to a method in an object. C# provides the delegate type which does

Creating an application with Silverlight

 Introduction to Silverlight 34

exactly that. You can create a delegate type that can refer to a particular kind of

method and then create instances of that delegate which refer to a method in an

object. Delegates are very powerful, but can be a bit tricky to get your head

around. Fortunately we don‟t have to worry about how delegates work just at the

moment, because we can get Silverlight and Visual Studio to do all the hard

work for us.

Events in Silverlight

In C# an event is delivered to an object by means of a call to a method in that

object. In this respect you can regard an event and a message as the same thing.

From the point of view of our adding machine we would like to have a particular

method called when the "equals" button is pressed by the user. This is the only

event that we are interested in. When the event fires we want it to call the

calculateResult method above.

We can use the editor in Visual Studio to bind this event for us. This is actually

so easy as to appear magical. To connect a method to the click event of a

particular button we just have to double click on that button on the editing

surface.

The picture above shows where we should double click in Visual Studio. When

we double click on the button Visual Studio sets the properties of the button in

XAML to connect the button to a method in our page. It also creates an empty

version of that method and takes us straight to this method, so that we can start

adding the code that must run when the button is clicked.

If we just single click on the button this has the effect of selecting it, so that we

can move it around the display and change its size. If you want to connect an

event handler it must be a double click. If we do this we will see a display like

the one shown below.

Now, all we have to do is add the code to make this work.

Creating an application with Silverlight

 Introduction to Silverlight 35

private void calculateResult()
{
 float v1 = float.Parse(firstNumberTextBox.Text);
 float v2 = float.Parse(secondNumberTextBox.Text);

 float result = v1 + v2;

 resultTextBlock.Text = result.ToString();
}

private void equalsButton_Click(object sender,
RoutedEventArgs e)
{
 calculateResult();
}

The event handler that is created is automatically given a sensible name by

Visual Studio. It takes the name of the element and adds the text “_Click” on the

end. This underlines the importance of giving your elements sensible names

when you create them, because this name makes it very easy for anyone to

understand what is happening.

The program works fine, as you can see above. Of course it is not perfect. If a

user types in text rather than a numeric value the program will fail with an

exception, but we will deal with this later.

Managing Event Properties

At the moment the process of connecting event handlers to events looks a bit

magic. And if there is one thing I‟m sure of, it is that computers are not magical.

Ever. So now we should really find out how this event process actually works.

We can start by taking a look at the properties of the equals button in our

application.

Creating an application with Silverlight

 Introduction to Silverlight 36

If we single click on the button in the editor and then take a look at the property

information in Visual Studio we see something very like the display above. The

information here sets out the position of the button on the screen and a bunch of

other things too. The property window has two tab panels though. If we look at

the top we will find one with the name Events, and a rather scary looking

lightning bolt icon. If we click on the Events tab the display changes to display

the events that this element can generate, and which are presently connected to

code:

The Properties window is now showing us all the events that a button can

generate. At the moment only one event has a method connected to it, and that is

the Click event. This is linked to the equalsButton_Click method. If we

wanted to disconnect the Click event from the method we could do this by just

deleting the name of the handler from this window. We could cause problems

for ourselves by replacing the content of that part of the form with something

stupid like “ILikeCheese”. If we do this the program will not work (or even

build) any more because the Click event is now connected to something that

does not exist.

Events and XAML

Up until now we have worked on the principle that the properties display in

Visual Studio is driven by the XAML file which describes the components on

What we have learned

 Introduction to Silverlight 37

the screen. We can prove that this is the case by taking a look at the Button

description in the XAML file for the MainPage:

Button Content="equals" Height="72"
HorizontalAlignment="Left" Margin="158,275,0,0"
Name="equalsButton" VerticalAlignment="Top" Width="160"
Click="equalsButton_Click" />

As you can see; the description of Button now contains an item that connects the

Click event with the name of a method.

One important point to note here is that if the XAML file says that a button is

connected to a method with a particular name the program will fail to run

correctly if that method is not there.

What we have learned
1. Silverlight provides a way of designing graphical user interfaces.

2. A Silverlight user interface is made up of elements which are things

such as text boxes and buttons.

3. The Visual Studio integrated development environment provides an

editor which can be used to add Silverlight user interface elements onto

the pages of an application.

4. From a software point of view each of the user interface elements is

represented by a particular type of object in a class hierarchy which is

part of Silverlight.

5. Designers can modify the properties of the elements using the design

tools in Visual Studio, either by changing them on the design surface or

by modifying their properties.

6. The actual properties of Silverlight elements in a project are held in text

files in the XAML format. These files are updated by the design tools

and used when the program is built to create the software objects that

are used in the solution.

7. XAML (eXtensible Application Markup Language) is an XML based

language that specifies all the properties of the design elements on a

page. It provides a separation between the appearance and properties of

the display elements and the program code that sits behind them.

8. XML (eXtensible Markup Language) is a way of creating customised

languages that can be used to describe things.

9. Elements can generate events which may be bound to methods inside a

C# program. The method name is given in the XML description for the

element.

10. The methods that are bound to the events can provide the business logic

for a user application.

Projects and Solutions

 Introduction to Visual Studio 2010 38

3 Introduction to Visual Studio
2010

When you write programs for Windows Phone you will be using Visual Studio.

In this section we will take a look at the process of creating and managing

Windows Phone projects. We will also find out how to run and debug Windows

Phone programs using the Windows Phone emulator program. This allows you

to test your programs without needing to have a device.

However, this is not just a look at how to use Visual Studio. That would be too

easy. We are also going to take a peek underneath the hood and find out how

Visual Studio manages the content that makes up our solutions. This will stand

us in good stead when we come to create Windows Phone applications.

3.1 Projects and Solutions
The first thing we are going to look at is just how Visual Studio manages the

programs that you create.

Creating programs

We know that when we create a program we write a set of instructions in a high

level language (which if we are lucky is C#). The compiler is a program that

takes the high level instructions which the programmer created and converts

them into lower level instructions for execution on the computer. We also know

now that in Microsoft .NET the compiler produces output in an intermediate

language (MSIL) which is then “Just In Time” compiled into hardware

instructions when the program actually runs.

The bare minimum you need to create a working program is therefore a C#

source file (a text file with the language extension .CS) and a compiler. The

compiler takes the source file and converts it into an executable file (a binary file

with the language extension .EXE) which can then be used by the .NET runtime

system for whatever platform you want to execute the program on. The use of

MSIL means that I can take exactly the same .EXE file and run it on completely

different hardware platforms if I wish.

The .NET SDK

If you just want to create programs for the Windows PC and you don‟t want to

download all of Visual Studio you can actually just get the compiler and

runtimes for .NET from here:

http://msdn.microsoft.com/en-us/netframework/aa569263.aspx

When you install the framework you get a command line compiler which can

take C# source files and convert them into executable ones using console

commands such as:

csc MyProg.cs

This command will compile the file MyProg.cs and create a file called

MyProg.exe.

The command prompt compiler is also available if you have installed Visual

Studio.

Projects and Solutions

 Introduction to Visual Studio 2010 39

It is possible to use these simple tools to create very large programs, but it is also

rather hard work. You have to create large, complicated commands for the

compiler and you need to make sure that whenever you make a new version of

your system that you compile every source file that you need to. Furthermore

you have manage and incorporate all the media that your system needs and when

it comes to debugging your program all you are going to get is text messages

when the program fails.

Visual Studio

Visual Studio addresses all the problems above. It provides a single environment

in which you can edit, build and run your programs. It also provides projects and

solutions which let you organise your systems and manage what goes into them.

Finally, just to make it even more wonderful, it provides a full debugging

solution that lets you single step through your program and even execute

individual statements and change the values in variables as your program runs.

Skill with Visual Studio and an understanding of how it works is very

marketable.

The first thing that hits you with Visual Studio is the sheer number of buttons

and controls that you have to deal with. If we start opening menus it gets even

worse. However, the good news is that you don‟t have to press all the buttons to

get started. We are just going to take a look at the basics of the program. You

can pick up more advanced features as we go along.

The first aspect of Visual Studio we are going to take a look at is that of projects

and solutions. You will use these to organise any systems that you create. Visual

Projects and Solutions

 Introduction to Visual Studio 2010 40

Studio is not able to run any program code which is not in a project or solution.

The good news is that to get started you can use one of the templates that

provide a starting point for particular project types. We will be using the

Windows Phone templates for now. There are many other templates for different

kinds of programs.

Visual Studio makes a distinction between a project and a solution when

organising your work. It is important that you understand the difference between

these two. Let‟s start by looking at a project.

A Simple Visual Studio Project

A project is a container for a set of program files and resources which generate a

particular assembly file. So, what does that mean? Well, the simplest possible

project would be one containing a single program file. You can create one of

these by asking Visual Studio to create a Console Application. We can do this by

using the File>New>Project command to open up the New Project dialogue:

The New Project dialogue shows us all the possible project templates that are

supplied with Visual Studio. A template is a pre-set collection of files, folders

and resources which is used for a particular type of application. We can add to

the template once it has been created, and it is even possible to create customised

templates of our own. The projects that we saw earlier were created using

templates for creating Windows Phone applications.

If we select the template for a Windows Console Application as shown above

Visual Studio will create the simplest possible project for us. This is what it

would look like in Visual Studio Solution explorer.

This project contains a single program file, called Program.cs. The program

source in this file is very simple too:

Projects and Solutions

 Introduction to Visual Studio 2010 41

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SimpleProject
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

If we ask Visual Studio to run the program it will compile the Program class

and then run the application by calling the Main method. This is how C#

programs work. The output of the build process on this program would be a file

called Program.exe which can be run as a program on a Windows PC.

The program runs in the command window, which will pop up briefly onto the

screen when the Main method runs. We will look at running and debugging

programs a little later in this section.

Making a program from several source files

It is often sensible to create a program from a number of class files. These can be

separate parts written by another programmer or you might use a library of C#

code provided by somebody else. You can do this in Visual Studio by adding

new a new class to your project. The solution explorer in Visual Studio will

show you the new file in the project:

The file Library.cs is now part of the project and when Visual Studio builds

the project it knows to compile the Library.cs source file along with the

Program.cs one. However, the output of this build will be a single executable

file called Program.exe. Of course only one of these source files can have a

Main method, otherwise the compiler will become confused about where the

program is supposed to start running. The Library class is presently empty:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SimpleProject
{
 class Library
 {
 }
}

We can create instances of the class in our Main method:

Projects and Solutions

 Introduction to Visual Studio 2010 42

namespace SimpleProject
{
 class Program
 {
 static void Main(string[] args)
 {
 Library l = new Library();
 }
 }
}

Namespaces and Projects

The Library class and the Program class are in the SimpleProject namespace.

From a design point of view it is often sensible to have different parts of a

system in separate namespaces. This is particularly important if the programs are

being built by different people. If the programmer writing the library code

decides that the name Save is appropriate for a particular method you don‟t

want that clashing with a Save method that you want to use.

Remember that namespaces are a logical way of grouping items together. They

have no bearing on where the actual code is physically located. We can put the

library class into a separate namespace simply by changing the name:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SimpleLibrary
{
 class Library
 {
 }
}

The Library class is now in the SimpleLibrary namespace. If we try to build

the project we get some errors:

This is because the Main method in the Program class is trying to create an

instance of the Library class. This class is no longer in the SimpleProject

namespace, and so we get the errors. Fortunately the Description field of the

error list tries to help by telling us that we might be missing a using directive.

This is the case. We can fix the problem by adding a using directory to tell the

compiler to look in the SimpleLibrary namespace if it needs to find a class:

Projects and Solutions

 Introduction to Visual Studio 2010 43

using SimpleLibrary;

namespace SimpleProject
{
 class Program
 {
 static void Main(string[] args)
 {
 Library l = new Library();
 }
 }
}

Another way to solve the problem is to use fully qualified names to access the

resources in the library:

SimpleLibrary.Library l =
 new SimpleLibrary.Library();

The thing to remember about all this is that we are simply creating names for

items in our project; we are not specifying where in the system they are stored.

When Visual Studio builds SimpleProject it will look in all the source files in

the project to find elements that it needs.

Adding Resources to a project

If your program needs to use resources (perhaps an image for splash screen

picture) you can add them to a project too. We can add a bitmap image in just

the same way as we added the new class.

When we have added the bitmap resource it appears in the Solution Explorer for

the project.

This solution now contains a bitmap file called Bitmap1.bmp. We can now

select how Visual Studio manages this content item by modifying the properties

of Bitmap1 in the solution.

Content Properties

Like everything else that Visual Studio manages, the resources added to a

project also have properties. We can work with the properties just as we work

Projects and Solutions

 Introduction to Visual Studio 2010 44

with the properties of any other item that we add to a project, we use the

properties pane.

The settings above ask Visual Studio to copy the bitmap into the same directory

as the program when it builds the project. The program can then open this file

and use it when it runs:

Bitmap b = new Bitmap("Bitmap1.bmp");

The above code would load the bitmap resource into a bitmap called b.

This is a very good way to add items to a project. Note that the properties above

are not the default ones which are set when a new item of content is added. By

default (i.e. unless you specify otherwise) the content is not copied into the

output directory.

Embedding Content in the Application itself

The above settings ask that the bitmap be stored in the same directory as the

program. This works well, but assumes that when we install the program the

image files are copied as well as the program binary.

If we want tighter coupling between a program and its resources we can request

that this resource be embedded in the program file when the program is built.

When the program is built the output executable program will contain the

bitmap. We do this by changing the properties of the content item.

The Build Action property of the Bitmap2.bmp file is now set to Embedded

Resource. Our image is now stored in the actual program file. Getting hold of

this is slightly more involved, but guaranteed to work wherever our program is

deployed, because there are no extra files:

Assembly assembly;
Stream imageStream;

assembly = Assembly.GetExecutingAssembly();
imageStream =
assembly.GetManifestResourceStream("SimpleProject.Bitmap2.bmp
");

Bitmap b = new Bitmap(imageStream);

Projects and Solutions

 Introduction to Visual Studio 2010 45

The above code will load a bitmap from an embedded resource and store it in a

bitmap called b. Note that when we get a resource from the assembly we have to

give the namespace of the project along with the resource name.

One of the design decisions we will have to make later in this text is whether or

not to incorporate things like pictures in the program executable file, or as

resources which are stored in the same folder as the program itself.

Assembly files and Executable files

At this point you might be starting to wonder about the output file. It seemed

simple enough when we were just compiling a simple C# program, but now it

contains a picture as well. This is because the output of a Visual Studio build is

not just a program; it is in fact an assembly. An assembly is a container which

can hold a whole range of things, including program code. When a program runs

the .NET runtime system will open the assembly and go and find the class in the

assembly with the Main method in it. It then starts that method running. The

project file tells Visual Studio what to put in the assembly.

If you are very old, and remember when a file that ends in .exe just contained

program instructions, then this is a bit confusing. The good news is that you

don‟t need to worry; Visual Studio does a very good job of managing what goes

into a program.

Using ildasm to look inside assembly files

If you‟ve ever wanted to look inside an assembly file and see what makes it tick

you can use the program ildasm. This is a program you can start from the Visual

Studio Command Line. To open the command line you use the following path

through your program files:

 All Programs>Microsoft Visual Studio 10>Visual Studio Tools

Ildasm lets you can open any assembly and take a look inside. This also lets you

see the MSIL (Microsoft Intermediate Language) instructions that the compiler

produced. You start the program just by issuing the command ildasm:

Once the program is running you can find your way to an assembly and open it:

This is the ildasm display for the simple project I made above. The assembly

contains the compiled classes that make up the program content. You can see

that the SimpleProject.Program class contains two methods, the ctor

method (the constructor for the class) and the Main method. You can open these

and take a look at the code inside them.

Projects and Solutions

 Introduction to Visual Studio 2010 46

The MANIFEST part of the assembly contains a “list of contents” for the

assembly.

This is the manifest for an assembly that contains an embedded resource. You

can see the name of the resource and the size of it.

The ildasm program can show us this information because a compiled class

contains metadata which describes the methods and members and can even

include information for Intellisense to use in Visual Studio. If you have ever

wondered exactly what a program does and how it gets to run you can have a lot

of fun going through the views that ildasm provides. However you might not

have the same idea about what constitutes fun as I do.

Library Assemblies

There are actually two kinds of assembly; ones that contain a Main method

somewhere (the executable ones) and libraries. When you create a new project

you can create a library project if you like:

This will create a brand new project which will only contain library classes, i.e.

none of the classes in the assembly will contain a Main method. If any of them

do you will get an error when you try to compile the project. A library assembly

compiles to a file with the language extension .dll. This stands for Dynamic Link

Library. The library word sounds sensible enough; the dynamic link part means

that the library classes are loaded dynamically when the program runs.

When the program refers to a method in a class in the library that class will be

loaded into memory and the Just In Time compiler will convert the method into

machine code so that it can run. If the class is never used, it is never loaded. This

is a nice way of saving memory, at the expense of a little more effort when the

program runs.

Projects and Solutions

 Introduction to Visual Studio 2010 47

We can give other programmers our dll files and they can use the classes inside

them without needing the source code of the program. Even better, the metadata

which the libraries contain makes it easy for the programmers to find their way

around them.

System Libraries and references

A program running under .NET makes use of system resources as it runs. When

the program makes wants to send a message to the console it will call a system

method to do this:

System.Console.WriteLine("Hello World");

These methods are held in the system libraries, which are actually dll files that

were created by Microsoft and distributed as part of the .NET system. An

assembly file contains references to the library files that it works with. This list

of references is maintained in Visual Studio via the Solution Explorer pane.

The References section of a project gives a list of all the resources used by an

application. When Visual Studio creates a new project of a particular type it will

add references to the resources that it things that kind of project needs.

Sometimes you will have to manage this list yourself, for example a Windows

Phone project does not usually contain a reference to the

Microsoft.Devices.Sensors component. If you want to use the

accelerometer in a Windows Phone application you have to add this reference

yourself. We will see how to do this a bit later in the course.

Note that a reference is just that, a reference. If we include a reference to a

resource this does not mean that the resource becomes part of our project, rather

that the assembly is able to “reach out” to that resource when it runs. If the

resource isn‟t available at run time the program will fail. A given resource has a

version number attached to it, so that if a new version of a library is added to a

system any older programs will still be able to use the previous version.

The build process

We should now be happy with the idea that a project contains all the content

required to create a single assembly. When a program is built Visual Studio will

gather together all the elements that are needed to make the assembly and then

use them to create the file. The output assembly is stored in a folder created

when the project was set up.

Projects and Solutions

 Introduction to Visual Studio 2010 48

Here you can see the folder that contains the output from the simple project that

we created right at the start. The application file at the top is the executable

assembly that runs on the computer. You could give someone this file to run

and, virus scanners permitting, they would be able to execute it.

The screenshot above is for the debug version of the program. When Visual

Studio makes the debug version if also writes out a database of debug

information that provides information about the source when we re debugging.

Visual Studio solutions

If you only ever want to produce a single executable assembly a project is all

you need. However, if you want to create a number of separate assembly files

and use this in a single application Visual Studio lets you do this too. A solution

file is a container that can hold project files. When you create a new project, as

we did with SimpleProject earlier, we actually get a solution created for us

which encloses the project. The fact that we have been viewing all this content

with the Solution Explorer could be considered a clue here…

Creating a multi-project solution

We can add new projects to a solution simply by right clicking the solution and

selecting New Project from the menu that appears.

We can then pick up any of the project templates and make a new project which

is then held as part of the solution:

In the above I made a new library project called DisplayLibrary. This will

compile to produce a dll file which will be stored in the binary folder for the new

project.

Projects and Solutions

 Introduction to Visual Studio 2010 49

This library can be used by any projects that add a reference to the dll file.

Linking Projects

At the moment the projects in our solution are not connected in any way. If

programs in SimpleProject want to use resources from ResourceLibrary

they have to add them as a resource reference:

In the dialog above I‟m adding a reference to DisplayLibrary to the project

in SimpleProject. To make my programming easier I can add a using

directive into the program source file.

using DisplayLibrary;

This all helps to remind us that the using directive doesn‟t actually connect our

program to any resources that it wants to use. We only need the using directive

to reduce the amount of typing that we have to do when writing programs. When

we build the SimpleProject we find that the binary directory for this program

now contains copies of the DisplayLibrary dll files:

This is a version of the SimpleProject program that uses the

DisplayLibrary to load and display images. The external resources used by

an assembly are listed in the manifest for that assembly.

Projects and Solutions

 Introduction to Visual Studio 2010 50

Here you can see the manifest for a version of the SimpleProject program

that uses a library called DisplayLibrary. Note that the version of the library

is added to the information so that if a new version of the library is released this

assembly will continue to use the old one.

Multi-project solutions

You can put many projects of different types into a single solution. For example

you could create an XNA game for Windows Phone, Xbox 360 and Windows

PC using a single solution file. Each of the devices could have their own project

file, the game engine could be held in a fourth project that was then included by

the others.

If you are writing a Silverlight application that connects to a web site that

provides services you can put both the Silverlight application project and the

web server project inside the same solution.

The projects in your solution and the tasks performed by each of them should be

designed at the start of your development.

If your solution contains several projects that produce executable outputs you

can set one as the “Startup Project” which will be given control when the project

is executed.

Windows Phone Solutions

There are essentially two kinds of Windows Phone solutions that can be created

using Visual Studio. These are Silverlight application and XNA application.

Note that there is no way you can make a single Windows Phone application that

uses both systems. While it would be nice to be able to use Silverlight for all the

game menus and then XNA for the gameplay this is not at the moment possible.

Silverlight Windows Phone Project

The adding machine that we created in the previous chapter was created as a

Silverlight project. If you take a look at Solution for this project you get

something like this:

Projects and Solutions

 Introduction to Visual Studio 2010 51

A Windows Phone Silverlight solution contains the MainPage.xaml file that

describes the appearance of the main screen. It also contains the images that will

be used to display the application icon and splash screen when the program

rules. If you add new pages to your Silverlight program these will be added to

this project as an xaml file and also the code behind file that we saw earlier.

Note that the project also includes references to all the system libraries that are

used by the phone.

XNA Windows Phone Project

The XNA framework was developed for writing games. It provides a complete

game engine into which you can put your game update and draw behaviours. It

also provides comprehensive content management so that images, textures and

sounds can be easily incorporated into a game.

When you make an XNA solution using the template supplied by Visual Studio

you actually get two projects created. One of these contains the executable code.

The other will hold all the content the game uses. The idea is that if we want to

make a game that runs on multiple platforms we just have to add new projects to

the solution. These can share the single resource project.

Above you can see a solution for a partially completed CheeseLander game.

The game uses a single item of content, the images of the cheese to be landed. If

we add resources such as images to the project these will be stored in the

Content project and could be used by any game project in this solution.

Running Windows Phone applications

We know that when you compile and build a Windows PC application the result

will be a file with a language extension of .exe which contains a method named

Main which will be called when the program starts running.

Debugging Programs

 Introduction to Visual Studio 2010 52

If you create a Windows Phone application things are a little more complicated.

The program will not be running inside the PC, instead it must be transferred

into the Windows Phone device, or the emulator, before being started.

Furthermore, any resources that the program needs (for example content that is

not part of the program assembly) must be made available in the target device.

This problem is solved by the use of a container file that holds the entire

application and all required resources. Below you can see the output directory

for the AddingMachine program. It contains all the resources along with the

AddingMachine.dll file that contains the program code.

There is also a file that has the language extension .XAP. This is the XAP file.

This is the container that holds the entire application.

The XAP file

The XAP file is an archive file (stored in the same format as Zip files) which

contains all the files that make up the application. It also contains a manifest file

which describes the contents of the XAP.

Above you can see the contents of the XAP file for the AddingMachine

application. The XAP file is the file that is transferred into the Windows Phone

device and made to run. When you press the run button in Visual Studio this file

is created and then sent into the device or emulator. The target device opens the

file, reads the manifest and then unpacks the content. Finally the application is

executed. If your program is made up of multiple libraries and contains images

and sound files these will all placed in the XAP file to be picked up in the target.

When you submit an application to the Windows Phone Marketplace you

actually send the XAP file, this is the file that is loaded into the customer‟s

phone if they buy your program.

3.2 Debugging Programs
One of the great things about the Windows Phone development environment is

the ease with which you can debug programs. We can get a really good idea of

what is going on inside a program by single stepping through the code and

Debugging Programs

 Introduction to Visual Studio 2010 53

taking a look at the values in variables. You can debug programs on either the

real device or the emulator.

Using the Windows Phone emulator

The Windows Phone emulator gives you a chance to try your programs and

discover what they look like when they run. The emulator works in just the same

way as a real phone. Effectively it is a Windows PC implementation of the

Windows Phone platform, running exactly the same source code as the actual

phone. You can use the emulator to prove that your program works correctly.

Deploying to the emulator

You can deploy programs to the emulator or a real device. To select the

destination when you run a program you use the combo-box to the right of the

run button as shown below.

It is possible to select a Windows Phone device even when one is not connected.

In this case you will get an error when you try to run the program and Visual

Studio detects that a device is not attached.

When the program starts it runs in exactly the same was as it would on the

Windows Phone device. You can use the Windows PC mouse to click on items.

If you have a multi-touch monitor on your Windows 7 PC you can use multiple

touches on the emulator screen to access the multi-touch features of the user

interface.

To stop the program you can click the back button (the left pointing arrow) at the

base of the emulator or press the stop button in Visual Studio.

Emulator features

Note that the emulator is not provided with all the built in programs provided

with a real device. You can browse the internet using Internet Explorer and you

can change some machine settings but lots of things, for example the Calculator,

the Calendar and Zune behaviour are all absent. There are some emulations

provided to allow you to test your programs however, if you write a program

that works with contacts from the address book (something we will do later) you

will find that some contacts have been set up inside the phone for you to work

with.

Debugging Programs

 Introduction to Visual Studio 2010 54

Emulator performance

The emulator cannot run at exactly the same speed as the Windows Phone

hardware. The actual display speed of an application is restricted on the emulator

so that the display will match the real device to a certain extent, but it is

important to run your programs on a real device to get an accurate impression of

what the user experience will be.

Programs in the emulator

When Visual Studio deploys an application to the Windows Phone emulator it

installs it on the emulated device. The application will remain there until the

emulator is reset. Above you can see the start menu for the emulator after the

AddingMachine application had been run on it. We can run this application

again just by clicking the icon.

Visual Studio Debugging

The debugging features are integrated into the Visual Studio environment. You

can run programs from within Visual Studio. You can add breakpoints into your

program. When a program reaches a statement nominated as a breakpoint Visual

Studio will pause the program and allow you to look at the contents of variables

inside the code.

You can add breakpoints to programs running inside the Windows Phone device.

You can even set and remove breakpoints as the program itself is running.

Debugging is an important part of the development process. If you are going to

become a successful programmer you are going to have to get used to that

feeling in the pit of your stomach that you get when the program doesn‟t do what

you expected. Fortunately there are some even more powerful tools and

techniques that you can use to debug your programs.

Debugging and Programming

However, one important thing to remember here is that I don‟t consider it

acceptable to debug your programs into life. Every line of code you write should

be put there on the basis that you know exactly what the line is going to do, and

why it is there. I use debugging to fix an implementation of a solution I have

fully thought through. My programs tend to go wrong because I have miss-typed

something or because I don‟t have the correct understanding of the behaviour of

a library I‟m using. If you don‟t know how to solve the problem it is very

unlikely that throwing a few lines together might just solve the problem, any

more than throwing a bucket of components at a wall will get you a new Xbox.

Debugging Programs

 Introduction to Visual Studio 2010 55

Adding a breakpoint at a statement

Breakpoints are added in just the same way as for any program you are working

with in Visual Studio. You click in the left margin of the line you want the

program to break at.

The line is highlighted as shown above. You can clear a breakpoint by repeating

the process. When the program reaches the breakpoint it will stop running and

you will be able to take a look at the values of the variables.

Running the Program

We run the program by clicking the Run button in the Visual Studio menus. The

button looks like this: . When you press the button the program is deployed

into the target device and starts running. You can use the function key F5 to

instead of pressing the button if you prefer. When the program runs, if it reaches

this line the execution will pause. Of course, to get to this statement in the

adding machine we will have to enter some numbers into the textboxes and then

press the enter button.

The yellow highlight shows the line reached. We can view the contents the

variables in the program at this point just by resting the mouse pointer on the

variable we want to see:

The variable result has not been set to the result of the calculation yet because

the line that is highlighted has not been performed. To get the line performed we

need to step through the statement.

Single stepping

We can step through a single line of the program by clicking the Single Step

button in the Visual Studio menu system. The button looks like this: .

Each time you click this button the program will obey a single statement.

Clicking the button once will move the program onto the next statement. The

function key F11 will have the same effect.

Debugging Programs

 Introduction to Visual Studio 2010 56

There are actually three versions of the Single Step button.

 This means obey a single statement. If the single statement is a call of

a method this version of single step will step into the method. This is

called the “Step into” version of single step. Use F11 to perform this.

 This means obey a single statement. If the single statement is a call of

a method this version of single step will step over the method call.

This is useful if you don‟t care what happens inside the method. This

is called the “Step over” version of single step. Use F10 to perform

this.

 This means run to the end of the current method and exit from it. Then

break. This is very useful if you step into a method by mistake, or you

have seen all you need from the method you are stepping through. Use

SHIFT+F11 to perform this.

Controlling program execution

Visual Studio maintains contact with the running program in the target device.

You can issue commands to stop, pause and resume execution and these will

directly affect the program.

Resuming Execution

If you want the program to resume execution after a breakpoint (i.e. you have

done all the single stepping you need) then you can press the run button again, or

press the F5 function key.

Pausing program execution

Pausing execution is not usually that useful, in that the program might not be at a

point where it is doing anything interesting, but you can sometimes use it to find

out what a program is doing when it appears to have got “stuck”. To pause a

running program you click the button. The program stops at the statement

that it was running when you pressed pause.

If you want to pause a running program you should remember that you can set

breakpoints in the program code even when the program itself is running. We

could have put our breakpoint in the calculateResult method while the code

was running and then pressed the equals button in the emulator to send the

program that way.

Stopping the program

The button can be used to stop the program from running. When we click

this button Visual Studio will stop program after the next statement it obeys. We

can use it if the program appears to have got stuck. We need to be a bit careful

with this button though.

When a Windows Phone program is stopped properly it is sent a sequence of

messages that tell it the end is nigh and to do any tidying up that is required. We

will discover how this works later in the course. If the program is stopped using

Debugging Programs

 Introduction to Visual Studio 2010 57

the button above these messages are not sent, and so a program interrupted in

this way may lose or corrupt data that it was using when the stop event was

fired.

Managing Breakpoints

Visual Studio also has a breakpoint window that you can use to see the

breakpoints you have created. You can display this window by going to the

Debug>Windows menu in Visual Studio and selecting the Breakpoints option.

You can use this window to set breakpoint properties. You can request that a

breakpoint only fire after a given number of hits, or only fire when a particular

condition fires. This is terribly useful. You might have a program that fails after

the fiftieth time round a loop. It is very nice to be able to add a counter or a test

so that the program skips past the breakpoints you are not interested in.

To open the properties of a breakpoint, either in the code itself or in the

Breakpoints window, right click the breakpoint and then select Breakpoint from

the context menu that appears.

Using the immediate window

The Immediate Window can be displayed by going to the Debug>Windows

menu and selecting it. It is where you can view and change the contents of

variables. You can also use it to evaluate expressions. As an example of the

immediate window in action, we could set a breakpoint just before the

calculateResult method returns:

When I run the program and press the equals button the program will hit the

breakpoint. I can now move to the Immediate Window and play with the

variables in this method.

What we have learned

 Introduction to Visual Studio 2010 58

If I just type the name of a variable the window displays the value in that

variable. I can also type in expressions (e.g. v1+v2 as shown above) and these

are evaluated and displayed. I can also assign a value (e.g. result = 100) and call

methods on objects to work out results.

The Immediate pane uses Intellisense to help you write the statements you want

to run. It even works when you are debugging a program stored inside the

Windows Phone device. It is very powerful, but should be used with care.

Design for debug

Single stepping through code is a great way to find out what it is doing. When

you write code it useful to design it so that you can easily step through it and

find out what it is doing. The code in the calculateResult method could

easily be as a single statement.

private void calculateResult()
{
 resultTextBlock.Text =
 (float.Parse(firstNumberTextBox.Text) +
 float.Parse(secondNumberTextBox.Text)).ToString();
}

However this version is impossible to step through. I am a great believer in

spreading my code over a number of statements and even using extra temporary

variables when it runs. This makes debugging easier and doesn‟t even cost your

program more memory since in the “smaller” version of the code above Visual

Studio will still have to create some internal temporary variables to perform the

calculation. The only difference with the “more efficient” version above is that

you can‟t take a look at them.

What we have learned
1. Visual Studio is the development environment that is used to create

Windows Phone applications. You can obtain a free version of this

SDK.

2. Microsoft .NET applications are organised into assemblies. An

assembly is either an executable program (.exe) or a library (.dll).

3. Visual Studio organises the elements required to produce an assembly

into a project. A project brings together the source files and other

program resources such as images and sounds required to produce the

assembly. When the assembly is created a manifest is added to the

project which describes the contents.

4. You can use the ildasm program which is supplied with Visual Studio

to view the contents of assemblies.

5. A Visual Studio solution brings together a number of projects which

can describe the creation of different elements of an application. This

can include the production of completely different components, for

example the server and client parts of a large installation.

6. A Windows Phone application can contain a number of assemblies,

including library resources. An assembly will contain versioned

references to all the resources that it uses.

7. When a Windows Phone application is prepared for deployment to the

target device it is packaged into a XAP file which contains a manifest

file, program assemblies and any resources that the program uses.

8. The Windows Phone emulator runs on the Windows PC and provides

an emulation of the functionality of the device, but does not emulate the

performance.

What we have learned

 Introduction to Visual Studio 2010 59

9. Visual Studio provides a means by which a programmer can insert

breakpoints into program. These are statements where program

execution will stop and the programmer can view the contents of the

variables in the program. Breakpoints and single stepping of code can

be used on programs executing in the Windows Phone device as well as

the emulator.

Improving the user experience

 User Interface Design with Silverlight 60

4 User Interface Design with
Silverlight

In section 2 we looked at some of the elements provided with Silverlight. Now

we are going to build on our skills and delve a bit more deeply into what

Silverlight can do for us. By the end of this section you should be able to create

useable, multi-page Silverlight applications that will work on Windows Phone.

4.1 Improving the user experience
At the moment we are able to build user interfaces out of three Silverlight

elements:

 TextBlock to display messages and labels

 TextBox to receive input from the user

 Button to receive events

Now we are going to build on these three items to create slightly more

interesting places for the user to work. At the same time we are going to learn a

bit more about how the Silverlight elements work together to build user

interfaces.

Manipulating element properties

We have seen that Silverlight display elements are actually implemented as

classes in the code, and that we can change how they appear by modifying the

properties in instances of these elements. The properties of a Silverlight element

can be set using the Properties pane in Visual Studio or by editing the XAML

that describes each element. However, these settings are made when the program

is built. We can also set the properties of the elements when the program runs.

We have already done this in our AddingMachine application, the result is

displayed by changing the properties of the ResultTextBlock.

resultTextBlock.Text = result.ToString();

Programs can manipulate any of the properties of a display element. This

includes their position on screen, making it possible for us to create moving

sprites in games.

We are going to take a look at some other properties that are available. We are

going to use further property manipulation to improve the user experience of our

AddingMachine program. However, we are just going to scratch the surface of

what is actually possible. I strongly advise to you spend some time looking at

just what you can do with elements. There are some very powerful features

available.

Adding Error Handling

We are going to start by improving the error handing of our AddingMachine.

In my experience I spend at least as much time writing code to deal with invalid

inputs for a system as I do writing programs that deal with the working parts.

At the moment the error handling in our AddingMachine program is non-

existent. If a user enters text into a TextBox the program will try to use the

Parse method to convert this into a number, and this will fail.

Improving the user experience

 User Interface Design with Silverlight 61

Above you can see trouble brewing for our adding machine program. The user

will claim that they just wanted to work out the answer to “two plus two” but the

result will not be a successful one:

This is because this version of the program uses a very simple method to convert

the text in the TextBox into a number:

float v1 = float.Parse(firstNumberTextBox.Text);

If firstNumberTextBox contains text that cannot be converted into a number

(for example “two”) it will throw an exception. We can improve on this by using

a different version of the Parse method:

float v1 = 0;
if (!int.TryParse(firstNumberTextBox.Text, out v1))
{
 // Invalid text in textbox
}

The code above uses the TryParse method which returns false if the parse

fails. It will obey the statements in the conditional clause if the text in

firstNumberTextBox contains invalid text. It would be nice to turn the text

red in the TextBox to indicate there is a problem.

Changing the colour of text

A good way to show an error status is to change the colour of the text. This is a

very good way to highlight a problem. Silverlight uses a system of brushes to

draw items on the screen. This is a very powerful mechanism. It means that we

can draw text using images or textures and get some very impressive effects. In

the case of our error display we don‟t want to do anything quite so interesting,

we just want to draw the text with a solid red brush. Silverlight has a set of such

Improving the user experience

 User Interface Design with Silverlight 62

colours built in, and so to turn the text in a TextBox red we just have to set the

foreground brush to a solid red brush:

float v1 = 0;

if (!float.TryParse(firstNumberTextBox.Text, out v1))
{
 firstNumberTextBox.Foreground =
 new SolidColorBrush(Colors.Red);
 return;
}

This version of the code works OK. If a user enters an invalid number (i.e. one

which contains text) the colour of the foreground for that textbox is set to a solid

red brush and the method ends without calculating a result. However, this is not

a very good solution. The program should really check more than just the first

value when it runs. If the user has typed invalid text into both boxes they would

much rather find out in a single message, rather than having to fix one error and

then be told later that there was also a second fault item.

There is a more serious fault too, in that the code above will turn the text red

when the user enters an invalid item, but it will not turn it back to the original

colour when the value is corrected. We must add an else behaviour to put the

colour back to the proper brush when the value that is entered is correct. We

need to store the “proper” brush so that we can use it for this. A complete

version of calculateResult looks like this:

private SolidColorBrush errorBrush =
 new SolidColorBrush(Colors.Red);
private Brush correctBrush = null;

private void calculateResult()
{
 bool errorFound = false;

 if (correctBrush == null)
 {
 correctBrush = firstNumberTextBox.Foreground;
 }

 float v1 = 0;

 if (!float.TryParse(firstNumberTextBox.Text, out v1))
 {
 firstNumberTextBox.Foreground = errorBrush;
 errorFound = true;
 }
 else
 {
 firstNumberTextBox.Foreground = correctBrush;
 }

 // Repeat for v2

 if (errorFound)
 {
 resultTextBlock.Text = "Invalid inputs";
 }
 else
 {
 float result = v1 + v2;
 resultTextBlock.Text = result.ToString();
 }
}

Improving the user experience

 User Interface Design with Silverlight 63

This code turns the text red if a value is invalid. It also maintains a copy of the

correct brush, so that if a value is correct it can be set to the correct colour.

This code works well and provides a reasonable user experience. It also

illustrates that when you write a program with a user interface you actually end

up writing a lot more code than just the statements that are needed to calculate

the result. The code to deal with input errors can greatly increase the amount of

code that you have to write.

Editing the XAML for Silverlight elements

XAML can be described as a „declarative‟ language. This means that it doesn‟t

actually describe any behaviour (i.e. it does not tell the computer how to do

something). Instead it just tells the computer above stuff. In C# terms we tell the

compiler about things we want to use (for example variables) by declaring them.

The XAML language is only ever used to tell Silverlight about things, hence it is

called a declarative language. We will have to get used to putting some aspects

of a program into the declaration of the Silverlight elements it uses. One such

situation is in the configuration of the input mode for the TextBox elements that

are used to enter the numbers in our AddingMachine program.

Configuring a TextBox to use the numeric keyboard

At the moment the AddingMachine uses the standard keyboard behaviour on the

Windows Phone which is to display the text keyboard when the user selects that

control. It would make sense to provide the user with a keyboard set to enter

numbers, rather than the text one. There are a number of different keyboard

configurations for the keyboard that a Windows Phone can display. Below you

can see the standard “text” one.

To enter digits the user must press the „&123‟ key to switch the keyboard into

numeric mode.

It would be nice if each TextBox in the adding machine could be set for

numeric entry when that TextBox is opened. We could do this by modifying the

properties of the TextBox when the program starts running but the best place to

put such settings is in the XAML description of the control itself. At the moment

the XAML that describes the secondNumberTextBox is as follows:

<TextBox Height="72" HorizontalAlignment="Left" Margin="8,175,0,0"
Name="secondNumberTextBox" Text="0" VerticalAlignment="Top" Width="460"
TextAlignment="Center" />

Improving the user experience

 User Interface Design with Silverlight 64

This tells Silverlight where on the screen to put the element, the size of the

element and the name it has. There is also text alignment information.

Each of the values enclosed in <TextBox .. /> is an attribute of the textbox.

Attributes are simple items that are not structured and can be expressed as a

name – value pair. Above you can see that the Height of the element, the Name

of the element and lots of the other properties are expressed in this way.

The XAML designers could have just added another attribute, perhaps called

KeyboardType, to describe the keyboard to be used for input to that textbox, but

instead they used a more flexible solution. Instead a TextBox can give a list of

items that describe the kind of keys that should be used for data input. This is

called the InputScope of the TextBox.

This list is given as a property element which is part of a TextBox value. To

express this we have to use a slightly more complex version of TextBox:

<TextBox Height="72" HorizontalAlignment="Left" Margin="8,19,0,0"
Name="firstNumberTextBox" Text="0" VerticalAlignment="Top" Width="460"
TextAlignment="Center">
 <TextBox.InputScope>
 <InputScope>
 <InputScopeName NameValue="Digits" />
 </InputScope>
 </TextBox.InputScope>
</TextBox>

Good thing I said “slightly” more complex, eh? If you want a XAML element to

contain properties you have to use a different form of the element description.

This is a bit confusing in the Silverlight context, so we might want to take a look

at something a bit easier to understand.

Element with no properties

We can use the XML format to create a language that will hold information

about people. We could start by just storing the name of a person:

<Person name="Rob"/>

This element is called “Person” and has a single attribute called “Name” which

is set to “Rob”. The XAML compiler sees the /> at the end of the element

definition and knows that it has reached the end of the description of this

element.

Element with properties

However, we might want to store more complicated information about a person,

such as where they live. Their address will be made up of lots of different

elements, and so we should make this address a property of the person.

<Person name="Rob">
 <Address addressType="HomeAddress">
 <FirstLine text="18 Pussycat Mews"/>
 <Town text="Seldom"/>
 <County text="Wilts"/>
 <PostCode text="NE1 410S"/>
 </Address>
</Person>

This element contains one property, which is the address of the person. The

address itself is another element which contains a single attribute (the type of the

address) and then four properties. This illustrates an important point with XML

based languages. A property is an XML element like any other, which means

that it can have attributes and contain properties of its own. Silverlight uses this

to good effect with the Grid element, which can hold a collection of Silverlight

elements (including Grids) which are to be laid out on the page.

Improving the user experience

 User Interface Design with Silverlight 65

The XAML compiler can tell that an element contains properties because the

first line of the element description ends with > rather than ending />. The

XAML compiler will regard everything it sees after the first line as a property of

the element, until it sees the </ElementName> which rounds things off.

If you find this confusing at first, welcome to the club. The best way to think

about this is to consider what is being stored. In the case of the Person above the

name is just a single item which can be expressed in a simple attribute. However

the address will contain multiple properties of its own and so is best made into a

property. There is also the possibility that a Person will have several address

values, for example a HomeAddress and a WorkAddress and so the above

design makes it possible to add new address types easily.

The type of the address has been made an attribute of the address, which I think

is the most appropriate.Whether to make a data item an attribute or a property is

something you have to think about when you use XML (eXtensible Markup

Language) to describe things.

If we go back to our TextBox we should find that things make a bit more sense

now.

<TextBox Height="72" HorizontalAlignment="Left" Margin="8,19,0,0"
Name="firstNumberTextBox" Text="0" VerticalAlignment="Top" Width="460"
TextAlignment="Center">
 <TextBox.InputScope>
 <InputScope>
 <InputScopeName NameValue="Digits" />
 </InputScope>
 </TextBox.InputScope>
</TextBox>

Simple information about the TextBox is given as attributes, whereas the

InputScope value is given as a property. The InputScope itself contains a set

of properties, each of which describes a particular input scope. This means that

we could if we want ask for an input scope that includes Digits and Text, but not

punctuation. However, we don‟t want anything as complex as that. We just want

to ask for Digit input, and so that is the InputScope that we set up. If we use

the above description for the two textboxes in the adding machine we get a

vastly improved user interface where the user is given the numeric keyboard

when they move to those input elements.

This is an example of a situation where just adding text to the XAML is the

quickest and easiest way to configure the input behaviour. We could have used

the Visual Studio property pane, or even written some complex code to build a

collection of InputScopeName values and assign them to the TextBox, but

this solution is much neater, and also allowed us to refine our understanding of

XAML.

Attributes and Properties – the truth

It turns out that from the point of view of XAML attributes and properties are

actually interchangeable

<TextBox HorizontalAlignment="Left" Margin="8,175,0,0" Name="secondNumberTextBox"
Text="0" VerticalAlignment="Top" Width="460" TextAlignment="Center">
 <TextBox.Height>
 72
 </TextBox.Height>
</TextBox>

In the XAML above the height of the TextBox has been brought out of the

attributes and turned into a property. The property name must contain the name

of the element type that it is part of. We can‟t just say Height, we have to put

TextBox.Height. This is not a restriction of XML (we didn‟t have to put this

in our Person example above) but is a requirement for XAML.

Improving the user experience

 User Interface Design with Silverlight 66

From the point of view of an XAML writer it doesn‟t really matter which of

these forms we use. For simple name/value pairs we can use attributes, but for

more complicated structures we may decide to use properties.

C# Property Setting

If you were wondering what the C# to do the same setting would look like, this

is it:

// Make a new input scope
InputScope digitScope = new InputScope();

// Make a new input scope name
InputScopeName digits = new InputScopeName();
// Set the new name to Digits
digits.NameValue = InputScopeNameValue.Digits;

// Add the name to the new scope
digitScope.Names.Add(digits);

// Set the scope of the textbox to the new scope
firstNumberTextBox.InputScope = digitScope;

If you read carefully through this code you will see that it is actually building up

each of the elements in the XAML above.

The solution in Demo 01 AddingMachine with Error Checking implements a

version of the AddingMachine that performs validation and turns invalid entries

red. It also sets the input scope of the TextBoxes to numeric.

Displaying a MessageBox

Silverlight provides a MessageBox object which you can use to inform the user

of errors:

MessageBox.Show("Invalid Input");

This will display a message at the top of the phone screen that the user must

clear before they can continue. An alert sound is also played.

If you want to send larger to the user of the phone you can do this by displaying

several lines in the message:

Improving the user experience

 User Interface Design with Silverlight 67

MessageBox.Show("Invalid Input" +
 System.Environment.NewLine +
 "Please re-enter");

The element System.Environment.NewLine will provide a newline

character in a manner appropriate to the target platform. A MessageBox is

useful if you want to be sure that the user has acknowledged a message before

continuing. However, you need to remember that when it is displayed it will stop

the program at that point.

The solution in Demo 02 AddingMachine with MessageBox displays a message

box when the user enters an invalid value.

Message Box with selection

We can ask the user to make a choice in a MessageBox:

if (MessageBox.Show("Do you really want to do this?",
 "Scary Thing", MessageBoxButton.OKCancel)
 == MessageBoxResult.OK)
{
 // do scary thing here
}
else
{
 // do something else
}

This version displays a message with a cancel option as shown below.

Improving the user experience

 User Interface Design with Silverlight 68

Adding and using assets

In the previous section we saw how Visual Studio manages assets such as

images and sounds and adds these to the XAP file for transfer into the target

device. Now we are going to see how our applications can add assets of our own

and then use it.

A background screen for the Adding Machine

We have been asked by the son of the boss of our customer (who seems to think

he is a graphic designer) to add the above image as a background to the adding

machine application. This is actually a photograph of some of the gears of

Charles Babbage‟s “Difference Engine” and he thinks that this addition will

make the program much better. We‟re not convinced, but as he is the son of the

boss we have to go along.

Assets for Windows Phone

When you add assets such as this it is important to remember that the target

device does not have a lot of memory or a particularly high resolution screen. If

the above picture was from a high resolution camera it might contain a lot more

detail than would be required for a phone application. Remember that the highest

resolution for a Windows Phone at the moment is 800x480 pixels. There is no

point in using a background image with a higher resolution than this.

Adding Images as Items of Content

We can add an image as an item of content to the AddingMachine project. The

boss‟s son has given us a jpeg image called AddingGears.jpg to use. It turns

out that the quickest way to add a content item to a project in Visual Studio is

just to drag the item out of the folder and drop it onto the project:

Improving the user experience

 User Interface Design with Silverlight 69

This makes a copy of the resource file in the project directory at the appropriate

point.

Links to assets

If we want to share an asset amongst a number of different projects (perhaps you

have a company logo that is to be used by lots of different programs) then we

can add a link to a resource, but to do this we have to add the item using the Add

Existing Item dialog and then select “Add as Link”:

If we change the logo file the new version will be picked up by projects that use

it next time they are rebuilt.

The “Build Action” of an Asset

When Visual Studio builds a project there are a number of ways that assets can

be added to the completed program. We are going to consider two; adding the

asset as an item of content or adding the asset as a resource inside the program

assembly. The decision of which to use can have a bearing on the way that

programs load and run, so it is worth knowing a bit about how this works.

Adding an asset as Content

When an asset is added to a project it is initially added with a build action of

“Resource”.

If we want to use the asset as content we need to change its properties so that it

is an item of content. We do this by changing the Build Action entry for the item

of content.

Improving the user experience

 User Interface Design with Silverlight 70

Content assets are copied by Visual Studio into the application directory when

the program is built. The “Copy if newer” setting means that Visual Studio will

copy a new version of the image into the binary folder if the current image in the

project is replaced by a newer file.

Using Image content in a program

An asset of type content is simply made available to the application as a file in

the same folder as the program itself. To display an image held as content in our

program we just need to add the line of XAML that describes the image file that

we want to use:

<Image Height="611" HorizontalAlignment="Left" Margin="8,0,0,0"
Name="gearBackgroundImage" Stretch="Fill" VerticalAlignment="Top" Width="472"
Source="AddingGears.jpg" />

The Image element displays an image on the page. It has a Source attribute

that identifies the file from which the image is to be loaded. If we enter a

filename as the source the image will be loaded from the file. When the program

runs the file will be loaded from the file and then drawn on the screen.

Silverlight draws the elements on the screen in the order they are defined in the

XAML. If this line is put at the top of the Grid containing the elements the

image will be drawn in the background:

This is the result of the program. From an artistic point of view we are not

convinced, by the choice of picture but the process itself works.

Improving the user experience

 User Interface Design with Silverlight 71

The solution in Demo 03 AddingMachine with Background Content displays a

background image for the application which is loaded as an item of content.

Adding Images as Resources

There is another way to add an image to a project. This involves creating a new

Image item from the ToolBox in the Visual Studio editor and then selecting the

image resource to use for this item by using the Visual Studio the Property pane.

The first step in this process is to drag an image from the Visual Studio Toolbox

onto the page. Then open up the Property pane for that resource:

I‟ve changed the name of the image to gearBackgroundImage and the next

thing to do is to set the source of the image by clicking on the “…” button to the

right of the source item. This opens the Choose Image dialogue.

This dialog shows all the images which are presently stored in the application.

As we have not added any the dialogue is empty. If we click on Add we can

open a file browser to look for suitable pictures on the development computer.

This adds the specified image to those available to the project:

Improving the user experience

 User Interface Design with Silverlight 72

It also creates the resource item in the project for this item:

Any other images that we add to the project will be added in the folder that

Visual Studio created for us. The properties of these images will be set as

Resources, not content.

The XAML that describes the image contains an image source that refers to the

resource in the application:

<Image Height="611" HorizontalAlignment="Left" Name="gearBackgrounds" Stretch="Fill"
VerticalAlignment="Top" Width="472"
Source="/AddingMachine;component/Images/AddingGears.jpg" />

When the program runs the display is exactly the same, but there is a crucial

difference in how the resource is located and used.

The solution in Demo 04 AddingMachine with Background Resource displays a

background image for the application which is loaded as a resource.

Data manipulation and display

 User Interface Design with Silverlight 73

Content vs Resources

When creating Windows Phone applications it is important that we understand

the difference between content and resources in an application.

An item of content is simply a file that is stored in the application directory. Our

programs can open and use content files when they need them. Adding content

has no effect on the size of the program itself, although of course when a

program is running and loads content it will use more memory.

A resource item is stored in the program assembly. Adding the gears background

image to the assembly above made the program around 317K bytes larger. When

a Windows Phone device loads a program it looks through the entire program

assembly and does some checks to make sure that it is legal code. These checks

take longer if the program is bigger. If your program takes too long to start up

when it is loaded it will be killed by the Windows Phone operating system. This

means that you should be careful about putting too many things in the program

assembly.

Adding our image as an item of content made the program itself smaller,

meaning that it starts running more quickly. However, content items take slightly

longer to load because they have to be fetched from the filestore when they are

used. Adding our image as a resource makes it faster to load when the program

tries to fetch it, but makes the program larger and will make the program itself

slower to start.

If this is confusing, here are some hints:

 If you have lots of large resources, and you don‟t need to load all of

them into the program at once, use content. An example would be

where you allow the user to select from a number of different

background images for their screen.

 If you have lots of small resources which are used all the time

throughout the program, use resource. An example would be if you had

icons that represent particular program setting or options.

 If you find your program is taking too long to get started you should

move some of the resources out of the program assembly and add a

loading screen of your own to show them being brought into memory

when the program starts up. You can also speed up the program startup

process by breaking your program into smaller assemblies which are

linked together.

4.2 Data manipulation and display
Our adding machine is now quite useable, but the customer is still not

completely happy. He doesn‟t like the way that users have to press the Calculate

button each time they want a new answer. What he wants is for the program to

detect when the text in the number boxes changes and then update the total

automatically. Fortunately for us this turns out to be quite easy to do. We need to

revisit events to find out more.

The TextChanged event

We first saw events when we considered the Button element. A Button

element generates an event when it is activated. From a program point of view

an event is a call to a method. We can get Visual Studio to “hook up” a button to

an event for us just by double clicking the button in the designer. At the moment

the Calculate button has a click behaviour that calculates and displays the

result. The method to be called is identified in the Button description:

Data manipulation and display

 User Interface Design with Silverlight 74

<Button Content="equals" Height="72" HorizontalAlignment="Left" Margin="158,275,0,0"
Name="equalsButton" VerticalAlignment="Top" Width="160" Click="equalsButton_Click" />

When the button is clicked this causes the nominated event handler to run inside

the page class. In the case of our AddingMachine this will call the

calculateResult method.

private void equalsButton_Click(object sender,
RoutedEventArgs e)
{
 calculateResult();
}

We can find out what events a TextBox can create by selecting a TextBox in

the Visual Studio editor and then selecting Events in the properties pane.

A TextBox can produce a lot of events, including some which seem somewhat

meaningless on a Windows Phone. Visual Studio highlights the event that is

most useful from a TextBox. This is the TextChanged event. This is fired each

time the text in the TextBox is changed. If we double click on TextChanged in

the Properties pane Visual Studio will create a method and hook it up to this

event:

private void firstNumberTextBox_TextChanged(object sender,

TextChangedEventArgs e)
{

}

We just need to add a call of calculateResult into this method:

private void firstNumberTextBox_TextChanged(object sender,

TextChangedEventArgs e)
{
 calculateResult();
}

We can do the same thing for the second text box, so that if either of the boxes is

changed the sum is updated. This means we can now remove the Calculate

button.

Double Changed Events

If we run this program we find that it works quite well. However, we do notice a

problem with data validation. If the user types text instead of a number our

program will spot this and display a message box:

Data manipulation and display

 User Interface Design with Silverlight 75

However, this message is displayed twice for each invalid character that is

entered. It is as if the TextChanged event is firing twice for each character. It

turns out that this is the case and it is a known issue with Windows Phone

applications. We can get around it by checking for successive changed events

with the same data:

string oldFirstNumber = "";
private void firstNumberTextBox_TextChanged(object sender,
 TextChangedEventArgs e)
{
 if (firstNumberTextBox.Text == oldFirstNumber) return;
 oldFirstNumber = firstNumberTextBox.Text;

 calculateResult();
}

This method only calls calculateResult if the text in the TextBox has really

changed.

The solution in Demo 05 AddingMachine with no button implements an adding

machine which uses TextChanged events and does not have a calculate button.

Data binding

Data binding is wonderful. Perhaps there are even statues out there to it. Perhaps

we should build one, but then again perhaps not. Data binding takes the place of

the “glue” code that we are writing to connect display elements to the methods

that work on them. It allows us to take a property of a display element and

connect it directly to an object. All we have to do is create an object that behaves

in a particular way and we can get values in the object transferred into the

Silverlight element with no effort on our part.

Data binding can work in either direction. We can bind the text a TextBox to

our application so that when a user changes the text in the textbox our

application is informed of this. We can also bind a TextBlock to an object so

that when a property in the object is changed the content of the TextBlock

updates to match. This is “two-way” binding, where a program can both change

an element and respond to changes in it. We can do “one way” binding so that a

program can display output just by changing properties in an object. Finally we

can bind to any of the properties of an object so that a program can move a

Silverlight element around the screen by changing X and Y properties in a game

object.

Data manipulation and display

 User Interface Design with Silverlight 76

Creating an object to bind to

We are going to begin by creating a version of the adding machine which uses

data binding. The starting point is a class that will do all the work. This will

expose data properties that will be connected to element properties in the display

object. There are three things that our object must expose:

 The text in the top TextBox

 The text in the bottom TextBox

 The text in the result TextBlock

We could build an AdderClass to express all this:

public class AdderClass
{
 private int topValue;
 public int TopValue
 {
 get
 {
 return topValue;
 }
 set
 {
 topValue = value;
 }
 }

 private int bottomValue;
 public int BottomValue
 {
 get
 {
 return bottomValue;
 }
 set
 {
 bottomValue = value;
 }
 }

 public int AnswerValue
 {
 get
 {
 return topValue + bottomValue;
 }
 }
}

This class has three properties. Two of them have get and set behaviours so that

a user of this class can find out the values of the top and bottom items (the things

we are adding together) and set them to new values. The third property is just the

answer value (the result of the sum). This is never set to a value; the user of the

AdderClass will only ever read this property to get the latest answer.

This class does all the “thinking” required to make our adding machine work. A

program could make an instance of this, set top and bottom values and then read

back the answer. If we wanted to change to a “subtracting” machine we would

just have to replace this class with one that worked differently. This would be a

good piece of design whether we were using Silverlight or not.

Data manipulation and display

 User Interface Design with Silverlight 77

Adding Notification Behaviour

In order for a class to be able to bind to Silverlight objects it must implement the

INotifyPropertyChanged interface:

public interface INotifyPropertyChanged
{
 // Summary:
 // Occurs when a property value changes.
 event PropertyChangedEventHandler PropertyChanged;
}

For a class to implement this interface it must contain the event delegate which

will be used by AdderClass to tell anything that is interested when a property

has changed.

public event PropertyChangedEventHandler PropertyChanged;

The PropertyChangedEventHandler type is used by Silverlight elements to

manage event messages. It is described in the System.ComponentModel

namespace. If a Silverlight component wants to bind to any of the properties in

the class it can add delegates to this event.

The AdderClass will use this delegate to tell the outside world when one of the

properties in the class has changed. This will trigger a display update. Silverlight

objects that are connected to our properties bind to this delegate so that they can

be notified when required. The final version of the class looks like this:

Data manipulation and display

 User Interface Design with Silverlight 78

namespace AddingMachine
{
 public class AdderClass : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler
PropertyChanged;

 private int topValue;

 public int TopValue
 {
 get
 {
 return topValue;
 }
 set
 {
 topValue = value;

 if (PropertyChanged != null)
 {
 PropertyChanged(this,
 new
PropertyChangedEventArgs("AnswerValue"));
 }
 }
 }

 // repeat for bottom value

 public int AnswerValue
 {
 get
 {
 return topValue + bottomValue;
 }
 }
 }
}

The AdderClass now contains a member called PropertyChanged.

Whenever our class wants to change a property value it must test the value of

PropertyChanged. If it is not null this means that something has bound to the

delegate. You can regard the PropertyChanged event as a mailing list.

Process can subscribe to the list and be informed of interesting events that occur

in the AdderClass. If nobody is subscribed to the mailing list (i.e. the

PropertyChanged value is null) then there is no point in calling a method to

describe a change. However, if it is not null this means that we have something

out there that wants to know about changes inside our AdderClass.

The format of the method call that delivers our event is as follows:

PropertyChanged(this,new
PropertyChangedEventArgs("AnswerValue"));

The first parameter to the call is a reference to the object that is generating the

event. The second is an argument value loaded with the name of the property

that has changed. The Silverlight element will use reflection (i.e. it will look at

the public properties exposed by AdderClass) to know what properties are

available. If it gets a notification that AnswerValue has changed it will then

update any display element properties that are bound to the property in this class.

Note that this is just a string of text though, if we write “Answervalue” by

mistake this will prevent the update message from being picked up correctly.

Data manipulation and display

 User Interface Design with Silverlight 79

When the program fires the changed event it will cause the result display to fetch

an updated value of AnswerValue for display to the user. When the get

behaviour in AnswerValue is called it computes the total and returns it.

public int AnswerValue
{
 get
 {
 return topValue + bottomValue;
 }
}

If you are finding this confusing, don‟t worry. Just remember why we are doing

this. We are going to connect this object to the user interface. The user interface

will tell our AdderClass when the values of the two inputs are changed by the

user. When the input changes the AdderClass instance needs to have a way of

telling the user interface that there is now a new total to be displayed.

Adding the Namespace containing our class to
MainPage

We now have our object that we want to data bind. The next thing we need to do

is link our code to the XAML that describes our user interface. To do this we

must add the namespace containing the AdderClass to the XAML.

xmlns:local="clr-namespace:AddingMachine"

If you look at the final version of AdderClass above you will find that it is in

the AddingMachine namespace. By adding this line at the top of the XAML

file for MainPage.xaml we tell the system that any classes in the

AddingMachine namespace should be made available for use in our

application XAML.

In the same way that a C# program must have all the using directives at the top

of the source file a XAML file must have all the namespaces that it uses at the

top as well. If you look in the file at the top you will find lots of namespaces

being added. These are the classes for the Silverlight elements that make up the

user interface.

Once we have added a namespace we now have to create a name for the

resources that can be found in this namespace:

<phone:PhoneApplicationPage.Resources>
 <local:AdderClass x:Key="AdderClass" />
</phone:PhoneApplicationPage.Resources>

If this seems a lot of work then remember that only have to do this once, and that

the class that we add can contain many properties that the user interface can

interact with.

Adding the Class to an element on the page

Now that the namespace is available we can connect a particular class from this

namespace to the elements in our page. The element we are going to add the

class to will be the Grid that holds all our display elements. Adding a class to an

element automatically makes it available to any elements inside it, and so the

TextBox and TextBlock elements can all use this class.
<Grid x:Name="LayoutRoot" Background="Transparent" DataContext="{StaticResource
AdderClass}">

We get an element to use a particular class by setting a value for the

DataContext for that component. For our application this will be a static

resource, in that it will be part of the program. This might seem a bit over

complicated, but it does mean that you can create a test data context that you can

use instead of a “real” one.

Data manipulation and display

 User Interface Design with Silverlight 80

Connecting the Silverlight element to the property

We now have the Adder class available as a data context for elements on a page.

This sets up a link between the Silverlight page and an object that is going to

provide business behaviours. The next thing we need to do is connect properties

of each element to properties that our business object exposes.

We can do this from the Properties pane for each element. Let‟s start by

connecting the text in the firstNumberTextBox with the TopValue property

in our AdderClass. If we click on the TextBox in the Visual Studio editor we

can then open the Property pane for the item. We can then go and find the Text

property. At the moment it is just set to a string, we want to apply a Data

Binding to our adding machine object:

If we click “Apply Data Binding” the next thing we need to do is find the

property that is going to be bound. Behind the scenes Visual Studio has gone off

and opened the AdderClass and used found out what properties it exposes. It

can then display a menu of those that are available:

This is where the magic starts to happen. Simply by selecting the required item

from the list we can connect the Silverlight element property with my object.

Note that the TwoWay option is selected so that when the user changes the value

in the TextBox my object is informed.

When we bind to the TextBlock we are only given the option of OneWay

binding, as it is not possible to send data from a TextBlock into a program.

Data manipulation and display

 User Interface Design with Silverlight 81

Once we have made these bindings our program will just work. The interesting

thing about this is that if you look in the MainPage.xaml.cs file for the

program code that makes the application work you will find that it is completely

empty. All the work is now being done by our tiny little class, which is

connected to the display items.

The solution in Demo 06 AddingMachine with data binding implements an

adding machine which uses data binding to connect the inputs to the AdderClass.

Data Binding using the Data Context

You might be looking at data binding and thinking “This looks OK, and I

understand how it works, but you do seem to have to do a lot of work to add the

resources and everything” The really good news is that there is a way to sort

circuit this process which makes the whole thing really easy. It means adding a

statement to our code (one of the interesting things about the solution above is

that there is no code in our MainPage.xaml.cs file) but I reckon we can live

with this.

Setting the Data Binding in XAML

We have seen how the elements in a control can be bound to object properties.

We can just bind an object property to an element property and Silverlight will

provide the glue to tie these together.
<TextBox Height="72" HorizontalAlignment="Left" Margin="8,19,0,0"
Name="firstNumberTextBox" Text="{Binding TopValue, Mode=TwoWay}" VerticalAlignment="Top"
Width="460" TextAlignment="Center" >

The XAML above shows how this works. I‟ve highlighted the data binding for

the first number textbox in the XAML above. This gives the name of the

property that the text will bind to and the mode of the binding.

Setting the DataContext

Now all we have to do is create an AdderClass instance and set the

DataContext of the element that contains the firstNumberTextbox to this

instance. We can do this in the constructor for the main page.

// Constructor
public MainPage()
{
 InitializeComponent();

 AdderClass adder = new AdderClass();
 ContentGrid.DataContext = adder;
}

Pages and Navigation

 User Interface Design with Silverlight 82

The DataContext for a Silverlight element identifies the object that contains

all the properties that have been bound to by that control and any that the control

contains.

The ContentGrid on the page contains our TextBoxes and TextBlocks and

now every binding that they contain will be mapped onto the AdderClass

instance that we created.

In other words we have replaced all the hard work with property panes and

resources with a small amount of XAML and a single statement.

The solution in Demo 06 AddingMachine with data binding implements an

adding machine which uses data binding to connect the inputs to the AdderClass.

4.3 Pages and Navigation
At the moment all the programs we have written have run on a single Silverlight

page. However, many applications run over a number of pages. At the very least

a program will often have an “options” or “settings” page that the user can

navigate to. To do this we will need to have more than one Silverlight page in

our application.

Adding a new Page

It is easy to add a new page to an application. If we select Project>Add New
Item from within Visual Studio we are presented with a menu of possible items

that we might like to add.

If we select Windows Phone Portrait Page you get a new page added. Before

adding a page it is sensible to set the name to something more meaningful than

“Page1”. We can change the name of the item later if we like by renaming it. An

application can contain as many pages as we need.

Pages and Navigation

 User Interface Design with Silverlight 83

This demo contains two new pages, with the original names of PageTwo and

PageThree. For each new page we get a file of XAML and the code behind page.

The pages themselves are edited in exactly the same way as MainPage. When

the page is open we can drag elements onto it from the Visual Studio ToolBox,

we can manipulate their properties and we can edit the XAML directly if we

wish.

Navigation between pages

The Silverlight model for moving between pages has more in common with the

internet than Windows Forms. If you are used to writing Windows Forms

applications you will be familiar with methods such as “Show” and

“ShowDialog” which are used to allow one form to cause the display of

another.

Silverlight doesn‟t work like that. When you think about moving around a

Silverlight application you should think in terms of navigating from one page to

another. Each page has an address expressed as a uri (Uniform Resource

Indicator). The NavigationService object provides methods that perform the

navigation for us.

private void page2Button_Click(object sender, RoutedEventArgs
e)
{
 NavigationService.Navigate(new Uri("/PageTwo.xaml",
 UriKind.RelativeOrAbsolute));
}

Above you can see an event handler for a button. This will cause the program to

switch to the page PageTwo when the button is pressed. Note that the

Navigate method is given a uri value which contains the name of the page and

also the kind of Uri being used.

When we create the uri we also need to select what kind of uri it is, we are

setting this uri to be RelativeOrAbsolute, even though this particular Uri is

relative to the present one. We do this to ensure maximum flexibility when

loading resources.

When the user clicks on the button the display will switch to the contents of

PageTwo. Note that if there is no PageTwo.xaml the program will throw an

exception if the user tries to navigate there.

Using the Back button

Users will expect the Back button on Windows Phone to return to the previous

page. This is exactly what it does. If the user has navigated to PageTwo as

shown above, and then presses the Back button they will be returned to the page

they came from. If the user presses Back when they are at the MainPage the

application is ended.

Sometimes we want to override this behaviour. We might not want our user to

leave the page if they have not saved the data they have entered. We can do this

by adding an event handler to the BackKeyPress event:

Pages and Navigation

 User Interface Design with Silverlight 84

The event handler method can cancel the back behaviour if required.

private void PhoneApplicationPage_BackKeyPress(object sender,
 System.ComponentModel.CancelEventArgs
e)
{
 e.Cancel = true;
}

If the method above is bound to the BackKeyPress event the user will not be

able to use the Back key to move away from the page.

Sometimes you want the user to confirm that they want to move away from the

page. You can use the MessageBox class to do this:

private void PhoneApplicationPage_BackKeyPress(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 if (MessageBox.Show("Do you really want to exit the
page?",
 "Page Exit",
MessageBoxButton.OKCancel)
 != MessageBoxResult.OK)
 {
 e.Cancel = true;
 }
}

This code displays a message box and asks the user if they really want to leave

the page. If they don‟t want to leave the back button is cancelled. This is what

the screen looks like when this code runs.

You can use this form of MessageBox any time you want to put up a quick

question for the user to answer.

Passing Data between Pages

Each Silverlight page is distinct and separate from any other. They do not share

data. Sometimes you want to pass data from one page to another. If the data is a

Pages and Navigation

 User Interface Design with Silverlight 85

simple string of text the easiest way to do this is by adding it to the uri that is

passed into the destination page.

private void page3Button_Click(object sender, RoutedEventArgs
e)
{
 NavigationService.Navigate(new
Uri("/PageThree.xaml?info=" +
 infoTextBox.Text,
 UriKind.Relative));
}

When the program navigates to Page 3 it passes the contents of a TextBox as

part of the uri. This information is passed into the page that we are navigating to

as part of the uri, what the receiving page will see is something like:

PageThree.xaml?info=text message

 It can then unpack this information to get the text message out of the uri.

Using Page Navigation Events

There are two really important events in the life of a Silverlight page. One is

fired when the page is navigated to (OnNavigatedTo) and the other is fired

when the page is left (OnNavigatingFrom). To get control when these events

fire we need to override these methods in our page.

When we create a new page the class that controls it is derived from a parent

class called PhoneApplicationPage:

public partial class PageThree : PhoneApplicationPage
{

 // Page 3 methods go here
 // we override the ones that we want to provide
 // our own behaviours for
}

This is the declaration of a page class called PageThree. We can add new

methods to the page and we can override existing methods and add new

behaviours to them. We want our application to get control when the user

navigates to the page. This is the point where we want to load information from

the uri and display it in a control on the page. Our replacement

OnNavigatedTo method looks like this:

protected override void OnNavigatedTo

(System.Windows.Navigation.NavigationEventArgs e)
{
 string info = "";
 if (NavigationContext.QueryString.TryGetValue("info",
 out info))
 {
 infoTextBlockFromQuery.Text = info;
 }
}

The method uses the QueryString in the NavigationContext object and

tries to get a value out of that string. It asks for the value by name and, if it is

recovered, displays it in a text block. Each time the user returns to this page the

method runs and puts the latest content onto the page.We can use the

OnNavigatedTo event any time we want to set up a page when the user moves to

it.

We can use the OnNavigatingFrom to get control when the user tries to leave

our page. The method can do any tidying up or closing of open resources. The

Pages and Navigation

 User Interface Design with Silverlight 86

page can also use a Cancel flag to stop the user from leaving the page, just as we

did with the Back button earlier.

The OnNavigatedTo method can query the NavigationContext and try to

get data out of it. The above method shows how this is done. The info string is

copied into a TextBlock on Page3.

The solution in Demo 08 Multipage Demo is a three page Silverlight application.

You can move to pages 2 and 3 by pressing buttons on the main page. You can

return from Page 2 by pressing the back button. If you use the back button on

page 3 you need to respond to a confirmation dialog before being moved off the

page. Text entered on the main page is transferred into a TextBlock in page 3 via

the page uri.

Sharing objects between pages

Passing strings of text between pages is useful, but you often need to share larger

items which contain structured data. Often your user will be working with a

“thing” of some kind; perhaps a document or a game, and the different pages

will provide different views of that object.

What you really want is an object which is common to all the pages and can be

accessed by any of them. You could put your shared data into the object and

they could all make use of it. Turns out that this is very easy to do, because all

Windows Phone Silverlight programs have such a thing as part of the way they

work. It is called the App class.

The App.xaml page

When we create a Silverlight application we get a MainPage.xaml and an

App.xaml page.

What we have learned

 User Interface Design with Silverlight 87

We can regard App.xaml as the container for the phone application. It provides

the context in which the pages are displayed. It doesn‟t actually ever get drawn

on the screen, but it is the starting point for the application when it is loaded.

The App.xaml.cs file contains the methods that start an application running. It

also contains handler methods for application lifecycle events which we will be

using later.

We can edit the App.xaml.cs file and add our own code and data members. If

we want to store any global data for use by all the pages in our application we

can declare it here.

public partial class App : Application
{
 // To be used from all pages in the application
 public string LoginName;
}

Here we have added a LoginName string that we want to be able to use in all the

pages.

Any Silverlight page can obtain a reference to the App which it is part of:

App thisApp = Application.Current as App;
LoginTextBox.Text = thisApp.LoginName;

The Current member of the Application class is a reference that can refer to

objects of type Application. When the application starts it is set to refer to the

currently executing application instance.

The App.xaml.cs class defines a child class App that extends the

Application parent. To get hold of objects defined in the App class we have

to make a reference of type App and then make this refer to the current

application. Above you can see how the as operator is used to convert the

reference to one with the correct type.

The code above gets the LoginName out of the application and sets the text on a

TextBox to this. You can use this code in any of the pages in an application.

The solution in Demo 09 Shared data is a two page Silverlight application. You

can enter a username into the text box on the main page and this is stored in the

App class. The application uses the OnNavigatedFrom event on MainPage to

trigger the storage of the username in the App class.

What we have learned
1. Programs can manipulate the properties of Silverlight elements to

display information to the user of a program. This includes the position

and colour of items on the display.

2. Some element properties are best set by editing the XAML directly.

The XAML information for an element is structured in terms of

properties which can be nested inside each other. The TextBox has a set

of properties that give the initial settings for the keyboard to be used to

enter data. These can be used to cause a numeric keyboard to be

displayed instead of a text one.

3. Windows Phone can display messageboxes to the user. These can

display multi-line messags and can also be used to confirm or cancel

user actions.

4. Assets such as images can be added to a Windows Phone application as

content or resources. An item of content is copied into the application

directory as a separate file and can be used from there by the program.

A resource item is embedded into the assembly file for an application.

Content items do not slow the loading of assemblies but may be slower

What we have learned

 User Interface Design with Silverlight 88

to load when the program runs. Resource items are more readily

available to a program but they increase the size of the program

assembly.

5. Silverlight elements can generate events in response to user actions.

One such action is the TextChanged event produced by the TextBox.

6. Silverlight provides data binding support where the properties of an

object in the program can be connected to those of a Silverlight display

element. The binding can be “one way”, where the display element is

used to output the value of a program item or “two way” where changes

to the item on the page result in an update of the bound property in the

class.

7. Silverlight applications can be made up of multiple pages. The

navigation between pages is performed by a navigation helper class

which is given the uri of the page to be navigated to. Simple items of

text can be passed between pages by placing them in a query string

attached to the uri.

8. Pages can receive events when they are navigated to and from. The

OnNavigatedFrom event provides cancellation option so that a user can

be asked to confirm the navigation.

9. Larger data objects can be shared between pages in an application by

the use of the App class which is part of a Windows Phone application.

Any Silverlight page in an application can obtain a reference to the

application object that it is part of.

Connecting to a data service

 Consuming Data Services 89

5 Consuming Data Services

One of the things that make a Windows Phone very useful is the

“connectedness” that it has. It allows the user to consume network services

wherever they are (as long as they can get a signal). This makes possible some

genuinely new kinds of application, particularly if you add in the way that the

device is also location aware.

In this section we are going to explore the ways in which C# programs on the

device can connect to and use data services provided by the network.

5.1 Connecting to a data service
All Windows Phones support network connectivity via the mobile telephone

network and also by means of their built in WIFI. As far as our programs are

concerned the two network technologies are interchangeable. The programs we

are going to write will initiate connections to a data service and the underlying

phone systems will make the connection the best way that they can.

Of course, if there is no mobile signal or WIFI available these connections will

fail. Applications that we write must be able to deal with this situation

gracefully. At the very least this means displaying a “Sorry we can‟t connect you

just now, please try later” message. A more advanced program may store data

locally and then send it later. It is up to you how your program will work in this

respect.

Windows Phone applications on a network

Programs running in a Windows Phone can connect to and access servers on the

network via a variety of connection mechanisms. They can make web requests

and also connect to web services and Windows Communication Foundation

(WCF) hosts. However, the present version of the network library in the

Windows Phone does not support direct sockets for such things as “session-less”

communication.

Networked programs on the Windows Phone Emulator

The Windows phone emulator has the same networking abilities as the real

device. It uses the network connectivity of the host PC it is running on. This

means that you can test any applications that use the network on your desktop

PC. However you should also test your programs on a real device. On a real

Windows Phone you can disable network services and test your application to

ensure that it performs properly over lower speed connections.

Reading text off a Web Page

We can start exploring the networking ability of the Windows Phone by writing

a program that displays the text from a web page. We could use this to “scrape”

data off web pages that we want to present to the user in a different format. We

can also use this mechanism to read structured data from services such as

provided by Twitter, of which more later in this section.

Reading a web page turns out to be very easy indeed. There is only one

complication, and that is caused by the way that all the network activities

performed by Windows Phone are asynchronous.

Connecting to a data service

 Consuming Data Services 90

Synchronous vs Asynchronous operations

There are two ways you can do things, synchronous and asynchronous. When

you do something synchronously what we are really saying is “while you wait”.

If I have my car serviced “synchronously” it means that I stand in the garage

waiting for the “service my car” method to complete, at which point I can take

my car and drive home. If I have my car serviced “asynchronously” this means

that I go off and do some shopping while the job is being done. At some point

the garage will ring me up and deliver a “service complete” event. At which

point I go and pick up my car and drive home.

Making asynchronous use of data services is very sensible, particularly on a

device such as a Windows Phone. The limitations of the network connection to

the phone mean that a network connection may take several seconds to deliver

an answer. A program should not be stopped for the time it takes for the server

to respond. Furthermore, the whole way that Silverlight works is event based.

We are used to writing programs that respond to events generated by display

elements. You make a program respond to events from network requests in

exactly the same way.

Using the WebClient class

To read text from the web we can use the WebClient class. This is provided as

part of the Windows .NET networking library, so if you learn how to use it on

the Windows Phone you can also use it in your Windows desktop programs. We

can use the class to perform an HTTP (Hyper Text Transfer Protocol) interaction

with a remote web server. There are a number of different ways we can use a

WebClient, we are going to look at one of the simplest.

We are going to create a WebClient variable in the MainPage.xaml.cs of

our application. When the user presses the loadButton our application will

load the url from a TextBox and then display the text content of that page.

Above you can see the program in action, displaying one of the best pages on the

web. Note that this is exactly what a browser does, except that a browser will

then take the HTML content received from the server and render it along with

any associated graphical content.

Connecting to a data service

 Consuming Data Services 91

The first thing we need to do is declare our WebClient as a member of the

MainPage class. This will be used manage the web requests that we are going to

make.

WebClient client;

At the moment we just have the reference to a WebClient object. The next

thing we need to do is create an actual instance of a WebClient. We can do this

in the constructor for the page class:

public MainPage()
{
 InitializeComponent();

 client = new WebClient();
 client.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(
 client_DownloadStringCompleted);
}

The constructor creates a new WebClient and then binds a method to the

DownloadStringCompleted event that the WebClient exposes. The method,

called client_DownloadStringCompleted, will display the web page text

in the in the pageTextBlock:

void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs
e)
{
 if (e.Error == null)
 {
 pageTextBlock.Text = e.Result;
 }
}

When this method is called it tests to see if any errors were reported. If there are

no errors the method displays the result of the download in the pageTextBlock

element.

The last thing we need to add to our program is the event handler for the button

that will start the download of a page at the url that the user has typed in:

private void loadButton_Click(object sender, RoutedEventArgs
e)
{
 client.DownloadStringAsync(new Uri(urlTextBox.Text));
}

When the load button is clicked the following sequence takes place:

1. The text from the urlTextBox is used to create a new Uri which

describes the web site to be loaded.

2. The DownloadStringAsync method is called on the WebClient.

This starts a new web transaction. This method returns immediately, so

the button event handler is now completed.

3. Some-time later the WebClient will have fetched the string of content

at the url. It fires the DownloadStringCompleted event to indicate

that it has finished, and to deliver the result.

4. The client_DownloadStringCompleted method now runs, which

checks for errors and displays the received text in the TextBlock.

The solution in Demo 01 Web Scraper contains this code. You can type in any

url and download the html from that page. The program will work on either the

emulator or a real device.

Using LINQ to read structured data

 Consuming Data Services 92

Note that this is a very basic web page reading program (as you might expect for

only fifteen or so lines of code). It does not stop the user from pressing the Load

button repeatedly and interrupting downloads and it does not provide any form

of time out or progress display to the user.

5.2 Using LINQ to read structured data
The ability to read from the web can be used for much more than just loading the

text part of a web page. We can also interact with many other data services, for

example Twitter. This uses a REST (Representational State Transfer) protocol to

expose the activities of Twitter users. REST makes use of the structure of the url

being used to denote the required action. As an example, if you point a web

browser at the following url:

http://twitter.com/statuses/user_timeline/robmiles.xml

- you will be rewarded with an XML document that contains my most recent

Twitter posts. By replacing robmiles with the name of another Twitter user you

can read their feed.

This makes it very easy to make a slightly modified version of our WebClient

program that assembles a web request for the Twitter server and uses that to read

feed information from it. The only change we have to make is to the code that

produces the web request:

private void loadButton_Click(object sender, RoutedEventArgs
e)
{
 string url = "http://twitter.com/statuses/user_timeline/"
+
 nameTextBox.Text + ".xml";

 client.DownloadStringAsync(new Uri(url));
}

Using LINQ to read structured data

 Consuming Data Services 93

The solution in Demo 02 Twitter Reader contains this code. You can type in any

twitter username and download the feed from that user. The program will work

on either the emulator or a real device.

Structured Data and LINQ

Twitter returns status reports in the form of an XML formatted document. XML

is something we know and love (a bit). What we want to do now is pull all the

information out of the XML content we get from Twitter and display this

information properly. As great programmers we could of course write some

software to do this. The good news is that we don‟t have to. We can use LINQ to

do this for us. LINQ stands for “Language INtegrated Query”. It is really useful.

It is designed to provide the “glue” between databases and programs. I don‟t

have space to go into all that LINQ can do for you, but we need to take a look at

the problem LINQ was invented to solve before we start using it.

A quick word about databases

To understand what LINQ is used for we have to start by considering how

computers manage large amounts of data. They do this by using databases. A

database is a collection of, well, data, which is organised and managed by a

computer program which is often, and rather confusingly, called a database.

Another computer program can ask a database questions and the database will

come back with the results. You don‟t think of a database as part of your

program as such, it is the component in your solution that deals with data

storage.

We could discover how a database works by taking a quick look at a very simple

example. Consider how we would create a database to hold information for an

internet shop. We have a large number of customers that will place orders for

particular products.

If we hire a database designer they will charge us a huge amount of money and

then they will come up with some designs for database tables that will hold the

information in our system. Each of the tables will have a set of columns that

hold one particular property of an item, and a row across the table will describe a

single item.

Name Address Bank Details Customer ID

Rob 18 Pussycat

Mews

Nut East Bank 123456

Jim 10 Motor Drive Big Fall Bank 654322

Ethel 4 Funny Address Strange bank 111111

This is a Customers table that our sales system will use. Each row of the table

will hold information about one customer. The table could be a lot larger than

this; it might also hold the email address of the customer, their birthday and so

on.

Customer ID Product ID Order Date Status

123456 1001 21/10/2010 Shipped

111111 1002 10/10/2010 Shipped

654322 1003 1/09/2010 On order

This is the Orders table. Each row of the table describes a particular order that

has been placed. It gives the Product ID of the product that was bought, and the

Customer ID of the customer that bought it.

Product ID Product Name Supplier Price

1001 Windows Phone 7 Microsoft 200

Using LINQ to read structured data

 Consuming Data Services 94

1002 Cheese grater Cheese Industries 2

1003 Boat hook John‟s Dockyard 20

This is the Products table. Each row of this table describes a single product that

the store has in stock. This idea might be extended so that rather than the name

of the supplier the system uses a Supplier ID which identifies a row in the

Suppliers table.

By combining the tables you can work out that Rob has bought a Windows

phone, Ethel has bought a Cheese grater and the Boat hook for Jim is on order.

This is a bit like detective work or puzzle solving. If you look in the Customer

table you can find that the customer ID for Rob is 123456. You can then look

through the order table and find that customer 123456 ordered something with

an ID of 1001. You can then look through the product table and find that product

1001 is a Windows Phone (which is actually not that surprising).

Databases and Queries

You drive a database by asking it questions, or queries. We could build a query

that would find all the orders that Rob has placed. The database system would

search through the Orders table and return all the rows that have the Customer

ID of 123456. We could then use this table to find out just what products had

been purchased by searching through the Products table for each of the Product

IDs in the orders that have been found. This would return another bunch of

results that identify all the things I have bought. If I want to ask the database to

give me all the orders from Rob I could create a query like this:

SELECT * FROM Orders WHERE CustomerID = "123456"

This would return a “mini-table” that just contained rows with the Customer ID

of Rob. The commands I‟m using above are in a language called SQL or

Structured Query Language. This was specifically invented for asking questions

of databases.

Companies like Amazon do this all the time. It is how they manage their

enormous stocks and huge number of customers. It is also how they create their

“Amazon has recommendations for you” part of the site, but we will let that

slide for now.

Databases and Classes

Unfortunately object oriented programs do not work in terms of tables, rows and

queries. If I was writing a C# program to manage a shop I would create some

classes, perhaps starting with one for a Customer.

public class Customer
{
 public string Name {get; set;}
 public string Address { get; set; }
 string BankDetails { get; set; }
 public int ID { get; set; }
}

This contains all the information that you find in a single row of the Customers

table. To hold a large number of customer entries I could create a List collection

that holds them all:

List<Customer> Customers = new List<Customer>();

Whenever I add a new customer I add it to the Customers list and to find

customers I use the foreach loop to work through the customers and locate the

one I want. As an example, to find all the orders made by a customer I could do

something like this:

Using LINQ to read structured data

 Consuming Data Services 95

public List<Order> FindCustomerOrders(int CustomerID)
{
 List<Order> result = new List<Order>();

 foreach (Order order in Orders)
 {
 if (order.CustomerID == CustomerID)
 {
 result.Add(order);
 }
 }
 return result;
}

The method searches through all the orders and builds a new list containing only

ones which have the required customer ID. It is a bit more work than the SQL

query, but it has the same effect.

Linking Databases and Programs

People like using databases because it is easier to create a query than write the

code to perform the work. However, they also like using objects because they

are a great way to structure programs. To use databases and object oriented

programs together the programmer would have to write lots of “glue” code that

transferred data from SQL tables into objects and then back again when they are

stored.

This is a big problem in large developments where they may have many data

tables and classes based information in them.

LINQ

 Language Integrated Query, or LINQ, was the result of an effort to remove the

need for all this glue. It is called “Language Integrated” because they actually

had to change the design of the C# language to be able to make the feature work.

What LINQ lets a programmer do is create objects directly from database

queries:

var orderQueryResult =
 from order in db.Orders
 where order.CustomerID == "123456"
 select order;

This LINQ query is actually C# code that returns a collection of Orders that

meet the selection criteria. You can compare it with both the SQL code and the

C# above to see how it borrows from both.

One thing that might confuse you is that the from construction will return a

collection of items, but we don‟t really know what type these objects will have.

This is where the “Language Integrated” bit comes in. The C# language was

extended to include a mechanism where the types that hold the results from

queries like this (which as a programmer you never actually declare) are created

“on the fly” when the query runs. They are given the placeholder type of var,

which means “a type that works here”. The C# compiler and run time system can

track the use of var types so that programs are still type safe.

In the LINQ query above, which returns a collection of Orders, it would be fine

to use the Order Date property on one of the results as this exists in the result.

However, you could not use an Address property as this class doesn‟t hold that

property.

If you do any kind of database programming in C# you should find out more

about LINQ. It makes it really easy to store and retrieve data.

Using LINQ to read structured data

 Consuming Data Services 96

LINQ on Windows Phone

One piece of bad news to introduce at this point is the fact that the present

version of Windows Phone does not have a built in database facility that we can

use from C# programs we write. The phone does have database capability, but at

the moment this is not exposed to developers. The good news is that this will

change in the future. However, it is possible to use the features of LINQ to very

good effect when reading other kinds of structured data.

An XML document is very like a database, in that contains a number of elements

each of which has property information attached to it. Along with tools to create

database queries and get structured information from them, LINQ also contains

tools that can create objects from XML data. We are going to use these to read

our Twitter feed.

The Twitter feed as a data source

The feed information that you get from Twitter in response to a status request is

a structured document that contains attributes and properties that describe the

Twitter content. If you have been paying attention during the discussions of

XAML and XML you should find this very familiar.

Using LINQ to read structured data

 Consuming Data Services 97

<?xml version="1.0" encoding="UTF-8"?>
<statuses type="array">
<status>
 <created_at>Tue Oct 12 11:57:37 +0000 2010</created_at>
 <id>27131245083</id>
 <text>Had 12,000 hits on www.csharpcourse.com for my C# Yellow Book. No idea
why.</text>
 <source>web</source>
 <truncated>false</truncated>
 <in_reply_to_status_id></in_reply_to_status_id>
 <in_reply_to_user_id></in_reply_to_user_id>
 <favorited>false</favorited>
 <in_reply_to_screen_name></in_reply_to_screen_name>
 <retweet_count>0</retweet_count>
 <retweeted>false</retweeted>
 <user>
 <id>2479801</id>
 <name>Rob Miles</name>
 <screen_name>robmiles</screen_name>
 <location>Hull, UK</location>
 <description>A Computer Science lecturer and Microsoft MVP.</description>

<profile_image_url>http://a3.twimg.com/prof_im/157/me2_normal.jpg</profile_image_url>
 <url>http://www.robmiles.com</url>
 <protected>false</protected>
 <friends_count>21</friends_count>
 <created_at>Tue Mar 27 12:35:28 +0000 2007</created_at>
 <favourites_count>0</favourites_count>
 <utc_offset>0</utc_offset>
 <time_zone>London</time_zone>
 <profile_background_image_url>http://s.twimg.com/a/1286/images/themes/theme1/bg.png
 </profile_background_image_url>
 <notifications>false</notifications>
 <geo_enabled>true</geo_enabled>
 <verified>false</verified>
 <following>true</following>
 <statuses_count>731</statuses_count>
 <lang>en</lang>
 <contributors_enabled>false</contributors_enabled>
 <follow_request_sent>false</follow_request_sent>
 <listed_count>61</listed_count>
 <show_all_inline_media>false</show_all_inline_media>
 </user>
 <geo/>
 <coordinates/>
 <place/>
 <contributors/>
</status>
</statuses>

I‟ve removed some elements to make it fit nicely on the page, but if you look

carefully you can find the text of the tweet itself, along with lots of other stuff.

The real document contains a number of status elements. Above I have only

shown one.

In the same way as we can ask LINQ to query a database and return a collection

of objects it has found we can ask LINQ to create a construction that represents

the contents of an XML document:

XElement TwitterElement = XElement.Parse(twitterText);

The XElement class is the part of LINQ that represents an XML element. The

twitterText string contains the text that we have loaded from the Twitter web

site using our WebClient. Once this statement has completed we now have an

http://s.twimg.com/a/1286/images/themes/theme1/bg.png

Using LINQ to read structured data

 Consuming Data Services 98

XElement that contains all the Twitter status information as a structured

document. The next thing we need to do is convert this information into a form

that we can display. We are going to pull just the status items that we need out

of the TwitterElement and use these to create a collection of items that we can

display using data binding.

Creating Posts for Display

We know that it is very easy to bind a C# object to display elements on a

Silverlight page. So now we have to make some objects that we can use in this

way.

The items we are going to create will expose properties that our Silverlight

elements will use to display their values. The three things we want to display for

each post are the image of the Twitter user making the post, the date of the post

and the post text itself. We can make a class that holds this information.

public class TwitterPost
{
 public string PostText { get; set; }

 public string DatePosted { get; set; }

 public string UserImage { get; set; }
}

These properties are all “one way” in that the TwitterPost object does not

want to be informed of changes in them. This means that we can just expose

them via properties and all will be well. The UserImage property is a string

because it will actually give the uri of the image on the internet.

The next thing we have to do is to use LINQ to get an object collection from the

XElement that was built from the Twitter feed we loaded.

var postList =
 from tweet in twitterElements.Descendants("status")
 select new TwitterPost
 {
 UserImage =
tweet.Element("user").Element("profile_image_url").Value,
 PostText = tweet.Element("text").Value,
 DatePosted = tweet.Element("created_at").Value
 };

This code will do exactly that. It is well worth a close look. The from keyword

requests an iteration through a collection of elements in the document. The

elements are identified by their name. The program will work through each

status element in turn in the document. Each time round the loop the variable

tweet will hold the information from the next status element in the XElement.

The select keyword identifies what is to be returned from each iteration. For

each selected tweet we want to return a new TwitterPost instance with settings

pulled from that tweet. The Element method returns an element with a

particular name. As you can see we can call the Element method on other

elements. That is how we get the image_profile_url out of the user element

for a tweet.

The variable postList is set to the result of all this activity. We can make it

var type, but actually it is a collection of TwitterPost references. It must be a

collection, since the from keyword is going to generate an iteration through

something.

We now have a collection of TwitterPost values that we want to put onto the

screen.

Using LINQ to read structured data

 Consuming Data Services 99

Laying out the post display using XAML

We have seen how easy it is to put a Silverlight element on a page and then bind

object properties to it. However, we have a little extra complication with our

program. We want to display lots of posts, not just one value. Ideally we want to

create something that shows the layout for a single item and use that to create

lots of display elements, each of which is bound to a different TwitterPost

value. This turns out to be quite easy.

Above you can see what I want an individual post to look like. It will have an

image on the side, with the date and post text on the right, one above each other.

From a Silverlight point of view this is three panels, arranged as shown above.

We can get Silverlight to do a lot of the work in laying these out for us by using

the StackPanel container element.

The first StackPanel runs horizontally. This contains the user image and then

another StackPanel that runs vertically and holds the data and time above the

post text.

<StackPanel Orientation="Horizontal" Height="132">
 <Image Source="{Binding UserImage}" Height="73" Width="73"
 VerticalAlignment="Top" Margin="0,10,8,0"/>
 <StackPanel Width="370">
 <TextBlock Text="{Binding DatePosted}" Foreground="#FFC8AB14"
FontSize="22" />
 <TextBlock Text="{Binding PostText}" TextWrapping="Wrap" FontSize="24" />
 </StackPanel>
</StackPanel>

Above you can see the XAML that expresses all this. The StackPanel class is a

lovely way of laying out items automatically. We don‟t have to do lots of

calculations about where things should be placed, instead we just give the items

and the StackPanel puts them all in the right place. You can also see the

bindings that link the items to the properties in the TwitterPost class. The

UserImage property in TwitterPost is bound to the Source property of the

image. If we add the complete XAML above to our main page we have an area

that can hold a list of Twitter posts.

Using LINQ to read structured data

 Consuming Data Services 100

Creating a complete layout

<ListBox Height="442" HorizontalAlignment="Left" Name="tweetsListBox"
VerticalAlignment="Top"
 Width="468">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal" Height="132">
 <Image Source="{Binding UserImage}" Height="73" Width="73"
 VerticalAlignment="Top" Margin="0,10,8,0"/>
 <StackPanel Width="370">
 <TextBlock Text="{Binding DatePosted}" Foreground="#FFC8AB14"
FontSize="22" />
 <TextBlock Text="{Binding PostText}" TextWrapping="Wrap" FontSize="24" />
 </StackPanel>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

This is exactly how we do it. This XAML repays a lot of study. The first thing

we notice is that this is a ListBox element. We‟ve not seem these before but

they are, as you might expect, a way of holding a list of boxes. Within a

ListBox we can put a template that describes what each item in the list will look

like. This includes the data binding that will link element properties to our

TwitterPost instances. It also includes the layout elements that will describe

how the post will look.

Creating Posts for Display

The next thing our Twitter reader must do is get the posts data onto the display.

Before we do this, it is worth stepping back and considering what we are about

to do. This is worth doing because it will help us to understand how Silverlight

binds collections to displays.

We could write some test code that made us a collection of TwitterPost items:

TwitterPost p1 = new TwitterPost
{
 DatePosted = "Tue Oct 12 11:57:37 +0000 2010",
 UserImage = "http://a3.twimg.com/profile_images/150108107/me2_normal.jpg",
 PostText = "This is a test post from Rob"
};

TwitterPost p2 = new TwitterPost
{
 DatePosted = "Wed Oct 13 14:21:04 +0000 2010",
 UserImage = "http://a3.twimg.com/profile_images/150108107/me2_normal.jpg",
 PostText = "This is another test post from Rob"
};

List<TwitterPost> posts = new List<TwitterPost>();
posts.Add(p1);
posts.Add(p2);

This code creates two TwitterPost instances and then adds them to a list of

posts. This is not particularly interesting code. It becomes interesting when we

do this:

tweetsListBox.ItemsSource = posts;

The magic of Silverlight data binding takes the list of posts and the template

above, and does this with it:

Using LINQ to read structured data

 Consuming Data Services 101

This is very nice. It means that you can display any collection of data in a list on

the page just by setting them as the source for a ListBox. All you have to do is

create a data template that binds the properties of each instance to display

elements and then assign a list of these instances to the ItemSource property of

the ListBox.

Since we know that we can assign a collection of TwitterPost references to a

ListBox and get this displayed the next statement is not going to come as much

of a surprise.

tweetsListBox.ItemsSource = postList;

At this point our work is done, and the Twitter posts are displayed.

The ListBox provides a lot of useful functionality. If you run this program you

will find that you can scroll the list up and down by dragging them with your

finger. The scroll action will slow down and the items will even “scrunch” and

bounce as they move.

The solution in Demo 03 Complete Twitter Reader contains this code. You can

type in any twitter username and download the feed from that user and display

Using Network Services

 Consuming Data Services 102

the feed on the screen. When the program starts it is pre-loaded with the test

tweets shown above.

5.3 Using Network Services
We can create Windows Phone applications that interact with web servers. If we

want to pass data to and from a server using web protocols we can also use the

GET and POST elements of HTTP (Hyper Text Transfer Protocol) . In this

section we are going to go beyond that and investigate how we can create

network based services and then consume them on the Windows Phone device.

WCF (Windows Communication Foundation) services provide a way that two

processes can communicate over a network. They take care of all the transfer of

messages between two systems and can work over a variety of communication

media. The services are exposed by a server and then accessed by a client

program. In our case the client program will be running on a Windows Phone.

Server

Service
Proxy
Object

The diagram shows how this works. Software on the phone interacts with a

“proxy object” that contains the methods provided by the service. A call to a

method on the proxy object will cause a network message to be created that is

sent to the service on the server. When the server receives the message it will

then call the method code in a server object. The result to be returned by the

method will then be packaged up into another network message which is sent

back to the client which then sends the return value back to the calling software.

We don‟t need to worry about how the messages are constructed and transferred.

We just have to create our server methods and calls from the client systems.

The service also exposes a description of the methods that it provides. This is

used by the development tool (in our case Visual Studio) to actually create the

proxy object in the client program. This means that we can create a client

application very easily.

Joke of the Day service

To discover how all this works we are going to create a “Joke of the Day”

service. This will return a string containing something suitably rib-tickling on

request from the client. The user will be able to select the “strength” of the joke,

ranging from 0 to 2 where 0 is mildly amusing and 2 is a guaranteed roll on the

floor laughing experience.

The application will be made up of two parts, the server program that exports the

service and the client program that uses it. The server will be created as a WCF

(Windows Communication Foundation) Service application. The client will be a

Windows Phone application that connects to the service and requests a joke.

Using Network Services

 Consuming Data Services 103

Services are created as Visual Studio projects. They can run inside Visual

Studio in a test environment. After testing the project files would be loaded onto

a production server.

Services and Clients

Services and clients look like methods. When we write the server we write a

method that does something and returns a result. When we write the client we

call a method and something comes back. The communication service

underneath the programs takes care of packaging the parameters and the method

return value. When we create the service we create an interface that defines the

method the service will provide.

[ServiceContract]
public interface IJokeOfTheDayService
{

 [OperationContract]
 string GetJoke(int jokeStrength);

}

We are only going to create one method in our service, but a service could

provide many methods if required. This method only accepts a single parameter

and returns a result, but we could create more complex methods if we wish.

Once we have the interface we can now create the method to provide the service

that the service describes. The [ServiceContract] and

[OperationContract] attributes on the classes and methods provide the

means by which the build process can generate the service descriptions that will

be used by clients to discover and bind to these services.

Using Network Services

 Consuming Data Services 104

public class JokeOfTheDayService : IJokeOfTheDayService
{
 public string GetJoke(int jokeStrength)
 {
 string result = "Invalid strength";
 switch (jokeStrength)
 {
 case 0:
 result =
"Knock Knock. Who's there? Oh, you've heard it";
 break;
 case 1:
 result =
"What's green and hairy and goes up and down? A gooseberry in a
lift";
 break;
 case 2:
 result =
"A horse walks into a bar and the barman asks 'Why the long face?";
 break;
 }
 return result;
 }
}

As you can see from above, the method is quite simple. As are the jokes. The

input parameter is used to select one of three jokes and return them. If there is no

match to the input the message “Invalid strength” is returned.

If we create a service like this we can use the WCF Test Client to invoke the

methods and view the results.

This tool lets us call methods in the service and view the results that they return.

You can see the results of a call to the method with a parameter of 0. We can

also view the service description in a browser:

Using Network Services

 Consuming Data Services 105

This gives a link to the service description, as well some sample code that shows

how to use it.

Joke of the Day Client

The client application needs to have a connection to the

JokeOfTheDayService. This is added as a resource like any other, by using the

Solution Explorer pane in Visual Studio:

Rather than being a reference to a library assembly we instead start to create a

Service reference. At this point Visual Studio needs to find the description of the

service that is to be used. The Add Service Reference dialog lets us type in the

network address of a service and it will then read the service description

provided by the service.

It is very easy to create and test WCF services as these can be run on your

Windows PC using a Development Server which is provided as part of Visual

Studio. Once we have the service running and have obtained the url of the

service on from the development server we just have to type this into the “Add

Service Reference” dialog as shown below.

Using Network Services

 Consuming Data Services 106

The Add Service Reference dialog will read the service description and show the

operations available from that service. Above you can see that the

JokeOfTheDay service only provides one method. At the bottom of this dialog

you can see the namespace that we want the service to have in our Windows

Phone client application. We can change this name to JokeOfTheDayService.

Once the service has been added it now takes its place in the solution. Our

application must now create a proxy object that will be used to invoke the

methods in the service. The best place to do this is in the constructor of the main

page:

JokeOfTheDayService.JokeOfTheDayServiceClient jokeService;

// Constructor
public MainPage()
{
 InitializeComponent();

 jokeService = new
JokeOfTheDayService.JokeOfTheDayServiceClient();

 jokeService.GetJokeCompleted +=
 new
EventHandler<JokeOfTheDayService.GetJokeCompletedEventArgs>
 (jokeService_GetJokeCompleted);
}

Using Network Services

 Consuming Data Services 107

This code creates a service instance and binds a method to the “completed”

event that is fired when a service call returns. You might remember that when

we got content from a web server the action was performed asynchronously, in

that the program sent off a request to read the service and then another method

was called when the data had returned. Calls to WCF methods are exactly the

same. When the program wants a new joke it must call the GetJoke method.

This will not return with the joke, instead it will start off the process of fetching

a joke. At some point in the future, when the joke arrives back from the server, a

method will be called to indicate this. All the method needs to do is display the

joke on the screen:

void jokeService_GetJokeCompleted(object sender,
 JokeOfTheDayService.GetJokeCompletedEventArgs e)
{
 if (!e.Cancelled)
 {
 jokeTextBlock.Text = e.Result;
 }
}

This method just checks to see if the call was successful and if it was the method

takes the result from the call and puts it on the screen.

The final piece of code that we need to add is the button event handler that will

actually call the WCF method to ask the server to do something:

private void getJokeButton_Click(object sender,
RoutedEventArgs e)
{
 int strength = 0;

 if (int.TryParse(strengthTextBox.Text, out strength))
 {
 jokeService.GetJokeAsync(strength);
 }
}

This method gets the strength value and then uses this in a call of the

GetJokeAsync method. Note that TryParse will return false if the text in

strengthTextBox could not be converted into an integer.

Errors and TimeOuts

If the service cannot be accessed the call to GetJokeAsync will throw an

exception:

We know that the connectivity of a Windows Phone is not guaranteed. If they do

not have a network signal when they run this program then it will throw the

above exception. In production code you must make sure that these exceptions

never get passed through to the user. This means that you need to enclose all

What we have learned

 Consuming Data Services 108

your attempts to use these facilities in try – catch constructions and provide

appropriate feedback to the user when these events happen.

Using Network Services

For the purpose of the demonstration above I used a network server that runs on

the same machine as the client. In reality you will be connecting to different

systems on the internet which may be a long way away. This is not a problem.

As long as Visual Studio can locate the service and download the service

information it can then build the correct proxy objects to use the service

correctly. If you want to test a service you can connect to a local service initially

and then re-configure the service uri later to connect to the actual service.

The solution in Demo 04a JokeService contains a server which provides the joke

service as described above. You can run this service on your machine and use

the solution in Demo 04b WindowsPhoneJokeClient to connect to this service

and read jokes from it. When you run the program you need to make sure that

the development server url assigned to the service matches that of the service in

the client.

We can now create systems that use Windows Phones as clients to servers. A

given Windows Phone client can connect to multiple remote services at the same

time if required. This is just an introduction to the things you can do with

network services. Later we will look at some of the Windows Phone controls

that build on these abilities.

What we have learned
1. Windows Phone applications can create and use objects that represent a

connection to a network service. The use of these objects is

asynchronous, in that the results of a request are not returned to that

request, but delivered later by a further call made by the network client.

2. Some network calls may return structured data that contains XML

describing the content.

3. The LINQ (Language INtegrated Query) library provided for use on the

phone can create a representation of structured data which can then be

traversed to create structured data for use in a program.

4. LINQ can used be to provide an automatic transfer of data from the

rows and tables in a database into objects that can be used in a program.

5. XAML allows the creation of display templates which can be bound to

data elements. These templates can include lists, so that a collection of

structured data can be bound to a list.

6. Windows Communication Foundation (WCF) provides a means by

which servers can be set up that expose methods for clients to call.

7. A client application can read the service description provided by a

WCF server and use this to create a proxy object that contains the

methods provided by the service. When code in the client calls the

method in the proxy object a network transaction is performed that

transfers the parameters of the call into the server. The server method is

then invoked and a further network transaction delivers the result back

to the caller.

XNA in context

 XNA Overview 109

6 XNA Overview

After all the hard work of the previous sections, now would seem a good place

to have some fun and play some games. You can write games in Silverlight, but

that is not really what it was designed for. XNA on the other hand was built from

the ground up to be an efficient and powerful tool for game creation. In this

section we are going to take a look at XNA and how to use it to create games for

the Windows Phone device.

6.1 XNA in context
XNA is for creating games. It provides a complete ecosystem for game creation,

including Content Management (how you get your sound effects, maps and

textures into a game) and the game build process (how you combine all the

elements into the single distributable game element). We are not going to delve

too deeply into all these aspects of the system, instead we are going to focus on

the XNA Framework, which is a library of C# objects that is used to create the

games programs themselves. XNA allows game developers to use C# to create

high performance games on a variety of platforms, including Windows PC,

Xbox 360 and Windows Phone. By careful design of your program structure it is

possible to reuse the base majority of your game code across these three

platforms.

2D and 3D games

Games can be “2D” (flat images that are drawn in a single plane) or “3D” (a

visual simulation of a 3D environment). XNA provides support for both kinds of

games and the Windows Phone hardware acceleration makes it capable of

displaying realistic 3D worlds. For the purpose of this section we are going to

focus on 2D, sprite based, games however. We can create a good gameplay

experience this way, particularly on a mobile device.

XNA and Silverlight

When we create a Windows Phone project we can create either a Silverlight

application or an XNA one. Visual Studio uses the appropriate template and

builds the solution with the required elements to make that kind of program. It is

not possible to combine these. It would be lovely to think of a system which

allowed us to use Silverlight to make the game menus and XNA to provide the

gameplay but at the present this is not possible.

Making an XNA program

 XNA Overview 110

6.2 Making an XNA program

The New Project dialog in Visual Studio lets us select Windows Phone Game as

the project type. If we want to make an XNA game for Windows PC or Xbox

360 we can do that here as well. One thing worth bearing in mind is that it is

possible to use an existing XNA project as the basis of one for another platform,

inside the same solution. Visual Studio will copy a project and make a new

version which targets the new device. This means that we can take a Windows

Phone XNA game and make a version for the Xbox 360 if we wish.

The Solution for an XNA project looks rather like a Silverlight one, but there are

some differences. There is a second project in the solution which is specifically

for game content. This is managed by the Content Manager which provides a set

of input filters for different types of resources, for example PNG images, WAV

sound files etc. These resources are stored within the project and deployed as

part of the game onto the target platform. When the game runs the Content

Manager loads these resources for use in the game. The result of this is that

whatever the platform you are targeting the way that content assets are managed

is the same as far as you are concerned.

One thing you need to be aware of though is that Windows Phone has a reduced

display size compared to the Windows PC and Xbox 360 platforms. The

maximum resolution of a Windows Phone game is 800x480 pixels. To make

your XNA games load more quickly and take up less space it is worth resizing

your game assets for the Windows Phone platform.

If you run the new game project as created above you will be rewarded by a blue

screen. This is not the harbinger of doom that it used to be, but simply means

that the initial behaviour of an XNA game is to draw the screen blue.

Making an XNA program

 XNA Overview 111

How an XNA game runs

If you look at a Silverlight application you will find that a lot of the time the

program never seems to be doing anything. Actions are only carried out in

response to events, for example when a user presses a button, or a network

transaction completes, or a new display page is loaded.

XNA programs are quite different. An XNA program is continuously active,

updating the game world and drawing the display. Rather than waiting for an

input from a device, an XNA game will check devices that may have input and

use these to update the game model and then redraw the screen as quickly as

possible. In a game context this makes a lot of sense. In a driving game your car

will continue moving whether you steer it or not (although this might not end

well). The design of XNA recognises that the game world will update all the

time around the player, rather than the player initiating actions.

When an XNA game runs it actually does three things:

1. Load all the content required by the game. This includes all the sounds,

textures and models that are needed to create the game environment.

2. Repeatedly run the Game Engine

 Update the game world. Read controller inputs, update the

state and position of game elements.

 Draw the game world. Take the information in the game world

and use this to render a display of some kind, which may be

2D or 3D depending on the game type.

These three behaviours are mapped onto three methods in the Game class that is

created by Visual Studio as part of a new game project.

partial class Game1 : Microsoft.Xna.Framework.Game
{

 protected override void LoadContent
 (bool loadAllContent)
 {
 }
 protected override void Update(GameTime gameTime)
 {
 }
 protected override void Draw(GameTime gameTime)
 {
 }
}

When we write a game we just have to fill in the content of these methods. Note

that we never actually call these methods ourselves, they are called by the XNA

framework when the game runs. LoadContent is called when the game starts.

The Draw method is called as frequently as possible and Update is called thirty

times a second. Note that this is not the same as XNA games on the Windows

PC or Xbox 360. In order to reduce power consumption a Windows Phone

game only updates 30 times a second, rather than the 60 times a second of the

Making an XNA program

 XNA Overview 112

desktop or console version of the game. If you want to write a game which will

work on all three platforms you will have to bear this in mind.

Before we can start filling in the Update and Draw methods in our game we

need to have something to display on the screen. We are going to start by

drawing a white ball. Later we will start to make it bounce around the screen and

investigate how we can use this to create a simple bat and ball game.

Game Content

We use the word content to refer to all the assets that make a game interesting.

This includes all the images on the textures in a game, the sound effects and 3D

models. The XNA framework Content Management system can take an item of

content from its original source file (perhaps a PNG image) all the way into the

memory of the game running on the target device. This is often called a content

pipeline in that raw resources go into one end and they are then processed

appropriately and finally end up in the game itself.

The content management is integrated into Visual Studio. Items of content are

managed in the same way as files of program code. We can add them to a project

and then browse them and manage their properties.

Above you can see an item of content which has been added to a Content

project. The item is a PNG (Portable Network Graphics) image file that contains

a White Dot which we could use as a ball in our game. This will have the asset

name “WhiteDot” within our XNA game. Once we have our asset as part of the

content of the game we can use it in games.

We have seen something that looks a bit like this in the past when we added

resources to Silverlight games. Those resources have actually been part of

Visual Studio solutions as well. However, it is important that you remember that

the Content Manager is specifically for XNA games and is how you should

manage XNA game content.

Loading Content

The LoadContent method is called to load the content into the game. (the clue

is in the name). It is called once when the game starts running.

protected override void LoadContent()
{
 // Create a new SpriteBatch, which can be used to
 // draw textures.
 spriteBatch = new SpriteBatch(GraphicsDevice);

}

Making an XNA program

 XNA Overview 113

The first thing that LoadContent does is actually nothing to do with content at

all. It creates a new SpriteBatch instance which will be used to draw items on

the screen. We will see what the SpriteBatch is used for later.

We can add a line to this method that loads image into our game:

ballTexture = Content.Load<Texture2D>("WhiteDot");

The Load method provided by the content manager is given the type of resource

to be loaded (in this case Texture2D). The appropriate loader method is called

which loads the texture into the game.

Texture2D ballTexture;

XNA provides a type called Texture2D which can hold a single two-

dimensional texture in a game. Later in the program we will draw this on the

screen. A game may contain many textures. At the moment we are just going to

use one.

Creating XNA sprites

In computer gaming terms a sprite is an image that can be positioned and drawn

on the display. In XNA terms we can make a sprite from a texture (which gives

the picture to be drawn) and a rectangle (which determines the position on the

screen). We already have the texture, now we need to create the position

information.

XNA uses a coordinate system that puts the origin (0,0) of any drawing

operations in the top left hand corner of the screen. This is not same as a

conventional graph, where we would expect the origin to be the bottom left hand

corner of the graph. In other words, in an XNA game if you increase the value of

Y for an object this causes the object to move down the screen.

The units used equate to pixels on the screen itself. Most Windows Phones have

a screen resolution of 800 x 480 pixels. If we try to draw objects outside this

area XNA will not complain, but it won‟t draw anything either.

XNA provides a Rectangle structure to define the position and size of an area

on the screen.

Rectangle ballRectangle = new Rectangle(
 0, 0,
 ballTexture.Width, ballTexture.Height);

The above code creates a rectangle which is positioned at the top left hand

corner of the screen. It is the same width and height as the ball texture.

Drawing objects

Now that we have a sprite the next thing we can do is make the game draw this

on the screen. To do this we have to fill in the Draw method.

protected override void Draw(GameTime gameTime)
{
 GraphicsDevice.Clear(Color.CornflowerBlue);

 base.Draw(gameTime);
}

This is the “empty” Draw method that is provided by Visual Studio when it

creates a new game project. It just clears the screen to blue. We are going to add

some code to the method that will draw our ball on the screen. Before we can do

this we have to understand a little about how graphics hardware works.

Modern devices have specialised graphics hardware that does all the drawing of

the screen. A Windows Phone has a Graphics Processor Unit (GPU) which is

Making an XNA program

 XNA Overview 114

given the textures to be drawn, along with their positions, and then renders these

for the game player to see. When a program wants to draw something it must

send a batch of drawing instructions to the GPU. For maximum efficiency it is

best if the draw requests are be batched together so that they can be sent to the

GPU in a single transaction. We do this by using the SpriteBatch class to do

the batching for us.

protected override void Draw(GameTime gameTime)
{
 GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

 // Draw operations go here

 spriteBatch.End();

 base.Draw(gameTime);
}

When we come to write our game the only thing we have to remember is that

our code must start and end a batch of drawing operations, otherwise the

drawing will not work.

We now have our texture to draw and we know how the draw process will work,

the next thing to do is position the draw operation on the screen in the correct

place. Once we have done this we will have created a sprite. The SpriteBatch

command that we use to draw on the screen is the Draw method:

spriteBatch.Draw(ballTexture, ballRectangle, Color.White);

The Draw method is given three parameters; the texture to draw, a Rectangle

value that gives the draw position and the color of the “light” to shine on the

texture when it is drawn. The complete Draw method looks like this

protected override void Draw(GameTime gameTime)
{
 GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

 spriteBatch.Draw(ballTexture, ballRectangle, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);
}

When we run this program we find that the ball is drawn in the top left hand

corner of the screen on the phone:

Note that, by default, XNA games expect the player to hold the phone

horizontally, in “landscape” mode, with the screen towards the left. We will see

later that your game can change this arrangement if it needs to.

Making an XNA program

 XNA Overview 115

The first version of our program drew the ball with the same size as the original

texture file. However, we can use whatever size and position we like for the

drawing process and XNA will scale and move the drawing appropriately, as

you can see above.

The solution in Demo 01White Dot contains a Windows Phone XNA game that

just draws the white dot in the top left hand corner of the display.

Screen Sizes and Scaling

When you make a game it is important that it looks the same whenever it is

played, irrespective of the size of the screen on the device used to play it.

Windows Phone devices have a particular set of resolutions available to them, as

do Windows PC and Xbox 360s. If we want to make a game that looks the same

on each device the game must be able to determine the dimensions of the screen

in use and then scale the display items appropriately.

An XNA game can obtain the size of the screen from the properties of the

viewport used by the graphics adapter.

ballRectangle = new Rectangle(
 0, 0,
 GraphicsDevice.Viewport.Width / 20,
 GraphicsDevice.Viewport.Width / 20);

This code creates a ball rectangle that will be a 20
th

 of the width of the display,

irrespective of the size of the screen that is available.

Updating Gameplay

At the moment the game draws the ball in the same place every time. A game

gives movement to the objects in it by changing their position each time they are

drawn. The position of objects can be updated in the aptly named Update

method. This is called thirty times a second when the game is running. We could

add some code to update the position of the ball:

new Rectangle(
 0, 0,
 ballTexture.Width,
 ballTexture.Height)

new Rectangle(
 0, 0, // position
 200,100) // size

new Rectangle(
 50, 50, //
position
 60, 60) // size

Making an XNA program

 XNA Overview 116

protected override void Update(GameTime gameTime)
{

 ballRectangle.X++;
 ballRectangle.Y++;

 base.Update(gameTime);
}

This version of Update just makes the X and Y positions of the ball rectangle

one pixel bigger each time it is called. This causes the ball to move down

(remember that the Y origin is the top of the screen) and across the screen at a

rate of one pixel every thirtieth of a second. After fifteen seconds or so the ball

has left the screen and will continue moving (although not visible) until we get

bored and stop the game from running.

Using floating point positions

The code above moves the ball one pixel each time Update is called. This

doesn‟t give a game very precise control over the movement of objects. We

might want a way to move the ball very slowly. We do this by creating floating

point variables that will hold the ball position:

float ballX;
float ballY;

We can update these very precisely and then convert them into pixel coordinates

when we position the draw rectangle:

ballRectangle.X = (int)(ballX + 0.5f);
ballRectangle.Y = (int)(ballY + 0.5f);

The above statements take the floating point values and convert them into the

nearest integers, rounding up if required. We can also use floating point values

for the speed of the ball:

float ballXSpeed = 3;
float ballYSpeed = 3;

Each time the ball position is updated we now apply the speed values to the ball

position:

ballX = ballX + ballXSpeed;
ballY = ballY + ballYSpeed;

Now that we can position the ball and control the speed very precisely we can

think about making it bounce off the edge of the screen.

Making the ball bounce

Our first game just made the ball fly off the screen. If we are creating some kind

of bat and ball game we need to make the ball “bounce” when it reaches the

screen edges. To do this the game must detect when the ball reaches the edge of

the display and update the direction of movement appropriately. If the ball is

going off the screen in a horizontal direction the game must reverse the X

component of the ball speed. If the ball is going of the top or the bottom of the

screen the game must reverse the Y component of the ball speed.

Making an XNA program

 XNA Overview 117

(0,0)

(0,height) (width, height)

(width, 0)

x +texture width > width

x < 0

y < 0

y + texture height > height

The figure above shows the directions the ball can move off the screen and the

conditions that become true when the ball moves in that direction.

if (ballX < 0 ||
 ballX + ballRectangle.Width >
GraphicsDevice.Viewport.Width)
{
 ballXSpeed = -ballXSpeed;
}

The code above reverses the direction of the ball in the X axis when the ball

moves off either the left or right hand edge of the display. We can use a similar

arrangement to deal with movement in the Y direction.

The solution in Demo 03 Bouncing Ball contains a Windows Phone XNA game

that just draws a ball that bounces around the display.

Adding paddles to make a bat and ball game

We now have a ball that will happily bounce around the screen. The next thing

that we need is something to hit the ball with.

The paddle is a rectangular texture which is loaded and drawn in exactly the

same way as the ball. The finished game uses two paddles, one for the left hand

player and one for the right. In the first version of the game we are going to

control the left paddle and the computer will control the right hand one. This

means that we have three sprites on the screen. Each will need a texture variable

to hold the image on the sprite and a rectangle value to hold the position of the

sprite on the screen.

Making an XNA program

 XNA Overview 118

// Game World
Texture2D ballTexture;
Rectangle ballRectangle;
float ballX;
float ballY;
float ballXSpeed = 3;
float ballYSpeed = 3;

Texture2D lPaddleTexture;
Rectangle lPaddleRectangle;
float lPaddleSpeed = 4;
float lPaddleY;

Texture2D rPaddleTexture;
Rectangle rPaddleRectangle;
float rPaddleY;

// Distance of paddles from screen edge
int margin;

These variables represent our “Game World”. The Update method will update

the variables and the Draw method will use their values to draw the paddles and

ball on the screen in the correct position.

When the game starts running the LoadContent will fetch the images using the

Content Manager and then set up the draw rectangles for the items on the screen.

protected override void LoadContent()
{
 // Create a new SpriteBatch, which is used to draw
textures.
 spriteBatch = new SpriteBatch(GraphicsDevice);

 ballTexture = Content.Load<Texture2D>("ball");
 lPaddleTexture = Content.Load<Texture2D>("lpaddle");
 rPaddleTexture = Content.Load<Texture2D>("rpaddle");

 ballRectangle = new Rectangle(
 GraphicsDevice.Viewport.Width/2,
 GraphicsDevice.Viewport.Height/2,
 GraphicsDevice.Viewport.Width / 20,
 GraphicsDevice.Viewport.Width / 20);

 margin = GraphicsDevice.Viewport.Width / 20;

 lPaddleRectangle = new Rectangle(
 margin, 0,
 GraphicsDevice.Viewport.Width / 20,
 GraphicsDevice.Viewport.Height / 5);

 rPaddleRectangle = new Rectangle(
 GraphicsDevice.Viewport.Width -
 lPaddleRectangle.Width - margin, 0,
 GraphicsDevice.Viewport.Width / 20,
 GraphicsDevice.Viewport.Height / 5);

 lPaddleY = lPaddleRectangle.Y;
 rPaddleY = rPaddleRectangle.Y;
}

This LoadContent method repays careful study. It loads all the textures and

then positions the paddle draw positions each side of the screen as shown below.

Making an XNA program

 XNA Overview 119

When the game starts the ball will move and the paddles will be controlled by

the player.

Controlling paddles using the touch screen

We can use the Windows Phone touch screen to control the movement of a

paddle. We can actually get very precise control of items on the screen, but we

are going to start very simple. If the player touches the top half of the screen

their paddle will move up. If they touch the bottom half of the screen their

paddle will move down.

The Touch Panel returns a collection of touch locations for our program to use:

TouchCollection touches = TouchPanel.GetState();

Each TouchLocation value contains a number of properties that tell the game

information about the location, including the location on the screen where the

touch took place. We can use the Y component of this location to control the

movement of a paddle.

if (touches.Count > 0)
{
 if (touches[0].Position.Y > GraphicsDevice.Viewport.Height
/ 2)
 {
 lPaddleY = lPaddleY + lPaddleSpeed;
 }
 else
 {
 lPaddleY = lPaddleY - lPaddleSpeed;
 }
}

The first statement in this block of code checks to see if there are any touch

location values available. If there are it gets the location of the first touch

location and checks to see if it is above or below the mid-point of the screen. It

then updates the position of the paddle accordingly. If we run this program we

find that we can control the position of the left hand paddle.

The solution in Demo 04 Paddle Control contains a Windows Phone XNA game

that draws a ball that bounces around the display. You can also control the

movement of the left hand paddle by touching the top or bottom of the screen

area.

You can use the touch panel for much more advanced purposes than the example

above. You can track the location and movement of a particular touch event very

easily. You can also ask the touch panel to detect gestures that you are interested

in.

Making an XNA program

 XNA Overview 120

Detecting Collisions

At the moment the bat and the ball are not “aware” of each other. The ball will

pass straight through the bat rather than bounce off it. What we need is a way to

determine when two rectangles intersect.

The Rectangle structure provides a method called Intersects that can do this

for us:

if (ballRectangle.Intersects(lPaddleRectangle))
{
 ballXSpeed = -ballXSpeed;
}

The above code tests to see if the ball has hit the left hand paddle. If it has the

direction of movement of the ball is reversed to make the ball bounce off the

paddle.

Keeping score

For the game to be worth playing it must also keep a score and display this for

the players. Points are scored by hitting the back wall of the opponent player.

We already have the code that does this. At the moment it just reverses the

direction of movement of the ball, it is a simple matter to add a score variable for

each player and increase this each time a “goal” is scored. The final thing we

need to be able to do at this point is display the score for the players to see. To

do this we need to find out how an XNA game draws text for a player.

Displaying Text

The XNA environment does not provide direct access to text drawing. To write

text on the screen a game must load a character font and then use this to draw the

characters. The font to be used is an item of game content which we need to add

to the game. When the font is added the size and the font design is selected.

When the game is built the Content Manager will build a set of character images

and add these to the game. The game can then draw the text on the game screen

along with the other game items.

The font, called a “SpriteFont”, is created as a new item and given a name. The

actual font information is held in an XML file which you can edit with Visual

Studio:

Using the accelerometer in games

 XNA Overview 121

This file is where the font size and the name of the font are selected. Above you

can see that the font “Segoe UI Mono” is being used with a font size of 14.

Further down the XML file you will find settings for bold and italic versions of

the font.

Once the SpriteFont has been added to the content in a program it can then be

loaded when the program runs:

SpriteFont font;

font = Content.Load<SpriteFont>("MessageFont");

Note that this is exactly the same format as the Load we used to fetch the

textures in our game only this time it is being used to fetch a SpriteFont rather

than a Texture2D.

Once we have the font we can use it to draw text:

spriteBatch.DrawString(font, "Hello", new Vector2(50,100),
 Color.White);

The DrawString method is given four parameters. These are the font to use, the

string to display, a vector to position the text on the screen and the colour of text

to draw. A vector is a way that we can specify a position on the screen, in the

example code above the text would be drawn 50 pixels across the screen and 100

pixels down (remember that the origin for Y is at the top of the screen).

The solution in Demo 05 Complete Pong Game contains a Windows Phone

XNA game that implements a working pong game. The left hand paddle is

controlled by the touch panel. The right hand paddle is controlled by an ultra-

intelligent AI system that makes it completely unbeatable. Take a look at the

code to discover how this top secret technology works. This game is not perfect.

Because of the way the ball movement is managed it can sometimes get “stuck”

on a paddle or off the edge of the screen. It is up to you to make a completed

version of this.

6.3 Using the accelerometer in games
The touch panel is not the only novel input device provided by the Windows

Phone. Games can also make use of the accelerometer so that we can create

games that are controlled by the tipping of the phone. The accelerometer can

measure acceleration in three axes. While it can be used to measure acceleration

(you could use your Windows Phone to measure the acceleration of your sports

car if you like) it is most often used to measure the orientation of the phone. This

Using the accelerometer in games

 XNA Overview 122

is because the accelerometer is acted on by gravity, which gives a constant

acceleration of 1 towards the centre of the earth.

You can visualize the accelerometer as a weight on the end of a spring, attached

to the back of the phone. The picture below shows us how this might look.

Z
X

Y

If we hold the phone flat as shown, the weight will hang straight down

underneath the phone. If we were to measure the distance in the X, Y and Z

directions of the weight relative to the point where it is attached to the phone it

would read 0, 0, -1, assuming that the spring is length 1. The value of Z is -1

because at the moment the position of the weight is below the phone and the

coordinate system being used has Z, the third dimension, increasing as we move

up from the display.

If you tip the bottom of the phone up so that the far edge of the phone is now

pointing towards your shoes the weight would swing away from you, increasing

the value of Y that it has relative to the point where the string is attached. If you

tip the bottom of the phone down, so that the phone tilts towards you and you

can see the screen properly, the weight moves the other way, and the value of Y

becomes less than 0. If the phone is vertical (looking a bit like a tombstone) the

weight is directly below and in line with it. In this situation the value of Z will

be 0, and the value of Y will be -1. Twisting the phone will make the weight

move left or right, and will cause the value of X to change.

These are the values that we actually get from the accelerometer in the phone

itself. So, at the moment the accelerometer seems to be measuring orientation

(i.e. the way the phone is being held) not acceleration. If the phone starts to

accelerate in other directions you can expect to see the values in the appropriate

direction change as well. Our diagram above actually helps us visualise this too.

If we push the phone away from us the weight will “lag” behind the phone for a

second until it caught up resulting in a brief change in the Y value. We would

see exactly the same effect in the readings from the accelerometer if we did

move the phone in this way.

Getting readings from the accelerometer

When we used the touch panel from XNA we found that we just had to ask the

panel for a list of active touch locations. It would be nice if we could do the

same with the accelerometer but this is not how it works. The accelerometer

driver has been written in a way that makes it useable in Silverlight programs as

well. In Silverlight we were used to receiving messages from things when we

wanted them to tell us something. The elements on a Silverlight page generate

events when they are used and web request cause an event when they have data

for us to use.

Using the accelerometer in games

 XNA Overview 123

The accelerometer in Windows Phone works the same way. A program must

make an instance of the Accelerometer class and connect a method to the

ReadingChanged event that the class provides. Whenever the hardware has a

new acceleration reading it will fire the event and deliver some new values for

our program to use. If the program is written using Silverlight it can use those

values directly and perhaps bind them to properties of elements on the screen. If

the program is written using XNA it must make a local copy of the new values

so that they used by code in the Update method next time it is called.

Using the Accelerometer class

Before we can use the Accelerometer class we need to add the system library

that contains it.

We can also add the appropriate namespace:

using Microsoft.Devices.Sensors;

Now the game can create an instance of the accelerometer, connect an event

handler to it and then start the accelerometer running.

protected override void Initialize()
{
 Accelerometer acc = new Accelerometer();
 acc.ReadingChanged +=
 new EventHandler<AccelerometerReadingEventArgs>

(acc_ReadingChanged);
 acc.Start();
 base.Initialize();
}

We can do this work in the Initialise method, as shown above. This is

another method provided by XNA. It is called when a game starts running. It is a

good place to put code to set up elements in our program. Next we have to

create our event handler. This will run each time the accelerometer has a new

value for the game.

Vector3 accelState = Vector3.Zero;

void acc_ReadingChanged
 (object sender, AccelerometerReadingEventArgs
e)
{
 accelState.X = (float)e.X;
 accelState.Y = (float)e.Y;
 accelState.Z = (float)e.Z;
}

This method just copies the readings from the arguments to the method call into

a Vector3 value. The Update method in our game can then use these values to

control the movement of the game paddle:

lPaddleY = lPaddleY - (accelState.X * lPaddleSpeed);

Using the accelerometer in games

 XNA Overview 124

This code is very simple. It uses the X value of the accelerometer state to control

the movement up and down of the left hand side paddle. You might thing we

should use the Y value from the accelerometer, but remember that our game is

being played in landscape mode (with the phone held on its side) and the

accelerometer values are always given as if the phone is held in portrait mode.

The accelerometer, in association with a very simple physics model, can be used

to create “tipping” games, where the player has to guide a ball around a maze or

past obstacles.

The solution in Demo 06 Tipping Pong contains a Windows Phone XNA game

that implements a working pong game. The left hand paddle is controlled by

tipping the phone to make the paddle move. You will notice that the further you

tip the phone the faster the paddle moves, which is just how it should be.

Threads and Contention

The version of the accelerometer code above will work OK, but code like this

can vulnerable to a problem because of the way the program is written. In the

case of this version of the game it would not drastically affect gameplay, but this

issue is worth exploring because you may fall foul of similar problems when you

start writing programs like these. Mistakes like these can give rise to the worst

kind of programming bug imaginable, which is where the program works fine

99.999 per cent of the time but fails every now and then.

I hate bugs like these. I‟m much happier when a program fails completely every

time I run it because I can easily dive in and start looking for problems. If the

program only fails once in a blue moon I have to wait around until I see the fault

occur.

The problem has to do with the way that accelerometer readings are created and

stored. We have two processes running working at the same time.

 The accelerometer is generating readings and storing them

 The Update method is using these readings to move the paddle

However, the Windows Phone only has one computer in it, which means that in

reality only one of these processes can ever be active at any given time. The

operating system in Windows Phone gives the illusion of multiple computer

processors by switching rapidly between each active process. This is the cause of

our problem. Consider the following sequence of events:

1. Update runs and reads the X value of the acceleration

2. The Accelerometer event fires and starts running. It generates and

stores new values of X, Y and Z

3. Update reads the Y and Z values from the updated values

4. Update now has “scrambled” data made up of a mix of old and new

readings.

In the case of our game we don‟t have much of a problem here, in that it only

uses the X value of the accelerometer anyway. But if we had a more advanced

game which used all three values the result would be that every now and then the

Update method would be given information that wasn‟t correct. In an even

larger and more complex program that used multiple processes this could cause

huge problems.

Of course the problem will only happen every now and then, when the timing of

the two events was very close together, but the longer the program runs the more

chance there is of the problem arising.

The way to solve the problem is to recognise that there are some operations in a

program that should not be interruptible. We need a way to stop the

Adding sound to a game

 XNA Overview 125

accelerometer process from being able to interrupt the Update process, and vice

versa. The C# language provides a way of doing this. It is called a lock.

A given process can grab a particular lock object and start doing things. While

that process has the lock object it is not possible for another process to grab that

object. In the program we create a lock object which can be claimed by either

the event handler or the code in Update that uses the accelerometer value:

object accelLock = new object();

void acc_ReadingChanged
 (object sender, AccelerometerReadingEventArgs
e)
{
 lock (accelLock)
 {
 accelState.X = (float)e.X;
 accelState.Y = (float)e.Y;
 accelState.Z = (float)e.Z;
 }
}

The variable accelLock is of the simplest possible type, that of object. We are

not actually storing any data in this object at all. Instead we are just using it as a

token which can be held by one process or another. This is the new code in

Update that uses the accelerometer reading and is also controlled by the same

lock object

lock (accelLock)
{
 lPaddleY = lPaddleY - (accelState.X * lPaddleSpeed);
}

When a process tries to enter a block of code protected by a lock it will try to

grab hold of the lock object. If the object is not available the process will be

made to wait for the lock to be released. This means that it is now not possible

for one method to interrupt another. What will happen instead is that the first

process to arrive at the block will get the lock object and the second process will

have to wait until the lock is released before it can continue.

Locks provide a way of making sure that processes do not end up fighting over

data. It is important that any code protected by a lock will complete quickly, so

that other processes do not have to spend a lot of time waiting for access to the

lock.

It is also important that we avoid what is called the “Deadly Embrace” problem

where process A has obtained lock X and is waiting for lock Y, and process B

has obtained lock Y and is waiting for lock X. We can help prevent this by

making a process either a “producer” which generates data or a “consumer”

which uses data. If no processes are both consumers and producers it is unlikely

that they will be stuck waiting for each other.

6.4 Adding sound to a game
We can make games much more interesting by adding sound effects to them. As

far as XNA is concerned a sound in a game is just another form of game

resource. There are two kinds of sounds in a game. There are sound effects

which will accompany particular game events, for example the sound of a

spaceship exploding when it is hit with a missile, and there is background music

which plays underneath the gameplay.

Sound effects are loaded into the game as content. They start as WAV files and

are stored in memory when the game runs. They are played instantly on request.

Adding sound to a game

 XNA Overview 126

Music files can also be supplied as game content but are played by the media

player.

Creating Sounds

There are many programs that can be used to prepare sound files for inclusion in

games. A good one is the program called Audacity. This provides sound capture

and editing facilities. It can also convert sound files between different formats

and re-sample sounds to reduce the size of sound files. Audacity is a free

download from http://audacity.sourceforge.net

This shows a sound sample being edited in Audacity.

Sound samples and content

As far as an XNA game is concerned, a sound is just another item of content. It

can be added alongside other content items and stored and managed by the

content manager.

Within the game the SoundEffect class is used to hold the sound items:

// Sound effects
SoundEffect dingSound;
SoundEffect explodeSound;

These are loaded in the LoadContent method, as usual:

dingSound = Content.Load<SoundEffect>("ding");
explodeSound = Content.Load<SoundEffect>("explode");

A SoundEffect instance provides a Play method that triggers the playback of

the sound:

Adding sound to a game

 XNA Overview 127

if (ballRectangle.Intersects(rPaddleRectangle))
{
 ballXSpeed = -ballXSpeed;
 dingSound.Play();
}

This is the code that detects a collision of the bat with the ball. The ding sound

effect is played when this happens. This is the simplest form of sound effect

playback. The sound is made the instant the method is called. The program will

continue running as the sound is played. Windows Phone can play multiple

sound effects at the same time; the hardware supports up to 64 simultaneous

sound channels.

Using the SoundEffectInstance class

The SoundEffect class is very easy to use. It is a great way of playing sounds

quickly. A game does not have to worry about the sound once it has started

playing. However, sometimes a game needs to do more than just play the sound

to completion. Some sound effects have to be made to play repeatedly, change in

pitch or move to the left or the right. To get this extra control over a sound a

game can create a SoundEffectInstance value from a particular sound effect.

We can think of this as a handle onto a playing sound. For example we might

want to create the sound of a continuously running engine. To do this we start

with a SoundEffect which contains the sound sample.

SoundEffect engineSound;

This would be loaded from an item of content which contains the engine sound.

Next we need to declare a SoundEffectInstance variable:

SoundEffectInstance engineInstance;

We can ask a SoundEffect to give us a playable instance of the sound:

engineInstance = engineSound.CreateInstance();

Now we can all methods on this to control the sound playback of the sound

effect instance:

engineInstance.Play();
...
engineInstance.Pause();
...
engineInstance.Stop();

Note that the program can stop and start the playback of the sound effect

instance, which is not something that is possible with a simple sound effect. A

game can also control the volume, pitch and pan of a sound effect instance:

engineInstance.Volume = 1; // volume ranges from 0 to 1

engineInstance.Pitch = 0; // pitch ranges from -1 to +1
 // -1 – octave lower
 // +1 – octave higher

engineInstance.Pan = 0; // pan ranges from -1 to +1
 // -1 – hard left
 // +1 – hard right

The program can also make a sound loop, i.e. play repeatedly:

engineInstance.IsLooped = true;

Finally a program can test the state of the sound playback:

if (engineInstance.State == SoundState.Stopped)
{
 engineInstance.Play();
}

Playing Sound in a Silverlight Program

 XNA Overview 128

This would start the sound playing again if it was stopped. Using a

SoundEffectInstance a game can make the pitch of the engine increase in

frequency as the engine speeds up and even track the position of the car on the

screen.

A SoundEffectInstance is implemented as a handle to a particular sound

channel on the Windows Phone device itself. We have to be careful that we a

game doesn‟t create a very large number of these because this might cause the

phone to run out of sound channels.

The solution in Demo 07 Game with Sounds contains a Windows Phone XNA

game that implements a working pong game with sound effects.

6.5 Playing Sound in a Silverlight Program
A Silverlight program can use the XNA sound playback to provide sound

effects. To do this it must include the XNA framework in the Silverlight

program, load the sound from the project resources and then the sound can be

played. Then, once the sound has started playing it must repeatedly update the

XNA framework as the program runs so that sound playback is managed

correctly.

Loading the XNA Namespace

The XNA namespace is not usually included in a Silverlight program but we can

add it as a resource to a Silverlight project.

Once we have added the framework we can add using statements to make it easy

to use the XNA classes in the Silverlight program:

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Audio;

Note that we can‟t use many of the XNA elements, for example it would be

impossible to use a SpriteBatch or a Texture2D, but we can use the audio

classes.

Adding the sound resources

The sound resources are added to our Silverlight project as we would load any

other.

Playing Sound in a Silverlight Program

 XNA Overview 129

Here you can see that I have created a folder called Sounds which is going to

hold all the sound samples in the program. The resources themselves must be

added as Content:

Now that the sound sample is part of the project, the next thing that the

Silverlight program must do is load the sound data when the program starts

running.

Loading a SoundEffect in a Silverlight program

Because there is no content management in a Silverlight program it must use a

different way to load the SoundEffect value. A SoundEffect can be

constructed using a method which loads the sound data from a stream. The

following statement will do this for us:

SoundEffect beep;
...
beep = SoundEffect.FromStream(

TitleContainer.OpenStream("Sounds/beep.wav"));

The TitleContainer class is part of the Silverlight solution, and can open any

of the content items in the project as a stream. The result of this statement is that

we now have a SoundEffect that we can play in a Silverlight program.

Playing the sound

A Silverlight program plays the sound in exactly the same way as an XNA

program.

beep.Play();

A Silverlight program can also use SoundEffectInstance values to play more

complicated sounds.

However, there is one important thing that a Silverlight system must do to make

sure that sound playback works correctly. You will remember that in an XNA

game the Update method is called 30 times a second. When an XNA game

updates it also updates some of the system elements, including sound playback.

A Silverlight program does not have this regular update behaviour, and so we

need to add an update call to keep the framework running:

FrameworkDispatcher.Update();

Managing screen dimensions and orientation

 XNA Overview 130

This must be called around 30 times a second, otherwise sound playback may

fail and the program itself may be stopped.

The best way to get this method called regularly is to create a timer to make the

call for us. A timer is an object that will generate events at regular intervals. We

can bind a method to the timer event and make the method call our despatcher.

Our program can use a DispatcherTimer. This is part of the

System.Threading namespace:

using System.Windows.Threading;

The code to create the timer and start it ticking is as follows:

DispatcherTimer timer = new DispatcherTimer();
timer.Tick += new EventHandler(timer_Tick);
timer.Interval = TimeSpan.FromTicks(333333);
timer.Start();

This code creates the timer, connects a method to the Tick event, sets the update

rate to 30 Hz and then starts the timer running. The timer_tick method just has

to update the XNA framework.

void timer_Tick(object sender, EventArgs e)
{
 FrameworkDispatcher.Update();
}

Timers are very useful things. A Silverlight program does have the regular

update/draw method calls that an XNA game does, and so you can use a timer to

allow you to create moving backgrounds or ticking clocks and the like.

The solution in Demo 08 Silverlight with Sound contains a Windows Phone

Silverlight adding machine that plays a sound effect each time a new result is

displayed.

6.6 Managing screen dimensions and orientation
We have already seen that a Windows Phone program can be used in more than

one orientation. By default (i.e. unless we say otherwise) an XNA game is

created that is played in landscape mode with the display towards the left.

However, sometimes we want to play games in portrait mode. Our games can

tell XNA the forms of orientation they can support and then receive events when

the player tips the phone into a new orientation.

The graphics class in a game provides a number of properties that games can use

to manage orientation and screen size:

graphics.SupportedOrientations = DisplayOrientation.Portrait |
 DisplayOrientation.LandscapeLeft |
 DisplayOrientation.LandscapeRight;

To allow a particular orientation we just have to add it to the values that are

combined using the arithmetic OR operator, as shown above.

If we want our game to get control when the orientation of the screen changes

we can bind a method to the event handler as shown below:

Window.OrientationChanged +=
 new EventHandler<EventArgs>(Window_OrientationChanged);

The Window_OrientationChanged method can then resize all the objects on

the screen to reflect the new orientation of the game. We have already seen how

a program can get the width and height of the display screen. The orientation

handler method would use these values to set the new dimensions of the

elements in the game.

Managing screen dimensions and orientation

 XNA Overview 131

void Window_OrientationChanged(object sender, EventArgs e)
{
 // resize the objects here
}

The required orientation is best set in the constructor for the game class.

Selecting a screen size

Games can also select a specific screen size:

graphics.PreferredBackBufferWidth = 480;
graphics.PreferredBackBufferHeight = 800;

If our game does this it forces the display to run at the requested resolution. It

also forces the orientation too. The above width and height values would make

the game work on portrait mode because the height of the game is greater than

the width.

The clever thing about this is that when we set a particular display resolution the

Windows Phone display hardware will make sure that we get that resolution,

irrespective of the dimensions of the actual screen. In other words our game can

operate as if the screen is that size and the hardware will make sure that it looks

correct. This is a way you can make sure that your games will always look

correct on the current version, and any new versions, of the Windows Phone

hardware. No matter what new devices come along and whatever screen sizes

they have the game will always look correct because the display will be scaled to

fit the requested size.

We can use this to our advantage to improve the performance of our games:

graphics.PreferredBackBufferWidth = 240;
graphics.PreferredBackBufferHeight = 400;

The above statements ask for a screen which is smaller than the one fitted to

most Windows Phone devices. In fact this screen is a quarter the size of the

previous one. However, the hardware scaling in the Windows Phone will ensure

that the screen looks correct on a larger display by performing scaling of the

image. In a fast moving game this is not usually noticeable and the fact that the

display is only a quarter the size of the previous one will make a huge difference

to the graphical performance.

Using the Full Screen

At the moment every XNA game that we have produced has been scaled slightly

to fit a smaller screen. This is because by default an XNA game does not use the

top bar of the phone display. This display area is set aside for status messages. If

we want our game to use the entire screen we must explicitly request this:

graphics.IsFullScreen = true;

A game can set this property to true or false. If it is set to true this means that the

game can use the whole of the Windows Phone screen. I always set this to true

to give my games the maximum possible amount of display area.

Disabling the screen timeout

The owner of a Windows Phone can set a screen timeout for the device. The idea

is that if the phone is left doing nothing for a while it will shut down the screen

and lock itself to save battery life. The phone monitors the touch screen to detect

user input and if there is no input for the prescribed time it will shut down. The

phone does not check the accelerometer however, so if we make a game that is

entirely controlled by tipping the phone our customers would become very upset

What we have learned

 XNA Overview 132

when they played the game. They would just be getting to an interesting part and

then find that their screen went blank.

A game can disable the screen timeout function by turning off the screen saver

in the XNA Guide:

Guide.IsScreenSaverEnabled = false;

The XNA Guide is the part of XNA that has conversations with the player about

their Xbox Live membership and achievements etc. If we tell it to stop the

screen saver from appearing this means that the game can continue until the

phone battery goes flat. You should use this option with care. If a user gets bored

by your game and puts the phone down it will not shut down if the screensaver

has been turned off. This may mean that the phone battery will go flat as the

game has been left running.

If you do have a game that is controlled by the accelerometer I would also add

some gameplay element where a player has to touch the screen every now and

then to keep the phone awake. I would much rather have a game that worked in

this way rather than one that ran the risk of flattening the phone battery.

What we have learned
1. The XNA framework provides an environment for creating 2D and 3D

games. The games can be created for Windows PC, Xbox 360 or

Windows Phone.

2. XNA games operate in a completely different way from Silverlight

applications. An XNA game contains methods to load content, update

the game world and draw the game world which are called by the XNA

framework when a game runs.

3. When Visual Studio creates a new XNA game it makes a class which

contains empty LoadContent, Update and Draw methods that are filled

in as a game is written. The LoadContent method should load all the

required game content. The Update method is called by XNA 30 times

a second to update the game content and the Draw method is called to

render the game on the screen.

4. Any content (for example images or sounds) added to an XNA game is

managed by the Content Management process that provides input filters

for different file types and also output processors that prepare the

content for deployment to the target device. Within an XNA game the

way that content is loaded and used the same irrespective of the target

hardware.

5. A sprite is made up of a texture which gives the image to be drawn and

a position which determines where to draw the item and its size. The

XNA Framework provides objects that can hold this information.

6. When drawing in 2D within the XNA system a given position on the

screen is represented by pixel coordinates with the origin at the top left

hand corner of the display.

7. The SpriteBatch class is able to batch up drawing commands and send

them to the Graphics Processor Unit (GPU).

8. The Windows Phone touch panel can provide a low level array of touch

location information which can contain details of at least 4 touch

events.

9. XNA games can display text by using spritefonts made from fonts on

the host Windows PC

What we have learned

 XNA Overview 133

10. XNA and Silverlight programs can play sound effects. For greater

control of sound effect playback a program can create a

SoundEffectInstance value which is a handle to a playing sound.

11. XNA programs on Windows Phone can select a particular display

resolution and orientation. If they select a resolution lower than that

supported by the phone display the GPU will automatically scale the

selected size to fit the screen of the device.

12. XNA programs on Windows Phone can disable the status bar at the top

of the screen so that they can use the entire screen area. They can also

disable the screensaver so that they are not timed out by the phone.

The Windows Phone icons and Splash Screens

 Creating Windows Phone Applications 134

7 Creating Windows Phone
Applications

We now know enough to make programs that run on the Windows Phone

device. In this section we will to take a look at what takes a program and turns it

into a “proper” application. This includes a variety of topics, from how to give

your program a custom splash screen and icons to how a program can store data

on a phone device.

7.1 The Windows Phone icons and Splash Screens
At the moment all the programs that we have written have had the same icon and

“splash screen”. These have been the “empty” ones that Visual Studio created

when it made a new project. There are two images that Windows Phone uses to

identify your program when it is stored on the phone. To understand how these

are used we have to learn a little about how Windows Phone users find and run

programs on the device.

A Windows Phone has a “Start” screen which is displayed whenever the user

presses the “Start” button on the device:

The user can then touch any of the large tiles on the start screen to run the

program behind that tile. Alternatively they can slide the start screen to the left

(or press the little arrow at the top right of the screen) to move to a list of

applications that are installed on the device.

Then the user can scroll up and down the application list and select the program

that they want to run. If the user wants to be able to start one of their

applications from the Start screen they can “pin” it to the start screen.

The Windows Phone icons and Splash Screens

 Creating Windows Phone Applications 135

Silverlight icons

If you create a new Silverlight application Visual Studio will create a project that

contains “default” versions of these two icons:

The file ApplicationIcon.png holds the image to be used in the application

list. The file Background.png holds the image to be used when the application

has been “pinned” to the Start menu.

XNA icons

If you create a new XNA application Visual Studio will create a slightly

different arrangement of programs and the icon files are named differently too:

The file GameThumbnail.png holds the image to be used in the application list.

The file Background.png holds the image to be used when the application has

been “pinned” to the Start menu.

Customising Icons

If you want to customise the program icons (and you should) you can open and

edit these files with any paint program that you like. Remember that they are

stored in the project folder along with all the project files. However, you must

make sure that you retain the file type and the image dimensions of the originals.

From my experience it turns out that designing icons like this (particularly small

ones) is something of an art form. For this reason if you can find an artist to do

the design for you this will probably be a good idea. If you have to do the work

yourself I would advise you to make the design as simple as possible and make

sure that it gives the user a good idea of what your program does. Remember

that the icon for your program is also used to promote it in the Marketplace, so

the better and slicker the icon looks the more chance there is of people

downloading and buying your program.

Splash Screens

A “splash screen” is something that a program “splashes” onto the display as it

starts up. These can be used to “brand” your application by showing your

company logo when your program starts. Splash screens are also useful to

improve the experience of program users when your program starts running. At

the very least a splash screen will give them something nice to look at as your

program loads.

Persisting data in isolated storage

 Creating Windows Phone Applications 136

Silverlight splash screens

The Silverlight run time system has a splash screen behaviour built in. A new

Silverlight project actually contains an image file which is displayed during the

interval between a program being started and the MainPage being displayed on

the screen. If you have run programs on the emulator you may have seen this for

a brief instant at the very start of a program run.

If your programs become larger, with more elements on the page and more

resources to be loaded, this page may be displayed for more time. You can make

your own version by modifying the SplashScreenImage.jpg file in your

Silverlight project.

XNA splash screens

XNA programs do not have splash screens provided as part of the game project.

We have already seen that the way that the display is produced is quite different.

When an XNA program starts running the LoadContent method is called to

fetch assets from storage and make them available to the game. Once the content

has been loaded the Draw and Update methods begin to be called. This can lead

to problems. The XNA framework insists on a game displaying something on

the screen within five seconds of the program starting. If this does not happen

the framework assumes that the game has got stuck and aborts it. This would

mean that your game never actually gets to run if the content loading takes too

long.

Fortunately an XNA does not have to load all the content at the start. A game

can use the content manager to load items at any time. A program can also fire

off threads to perform background loading of items while the game runs. The

upshot of all this is that for XNA you need to develop a strategy for loading

content. Perhaps the game LoadContent method could just load a splashscreen

texture and this could be displayed while the rest of the content items are

fetched.

It turns out that this is a problem common to games on all platforms. A major

limiting factor in the development of ever larger console games is the limited

access speed and transfer rate of the optical drives used to load information from

the storage media.

7.2 Persisting data in isolated storage
A proper application will need to store data which it can use each time it runs. A

Silverlight application will need to hold settings and information the user is

working on and an XNA game will want to store information about the progress

Persisting data in isolated storage

 Creating Windows Phone Applications 137

of a player through the game along with high score and player settings.

Windows Phone programs can use “isolated storage” to hold this kind of

information. The storage is called “isolated” because it is not possible for one

application to access data stored by another. This is different from a Windows

PC where any program can access any file on the system.

Using the Isolated Storage file system

You can use the isolated storage in the same way as you use a file system. The

only difference is the way that a program makes a connection to the storage

itself. However, once a program has a connection to the file system it can use it

as it would any other, creating streams to transfer data to files and even using

folders to create a structured filestore. A program can store very large amounts

of data in this way.

As an example we could create a simple Silverlight application which gives the

user a simple jotter where they store simple messages. This version of the

program uses a single file but could easily be extended to provide a note storage

system.

The user can type in jottings which are saved when the Save button is pressed. If

the Load button is pressed the jottings are loaded from persistent storage.

private void saveButton_Click(object sender, RoutedEventArgs
e)
{
 saveText("jot.txt", jotTextBox.Text);
}

This is the code for the Save button. It takes the text out of the textbox and

passes it into a call of saveText along with the name of the file to store it in.

Persisting data in isolated storage

 Creating Windows Phone Applications 138

private void saveText(string filename, string text)
{
 using (IsolatedStorageFile isf =
 IsolatedStorageFile.
 GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream rawStream =
 isf.CreateFile(filename))
 {
 StreamWriter writer = new StreamWriter(rawStream);
 writer.Write(text);
 writer.Close();
 }
 }
}

The saveText method creates a stream connected to the specified file and then

writes the text out to it. Note that once we have a stream we can use it like any

other. In this case the method creates a StreamWriter and then just sends the

text out to that stream.

The read button uses a loadText method to do the reverse of this operation.

private void loadButton_Click(object sender, RoutedEventArgs
e)
{
 string text;

 if (loadText("jot.txt", out text))
 {
 jotTextBox.Text = text;
 }
 else
 {
 jotTextBox.Text = "Type your jottings here....";
 }
}

The loadText method tries to open a file with the name it has been given. It

then tries to read a string from that file. If any part of the read operation fails the

loadText method returns false and jotTextBox is set to a starting message.

If the file can be read correctly the loadText method returns true and sets the

output parameter to the contents of the file. This is then used to set the text in

jotTextBox.

Note that we are using an out parameter to allow the loadText method to

return the string that was read as well as whether it worked or not.

Persisting data in isolated storage

 Creating Windows Phone Applications 139

private bool loadText(string filename, out string result)
{
 result = "";
 using (IsolatedStorageFile isf =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 if (isf.FileExists(filename))
 {
 try
 {
 using (IsolatedStorageFileStream rawStream =
 isf.OpenFile(filename,
 System.IO.FileMode.Open))
 {
 StreamReader reader =
 new StreamReader(rawStream);
 result = reader.ReadToEnd();
 reader.Close();
 }
 }
 catch
 {
 return false;
 }
 }
 else
 {
 return false;
 }
 }
 return true;
}

The loadText method will return false if the input file cannot be found or the

read process fails. Note that it uses the ReadToEnd method to read from the file

so that the program can read multi-line jottings.

The solution in Demo 1 Jotpad contains a Windows Phone Silverlight jotter pad

that stores text in a file and loads it back. If you stop the program and run it

again from the Application list in the emulator you will notice that the stored

data is recovered when you press Load. Note that you can expand the save and

load methods to store even more data simply by adding extra write and read

statements and further parameters. Alternatively you could make the load and

save methods work on an object rather than a number of individual items.

Using the Isolated Storage settings storage

Quite often the only thing a program needs to store is a simple settings value. In

this case it seems a lot of effort to create files and streams just to store a simple

value. To make it easy to store settings a Windows Phone program can use the

Isolated Storage settings store. This works like a Dictionary, where you can

store any number of name/value pairs in the isolated storage area.

An introduction to dictionaries

Dictionaries are a very useful collection mechanism provided as part of the .NET

framework. A dictionary is made using two types. One is the type of the key,

and the other is the type of the item being stored. For example, we might create a

class called Person which holds data about, surprise surprise, a person:

Persisting data in isolated storage

 Creating Windows Phone Applications 140

class Person
{
 public string Name;
 public string Address;
 public string Phone;
}

This Person class above only contains three fields, but it could hold many more.

We would like to be able to create a system where we can give the name of a

Person and the system will then find the Person value with that name. A

Dictionary will do this for us very easily:

Dictionary<string, Person> Personnel =
 new Dictionary<string, Person>();

When we create a new Dictionary type we give it the type of the key (in this

case a string because we are entering the name of the person) and the type of

the item being stored (in this case a Person). We can now add things to the

dictionary:

Person p1 = new Person { Name = "Rob", Address = "His House",
 Phone = "1234"
 };

Personnel.Add(p1.Name, p1);

This code makes a new Person instance and then stores it in the Personnel

dictionary. Note that the code takes the name out of the person that has been

created and uses that as the key. The program can now use a string as an indexer

to find items in the dictionary:

Person findPerson = Personnel["Rob"];

The findPerson reference is set to refer to the Person instance with the name

Rob. The dictionary does all the hard work of finding that particular entry. This

makes it very easy to store large numbers of items and locate them later.

The dictionary will refuse to store an item with the same key as one already

present. In other words if I try to add a second person with the name “Rob” the

Add operation will throw an exception. A program will also get an exception if it

asks the dictionary for a record that doesn‟t exist:

Person findPerson = Personnel["Jim"];

Fortunately there is also a mechanism for determining whether or not a given

key is present in the dictionary:

if (Personnel.ContainsKey("Jim"))
{
 // If we get here the dictionary contains Jim
}

Dictionaries are very useful for storing name-value pairs. They remove the need

to write code to search through collections to find things. We can use multiple

dictionaries too, for example we could add a second dictionary to our Personnel

system that would allow us to find a person from their phone number.

Dictionaries and Isolated Storage

The IsolatedStorageSettings class provides us with a dictionary based

storage system for settings that we can use to store setting values. The settings

dictionary stores a collection of objects using a string as the key.

Saving text in the isolated storage settings

We could convert our jotter to use the settings class as follows:

Persisting application state

 Creating Windows Phone Applications 141

private void saveText(string filename, string text)
{
 IsolatedStorageSettings isolatedStore =

IsolatedStorageSettings.ApplicationSettings;
 isolatedStore.Remove(filename);
 isolatedStore.Add(filename, text);
 isolatedStore.Save();
}

This version of the saveText method uses the filename as the key. It removes

an existing key with the given filename and then adds the supplied text as a new

entry. The Remove method can be called to remove an item from a dictionary. It

is given the key to the item to be removed. If the key is not present in the

dictionary the Remove method returns false, but we can ignore this. Once we

have made our changes to the store we need to call the Save method to persist

these changes.

Loading text from the isolated storage settings

The loadText method will fetch the value from the settings dictionary:

private bool loadText(string filename, out string result)
{
 IsolatedStorageSettings isolatedStore =
 IsolatedStorageSettings.ApplicationSettings;
 result = "";
 try
 {
 result = (string)isolatedStore[filename];
 }
 catch
 {
 return false;
 }
 return true;
}

The loadText method fetches the requested item from the settings storage. It is

made slightly more complicated by the fact that, unlike the Dictionary class,

the IsolatedStorageSettings class does not provide a ContainsKey

method that we can use to see if a given item is present. The above method

simply catches the exception that is thrown when an item cannot be found and

returns false to indicate that the item is not present. Note that it must cast to

string the value that is loaded from the settings dictionary. This is because the

dictionary holds objects (so that we can put any type into it).

We now have two ways to persist data on a Windows Phone device. We can

store large amounts of data in a filestore that we can create and structure how we

like. Alternatively we can store individual data items by name in a settings

dictionary. The isolated storage mechanism can be used by Silverlight programs

and XNA games alike.

The solution in Demo 02 Settings JotPad contains a Windows Phone Silverlight

jotter pad that stores text in the IsolatedSettings dictionary.

7.3 Persisting application state
We now know how an application can store data using the mass storage on the

phone. Now we are going to find out how an application can be made to provide

a good user experience within the single tasking environment provided on the

Windows Phone. This provides a good insight into how programmers often have

Persisting application state

 Creating Windows Phone Applications 142

to make use of systems that are compromised by underlying limitations of the

platform and operating system.

Single process operation

The Windows Phone operating system is inherently multi-tasking. This means

that it can easily run more than one process at the same time. This is how it can

play music using the Zune program while you use the phone to check your

email. However, for a number of very sound technical reasons this multi-tasking

ability is not extended to applications running on the system. The creators of the

Windows Phone system took a deliberate design decision not to allow more than

one application to be active at any given time.

In some ways this is a good thing. It stops our programs from looking bad just

because another application in the phone is stealing all the memory or processor

time. But it does give us some programming challenges that we must address

when we write Windows Phone applications.

When we write an application the aim should be to make it appear that the

application never stops when a user leaves it and goes off to do something else.

This “leaving and going off to do something else” is a behaviour that is strongly

encouraged by the design of the Windows Phone user interface.

The Start and Back buttons

While Windows Phone does not have multi-tasking it does have features which

have been designed to make it easy for a user to move in and out of programs.

These are based on the hardware Back and Start buttons that are fitted to every

Windows phonee device.

The Back button allows a user to exit a program and return to the one that they

were previously running and the Start button allows a user to leave a program at

any point and go to the Start screen to run another. Used in combination these

buttons greatly enhance the user experience. It is easy to press Start to send a

quick SMS message and then press Back to return to whatever you were doing

before. The Back and Start button allow the user to navigate through a stack of

recently used applications.

Application switching

The result of all this is that an application must be adept at saving its state and

then restoring itself to the same state when the user returns to it. The Windows

Phone system helps us do this by sending an application messages that indicate

when it is about to be removed from memory. In this section we are going to

explore the situations in which the messages are sent and how we can make our

applications and games respond correctly to give the appearance that they are

always active.

Understanding tombstoning

If we are going to understand how to make programs that behave properly we

are going to have to learn some of the terminology used by the Windows Phone

designers to describe what happens when a program runs.

When a program is launched the program files are loaded into memory and

executed by the Windows Phone processor. There are two things that the user

can do next. The user can exit the program by pressing the Back button at the top

level menu of the program or the user can “tombstone” the program by pressing

the Start button. A program can also be “tombstoned” if the phone lock screen

is displayed because the phone has not been used and has timed out.

If the program is being exited it receives a “Closing” message. If the program is

being “tombstoned” it receives a “Deactivated” message. A program is allowed

Persisting application state

 Creating Windows Phone Applications 143

to say “Are you sure?” in response to a closing message. You can see this

behaviour in the Microsoft Office Word program, which gives you the chance to

save your document before the program closes. However, if a program is being

“tombstoned” there is nothing it can do but use the “Deactivated” message as a

chance to save its state in case it is resumed “from the grave” later.

However, we must remember that in either case the program is stopped and may

be removed from memory. We must not think of “tombstoning” as being a state

of suspended animation for our program. This is not the case. A tombstoned

program is as dead as one that has been exited. If a tombstoned program is ever

restarted it will be loaded into memory and all the objects in the program will be

constructed from scratch, just as they would be if the program was loaded for the

first time.

At this point we might be forgiven for thinking that being tombstoned is just like

being exited. However, this is not quite the case. The great thing about a

tombstone is that we can write things on it. The Windows Phone system

provides some space in memory where an application can store state information

if it receives a tombstone message. This information can then be loaded back

into the application if it is ever reactivated. You can see this in action if you

“tombstone” a SilverLight application at a particular page. When you return to

the application using the Back button you will find that it automatically resumes

at the same page you left. The Silverlight system uses the “tombstone” memory

to record the active page when it is deactivated.

When an application is being started it will receive either a “Launching”

message if it is being launched as new or an “Activated” message if it is being

resumed from a previous tombstone.

The Tombstone message methods

The App.xaml.cs file in a Silverlight application contains methods that are called

when the various tombstone events occur:

// Code to execute when the application is launching (eg, from Start)
// This code will not execute when the application is reactivated
private void Application_Launching(object sender, LaunchingEventArgs e)
{
 System.Diagnostics.Debug.WriteLine("Launching");
}

// Code to execute when the application is activated (brought to foreground)
// This code will not execute when the application is first launched
private void Application_Activated(object sender, ActivatedEventArgs e)
{
 System.Diagnostics.Debug.WriteLine("Activated");
}

// Code to execute when the application is deactivated (sent to background)
// This code will not execute when the application is closing
private void Application_Deactivated(object sender, DeactivatedEventArgs e)
{
 System.Diagnostics.Debug.WriteLine("Deactivated");
}

// Code to execute when the application is closing (eg, user hit Back)
// This code will not execute when the application is deactivated
private void Application_Closing(object sender, ClosingEventArgs e)
{
 System.Diagnostics.Debug.WriteLine("Closing");
}

I have added some message printing methods that we can use to see when each

event occurs. These messages are shown in the Output window of Visual Studio

Persisting application state

 Creating Windows Phone Applications 144

when the program is run in debug mode. If we want to get control when the

events occur we just have to add code to the appropriate method.

We first saw the file App.xaml.cs in section 4.3 Pages and Navigation when

we used it as a place to create variables that can be shared by all the pages in a

Silverlight application. It is the class that controls the creation and management

of the Silverlight pages. The messages relating to the starting of an application

(the Launching and Activating messages) are generated before any of the

Silverlight pages have been created, which means that our program can‟t use

these to set up the display, but they can be used to set flags so that the

application knows how the program is being started. However, the Closing and

Deactivated events can be used to request a form to save data.

A similar set of messages are available to XNA programs so that games can be

made to save their state.

The JotPad program and tombstoning

When we create an application we have to decide how it should behave when it

is “tombstoned”. Should it store all the data in isolated storage each time, or

should it only persist things if the user is closing the program? This decision has

an impact on the user experience. The user might not expect information to be

stored if they “jump out” of an application using the Start button. In fact the user

might think they can use Start as a quick way of abandoning data input. When a

user presses Start to tombstone an application it might be best if the data is

stored as a “work in progress” and not actually committed to main storage. That

is how we are going to make the JotPad program work.

Saving Jotpad Data to Isolated Storage on Exit

The user of the JotPad program will expect it to just “remember” the text that

they had entered each time. At the moment it doesn‟t work like this, the user has

to press Save and Load buttons to manage the storage of their jottings. We can

make a better version of the program by binding a method to the Closing event

which stores the data in persistent memory. The event will run in the

App.xaml.cs class which will then call a method in the page to save the jotter

to isolated storage:

// Code to execute when the application is closing (eg, user hit Back)
// This code will not execute when the application is deactivated
private void Application_Closing(object sender, ClosingEventArgs e)
{
 MainPage jotPadPage = (MainPage)RootFrame.Content;
 jotPadPage.Save();
}

The methods above use the Content property of the RootFrame member of the

App class to get hold of the page that holds the JotPad. That sounds a bit

confusing, so we‟ll spend some time thinking about what is happening here.

The App.xaml page is the container that holds the page in our application. The

page is actually held inside a frame object which is held by App.xaml. We can

get at the frame by using the RootFrame property. And inside the frame there is

a Content property that holds the Silverlight page which is the main page.

So all our program has to do is get hold of this Content item and cast it to a

MainPage reference. Inside the MainPage.xaml.cs we must then put a public

save method:

public void Save()
{
 saveText("jot.txt", jotTextBox.Text);
}

Persisting application state

 Creating Windows Phone Applications 145

The result of this is that when the program is exited the text is automatically

saved in isolated storage.

Saving Jotpad data to state memory on tombstoning

A program can always use isolated storage to hold state information, even when

it is being “tombstoned”. However this is not always the best place to store small

amounts of data that are needed to hold the state of the user interface. To make it

easy and quick to hold this kind of data the Windows Phone system provides a

way a program can persist small amounts of data in memory. The phone calls

this “state” storage and each program has its own state storage area. This

memory is kept intact even if a program is tombstoned.

The JotPad program can use this area to hold data when it is tombstoned rather

than back to isolated storage. Then if the program is re-activated it can load the

information from this area rather than using isolated storage.

// Code to execute when the application is deactivated (sent to background)
// This code will not execute when the application is closing
private void Application_Deactivated(object sender, DeactivatedEventArgs e)
{
 MainPage jotPadPage = (MainPage)RootFrame.Content;
 jotPadPage.SaveState();
}

The method above is the one that is called when a program is “tomstoned”. It

calls a SaveState method in MainPage.xaml.cs to save the state of the JotPad

program to memory.

public void SaveState()
{
 SaveStateText("jot.txt", jotTextBox.Text);
}

The SaveState method looks remarkably like the Save method, except that it

calls a different method. Rather than call SaveText it calls SaveStateText

private void SaveStateText (string filename, string text)
{
 IDictionary<string, object> stateStore =
 PhoneApplicationService.Current.State;

 stateStore.Remove(filename);

 stateStore.Add(filename,text);
}

The state storage dictionary object for each application is stored in the

PhoneApplicationService.Current.State property. To gain access to this

your program must include the Microsoft.Phone.Shell namespace:

using Microsoft.Phone.Shell;

The state storage works like a pure dictionary of objects indexed by a string and

so our program to save the data can create a local variable of this type and then

just store the new item in it, making sure to remove any existing one first.

Loading from the state storage works in exactly the same way too:

Persisting application state

 Creating Windows Phone Applications 146

private bool loadStateText(string filename, out string result)
{
 IDictionary<string, object> stateStore =
 PhoneApplicationService.Current.State;

 result = "";

 if (!stateStore.ContainsKey(filename)) return false;

 result = (string)stateStore[filename];

 return true;
}

This code is virtually identical to the code we wrote to load information from the

isolated setting storage in the phone. The only change is that because the state

storage is implemented as a pure dictionary we can use the ContainsKey

method to see if the data was stored by the application when it was tombstoned.

The fact that these methods look and function in a very similar way is actually

good design.

Loading Stored Data

The next thing to do is to provide a way that the program can load the

information from the appropriate place. Unfortunately it is not very easy to use

the Launching or Activated events in JotPad, because these are generated before

the Silverlight pages are created. Our program must also be able to handle the

fact that data stored when an application was tombstoned may not be available

when the application restarts. The best way for the program to work is for it to

try to use state data first and then use isolated storage if state data is not

available. If neither is present it can just display the starting message.

public void Load()
{
 string text;

 if (loadStateText("jot.txt", out text))
 {
 jotTextBox.Text = text;
 return;
 }

 if (loadText("jot.txt", out text))
 {
 jotTextBox.Text = text;
 }
 else
 {
 jotTextBox.Text = "Type your jottings here....";
 }
}

This Load method tries to fetch data from the state object. If this is not found the

program looks in the isolated storage. If this is not found it displays a starting

message. The best place to put a call of this method is when the page itself is

loaded:

private void PhoneApplicationPage_Loaded(object sender,
 RoutedEventArgs e)
{
 Load();
}

Launchers and Choosers

 Creating Windows Phone Applications 147

If you have a program that needs to behave differently depending on whether it

is newly launched or activated from a tombstone event then you can use the

event handlers above to set flag variables that can be picked up by your code.

Tombstones and development

We can “tombstone” an application even when it is running via Visual Studio. If

the application is restarted any debugging sessions are automatically resumed in

the development environment. This works even if the application is being

debugged within a Windows Phone device.

You can see this at work if you press the Start button in the emulator while one

of your programs is running. Your program is tombstoned but Visual Studio

does not end debugging. If you then press the Back button you will find that the

program will resume execution after being reactivated.

Note that, rather interestingly, a Silverlight application is not “tombstoned”

when a Windows Phone receives a phone call. The application will keep running

unless the user does something which starts another application, for example

looks up a contact during the call.

Tombstones and applications

It is unfortunate that we have to do so many complicated things to give the user

the impression that our application never actually stops. However, it is putting in

the effort to make sure that your applications work correctly in this respect as it

adds a great deal to the user experience. It is worth spending some time working

with this as it is a good way to brush up on your understanding of events and

dictionary storage, amongst other things. It is also an interesting way to discover

that the road to producing a good user experience is not always a smooth one,

particularly if you are writing programs in a constrained environment.

An XNA game can also connect to events that will be generated when it is

stopped or tombstoned and you can make games that store game state and high

scores when the user moves away from them in exactly the same way.

The solution in Demo 03 Tombstone JotPad contains a Windows Phone

Silverlight jotter pad that uses both state and persistent storage. State storage is

used when the application is tombstoned.

7.4 Launchers and Choosers
The final part of our application development is concerned with how we use the

Launchers and Choosers in the phone. These are the built in behaviours that are

provided to allow our programs to perform standard actions. A Launcher is

means by which our program can fire off a phone feature which does not return

any data. A Chooser is where a phone feature is used to select something. Your

application can then do something with the item returned.

Launchers and choosers make use of tombstoning in that when a program

activates launcher or chooser it is automatically tombstoned. When the launcher

or chooser finishes the program is reactivated.

Using a Launcher

These are all the launchers, along with a brief explanation of what each does:

PhoneCallTask starts the Phone application with a particular

phone number and display name selected. Note

that the program cannot place the call, the user

Launchers and Choosers

 Creating Windows Phone Applications 148

must initiate this

EmailComposeTask your program can set properties on an email and

then launch a task to allow the user to send the

message.

SmsComposeTask starts the Messaging application and display a

new SMS message. Note that the message is not

sent automatically.

SearchTask starts the Search application using a query you

provide

WebBrowserTask starts the Web browser and displays the URL

you provide.

MediaPlayerLauncher starts the Media Player application and play a

given media file

MarketplaceDetailTask your program can show details of a particular

application in the market place

MarketplaceHubTask starts the Windows Phone Marketplace client

MarketplaceSearchTask your program can search the Windows Phone

Marketplace for a particular application and then

show search results

Each of these tasks can be started by your application and when the task is

complete your application will be re-activated. Of course there is no guarantee

that your application will regain control at any point in the future. The user may

instead go off and do lots of other things instead of returning to your program.

Adding an email feature to JotPad

We might decide to add a Mail feature to the Jotpad program. By pressing the

Mail button a user can send the contents of the jotpad as an email. The image

above shows how this might work.

private void mailButton_Click(object sender, RoutedEventArgs
e)
{
 sendMail("From JotPad", jotTextBox.Text);
}

Launchers and Choosers

 Creating Windows Phone Applications 149

When the mail button is clicked the event handler takes the text out of the

textbox and calls the sendMail method to send this. It also adds a From message

as well. The sendMail method is very simple:

private void sendMail(string subject, string body)
{
 EmailComposeTask email = new EmailComposeTask();

 email.Body = body;
 email.Subject = subject;
 email.Show();
}

This creates an instance of the EmailComposeTask class and then sets the Body

and Subject properties to the parameters that were provided. It then calls the

Show method on the task instance. This is the point at which the JotPad

application is tombstoned to make way for the email application. When the user

has finished sending the email the JotPad program will resume.

To make use of the tasks a program must include the Tasks namespace:

using Microsoft.Phone.Tasks;

The solution in Demo 04 Email JotPad contains a Windows Phone Silverlight

jotter pad that can send the jotting as an email. Note that this will not work

properly in the Windows Phone emulator as this does not have an email client

set up. However, you can see the tombstoning behaviour in action as the

program tries to send an email and displays a warning instead.

Using a Chooser

These are all the choosers that are available:

CameraCaptureTask starts the Camera application for the user to

take a photo

EmailAddressChooserTask starts the Contacts application and allows the

user to select a contact's email address

PhoneNumberChooserTask starts the Contacts application and allows the

user to select a contact's phone number.

PhotoChooserTask starts the Photo Picker application for the user

to choose a photo.

SaveEmailAddressTask saves the provided email address to the

Contacts list

SavePhoneNumberTask saves the provided phone number to the

Contacts list

A chooser works in exactly the same way as a launcher with just one difference.

A chooser can return a result to the application that invoked it. This is done in a

manner we are very used to by now; our application binds a handler method to

the completed event that the chooser provides.

Launchers and Choosers

 Creating Windows Phone Applications 150

Picture display

We can explore how this works by creating a simple picture display application

this will allow the user to choose a picture from the media library on the phone

and then display this on the screen. We must create the chooser in the

constructor for the MainPage of our application:

PhotoChooserTask photoChooser;

// Constructor
public MainPage()
{
 InitializeComponent();

 photoChooser = new PhotoChooserTask();

 photoChooser.Completed +=
 new
EventHandler<PhotoResult>(photoChooser_Completed);
}

This constructor creates a new PhotoChooser value and binds a handler to the

completed even that it generates. The completed event handler uses the result

returned by the chooser and displays this in an image.

void photoChooser_Completed(object sender, PhotoResult e)
{
 if (e.TaskResult == TaskResult.OK)
 {
 selectedImage.Source =
 new BitmapImage(new Uri(e.OriginalFileName));
 }
}

This method sets the source of the image to a new BitMapImage that is created

using the address of the photo result. Note that the TaskResult property of the

result allows our program to determine whether or not the use chose something

to return.

The final link we need to provide is the event handler for the Load button that

starts the process off.

private void loadButton_Click(object sender, RoutedEventArgs
e)
{
 photoChooser.Show();
}

What we have learned

 Creating Windows Phone Applications 151

This method just calls the Show method on the chooser to start the choosing

process running.

The solution in Demo 05 PictureDisplay contains a Windows Phone program

that you can use to select an image from the media storage. This program will

not work on the Windows Phone emulator which does not have any images in is

media store. It will also not work on the Windows Phone device if you use the

Zune software to connect the phone to Visual Studio. This is because when the

phone is connected to Zune the media content is not available. However, if you

disconnect the phone and then run the application it will work correctly.

Choosers and tombstones

It is not guaranteed that an application will get tombstoned when it starts a

chooser running but it is best if your application can handle this eventuality if it

arises.

What we have learned
1. A Windows Phone application is represented on the device by two icon

files. One is used to represent the application in the Application list on

the phone and the other, larger, icon is used if the application is pinned

to the Start menu on the phone. Good icons are important as they are

both used on the phone and in the Windows Phone Marketplace to

brand an application.

2. Silverlight applications also have a “splash screen” image that is

displayed while the application starts. The default splash screen is

provided as part of a new Silverlight project but application writers are

advised to customise this. XNA projects do not have a built in splash

screen mechanism but game developers are advised to create one if

their content takes more than a few seconds to load.

3. A Windows Phone provides a system of isolated storage by which each

application on the phone is able to store its own data on the device.

Programs can create folders and files in their isolated storage area or

make use of a dictionary based mechanism to store name-value pairs

such as settings values.

4. The Windows Phone operating system provides a single tasking model

of execution for applications. An application may be removed from

memory at any time and replaced by another. The Start and Back keys

on the phone device allow a user to interrupt one running application

and start another by pressing Start, and then return to the original

application by pressing Back. The process by which a live application

is removed from memory in this way is called “tombstoning”.

Tombstoning also occurs when a phone displays its lock screen.

5. There are four events which are produced in an application to help it

manage the tombstoning process. They are “Launched” (fired when the

application starts), “Closed” (fired when the application is closed),

“Deactivated” (fired when the application is tombstoned) and

“Activated” (fired when the application is activated from a tombstone).

6. The tombstone events are fired in an application as it is restarted.

Tombstoning does not leave an application live in memory. When an

applicaton is reactivated from a tombstone all the objects in the

application are recreated and the launching and activated events are

fired during this process.

7. Windows Phone provides in memory storage mechanism which can be

used to store live data when an application is tombstoned. This can be

read back if the application is ever reactivated.

What we have learned

 Creating Windows Phone Applications 152

8. Programs can use Launchers and Choosers to interact with phone

subsystems. A Launcher starts an external application (for example and

email send) and a chooser launches an external application that returns

a result (for example selecting a picture from the media store). A

program may be tombstoned while the external application runs.

How the Marketplace works

 Windows Phone Marketplace 153

8 Windows Phone Marketplace

We now know enough to make complete applications and games that will work

correctly within the Phone environment and use the built-in features of the

phone system. Finally we are going to find out how we can take our completed

applications and submit them to the Windows Phone marketplace and maybe

make some money from them.

8.1 How the Marketplace works
The only way that a Windows Phone owner can get a program onto their device

is by downloading it from the Windows Marketplace. Only programs that have

been through the Marketplace validation process can be loaded onto a phone.

A Windows Phone owner can use their Windows Live ID to sign into their

phone and gain access to services provided by Windows Live, Zune and Xbox

Live along with the Marketplace.

Applications can be loaded direction onto the phone “over the air” using the

mobile phone operator or WiFi. They can also be loaded using the Zune

software that also provides a media management for the phone as well. Very

large applications cannot be downloaded via mobile phone, and must be

transferred using WiFi or using the Zune program.

Some applications are free and others are paid. When a phone owner buys a paid

application the cost can be added to their phone bill or they can register a credit

card to be used to pay for purchases. Many applications have a “trial” mode

which is free. This can later be upgraded to a fully featured version. When a

program is running it can easily test whether it is being used in “full” or “trial”

mode.

A given Windows Live ID can be used on up to five phone devices. If you

remove an application from a device you can reload it later without buying it

again as the Marketplace keeps a list of everything you have bought.

The marketplace also provides a rating system which allows owners of

applications to give ratings and feedback on them.

Marketplace approval

Before an application can be sold in the Marketplace it must first go through an

approval process. This makes sure that the application behaves correctly in

respect of things like the Start and Back buttons and also that the program

Marketplace membership

 Windows Phone Marketplace 154

doesn‟t do anything silly like grab all the memory or take twenty minutes to start

running. This process also makes sure that programs that are offensive are not

made generally available. Once an application has been approved it is listed in

one of the application categories and is available for download. A developer can

produce an upgraded version of the application which, once it has been through

the approvals process, will be made available as an upgrade to all existing

owners.

8.2 Marketplace membership
Before a developer can submit applications to the Marketplace they must first

become a member. Membership is keyed to the Windows Live ID of the

member. It costs $99 per year to be member of the marketplace. If you stop

being a member of the marketplace all your applications are removed. Students

who have access to the DreamSpark programme can get free membership of the

Windows Phone marketplace.

Members of the marketplace have their identity validated when they join and the

Marketplace gives them a unique key which is used to sign their applications.

The Marketplace also retains their bank and tax details so that they can be paid

for application sales.

Submitting applications

A member of the marketplace can submit up to five free applications for

approval and an unlimited number of “paid” ones. If a member wants to submit

further free applications these will cost $20 each to be processed.

Members of the Marketplace can set the selling price of their application and

receive 70% of the cost paid by the customer. This is paid directly into their

bank account once they have reached a threshold of $200 sales.

Trial mode

An application or game can be downloaded as a free demo. A program can

easily determine whether or not it is operating in demo mode:

LicenseInformation info = new LicenseInformation();

if (info.IsTrial())
{
 // running in trial mode
}

The LicenseInformation class is in the Windows.Phone.Marketplace

namespace. If the program is running in trial mode it can restrict the user

actions, for example it could disable certain functions or stop the program

running after a time limit. If the user wishes to upgrade the application it can use

the Launcher mechanism to direct the user to the marketplace.

8.3 Deploying and testing to hardware
While the emulator provides a faithful representation of the way that Windows

Phone works from a software point of view it does not allow us to get much of

an idea of how the program feels when in use. This is particularly the case in

games where it is very important to be able to test the gameplay on a proper

device.

Deploying and testing to hardware

 Windows Phone Marketplace 155

Unlocking devices

A Windows Phone can normally only run programs that have been obtained via

the Marketplace. However a marketplace member can unlock a phone so that it

can be used to run programs that are loaded into it from Visual Studio. Paid

Marketplace members can unlock up to three devices, whereas student members

who joined via DreamSpark can only unlock one. The unlocking is performed

using an application that is installed as part of the Windows Phone software

development kit. This application can lock and unlock phones

Applications that are deployed to the phone will stay in the phone memory and

can be run from the application or game hubs in the same way as ones obtained

from the Marketplace. However, you can only have up to 10 of your own

programs on a given device at any time.

The role of the XAP file

We first saw the XAP file in chapter 3 when we were looking at the way that

programs are built and deployed by Visual Studio. When Visual Studio builds a

Windows Phone application it constructs a XAP file (a file with the extension

.xap) which is the actual file that is transferred into the target device for

execution.

This file contains all the program assemblies and resources along with manifest

files that describe the application. The WMAppManifest.xml file lists the

capabilities of the phone that the application uses and also sets the genre of the

application. This determines where on the phone the program is stored.

Programs with the Game genre are stored in the game hub, applications are

stored in the applications hub.
<?xml version="1.0" encoding="utf-8"?>

<Deployment xmlns="http://schemas.microsoft.com/windowsphone/2009/deployment"
AppPlatformVersion="7.0">
 <App xmlns="" ProductID="{b92ce770-1b22-4d52-998e-113c2784067a}" Title="PictureDisplay"
RuntimeType="Silverlight" Version="1.0.0.0" Genre="apps.normal" Author="PictureDisplay
author" Description="Sample description" Publisher="PictureDisplay">
 <IconPath IsRelative="true" IsResource="false">ApplicationIcon.png</IconPath>
 <Capabilities>
 <Capability Name="ID_CAP_GAMERSERVICES"/>
 <Capability Name="ID_CAP_IDENTITY_DEVICE"/>

Deploying and testing to hardware

 Windows Phone Marketplace 156

 <Capability Name="ID_CAP_IDENTITY_USER"/>
 <Capability Name="ID_CAP_LOCATION"/>
 <Capability Name="ID_CAP_MEDIALIB"/>
 <Capability Name="ID_CAP_MICROPHONE"/>
 <Capability Name="ID_CAP_NETWORKING"/>
 <Capability Name="ID_CAP_PHONEDIALER"/>
 <Capability Name="ID_CAP_PUSH_NOTIFICATION"/>
 <Capability Name="ID_CAP_SENSORS"/>
 <Capability Name="ID_CAP_WEBBROWSERCOMPONENT"/>
 </Capabilities>
 <Tasks>
 <DefaultTask Name ="_default" NavigationPage="MainPage.xaml"/>
 </Tasks>
 <Tokens>
 <PrimaryToken TokenID="PictureDisplayToken" TaskName="_default">
 <TemplateType5>
 <BackgroundImageURI IsRelative="true"
 IsResource="false">Background.png</BackgroundImageURI>
 <Count>0</Count>
 <Title>PictureDisplay</Title>
 </TemplateType5>
 </PrimaryToken>
 </Tokens>
 </App>
</Deployment>

Above you can see the default WMAppManifest.xml file that was created for the

PictureDisplay application. This version of the file indicates that the application

will use all of the phone capabilities. Actually the only feature that it uses is the

ID_CAP_MEDIALIB one. When an application is submitted to the Marketplace

the content of this file is checked against the calls that the application makes. If

the application uses resources that are not specified in this file it will fail

validation.

When a customer installs a program they are told the features of the phone that it

will use and are asked to confirm this. The idea is to stop programs with

unexpected behaviours being used by unsuspecting customers, for example a

picture display program that also tracks the position of the user.

Local Application Deployment

If you want to send a program to another developer you can send them the XAP

file and they can use the Application Deployment program to send the XAP file

to their unlocked device or the emulator on their Windows PC.

This allows you to distribute applications for testing before you release the

finished product.

The need for obfuscation

If you send someone a XAP file it is very easy for them to open this up and take

a look at all things in it, including all the program code that you spend so long

writing. Unfortunately it is a simple matter to open an assembly and take a look

The Submission and approval process

 Windows Phone Marketplace 157

at how it works. We did this in chapter 3 using the ildasm program. This means

that you should be careful when sending out programs that you don‟t give away

all the hard work that you put into making the program. Whenever you send out

a program you should take steps to make it more difficult for someone to unpick

the contents.

In software development this process is called obfuscation. It involves the use of

a special tool that you use in the build process to make it very hard for someone

looking at your program to deduce how it works and what it does. The tool

changes variable names and adds spurious control flow to make a program very

hard to understand.

There are a number of free obfuscation tools that you can use to make your

program harder to understand. You could use these on your program code before

you submit the XAP file. The Windows Phone developer programme also

includes access to obfuscation tools from PreEmptive Solutions. These are being

provided at very low cost (these systems are usually extremely expensive) and

you should consider using them if you are concerned about this issue.

8.4 The Submission and approval process
The submission process for programs is not hard to use. It is all managed from

the developer site for Windows Phone and XNA Games:

http://create.msdn.com

Visitors to the site can download documentation and the development tools.

Members of the Marketplace can use the dashboard pages to view the progress

of submissions and submit new programs. There are a number of detailed

walkthroughs that will take you through the membership and submission

process, you should go through these to make sure you understand what is going

on and what is required of you and any programs that you submit.

Windows Phone Application Certification
Guidelines

The Windows Phone developer website provides access to a very detailed

document that describes how to create applications. It is very important that you

read the latest version of this document and follow the guidelines set out in it. It

has been through numerous versions as the process has evolved, so you should

make sure that you are using the most up to date version of the text.

What we have learned
1. Windows Phone owners get their applications from the Windows Phone

Marketplace.

2. Registered developers can submit applications for approval and

distribution via the Marketplace.

3. Developers register and track the progress of their applications via the

Windows Phone developer website.

4. Registering as a developer costs $99 a year, students can register for

free via the Dreamspark programme.

5. Developers can produce free or paid applications, but are limited to

submitting only 5 free applications per year. Further submissions of

free applications cost $20 each.

6. A registered developer can unlock phones so that they can run

programs compiled in Visual Studio.

Program Ideas

 Windows Phone Marketplace 158

7. Applications are distributed as XAP files which contain all the

resources and content along with a manifest file that describes the

content and gives the phone setting information about the application.

8. XAP files can be loaded directly onto unlocked devices by developers.

9. Programmers should obfuscate their programs so that it is not easy for

anyone obtaining a XAP file to find out how the code works. There is

an obfuscation processor available via the Windows Phone developer

web site.

10. A developer must read the Windows Phone Certification guidelines

before submitting programs to the approval process.

Program Ideas
We now know how to make programs for Windows Phone. We can create multi-

page Silverlight interfaces which match those of the phone itself and we have

also had a look at how to create games using XNA. We also know how to create

connected applications that make use of data hosted on the internet. We have

discovered some of the difficulties encountered by programmers when they

write code for small, resource constrained, devices and we now also know how

the Windows Phone operating system allows us to create useable applications in

spite of these issues. Finally we know how to use the underlying Windows

Phone system so that our applications can make use of features in the phone

itself.

At this point we have a superb set of tools, next we have to find a problem to

solve with them.

Application Ideas

Applications ideas do not always appear fully formed. Quite often you will start

with a small idea for a solution and then add features or discover situations

where the solution could be made even more useful. This is not a bad way to

come up with something original, but you must beware of adding too many

feature ideas before you have made something work, otherwise the whole thing

might collapse under its own weight before you have built anything.

You can get good ideas for applications by talking to lots of people and trying to

find out what would be useful to them. Not everyone is aware of just how much

you can do with modern devices and so if you say that you can make something

mobile that can track position, take pictures and make use of internet services

they might have an idea of a situation where some of that power would be useful

to them.

Game Ideas

In some ways game ideas are easier to come by than application ideas. Systems

like XNA let you “doodle” with game code to find out what it does. I‟ve already

mentioned the importance of playtesting. This is where you give your game to

other people to find out if the game is playable. Playtesting can also throw up

ideas for game development. Often a playtester will suggest changes to the

program that will make it more interesting and fun. Don‟t be afraid to do silly

things in a game (add 10 times as many aliens, invert gravity, make everything

bigger/smaller etc etc) and see what happens to the play experience.

The great thing about a game is that rather than hitting a specific problem, as

with an application, a game just has to be fun to play.

Program Ideas

 Windows Phone Marketplace 159

Fun with Windows Phone

Windows Phone provides an amount of processing power that was unavailable

in the world a few years ago, let alone in everyone‟s pocket. It also provides an

amazing level of connectivity, high performance graphics and devices such as

cameras and location sensors that make it possible to build truly novel

applications.

Personally I reckon that just being able to program for this device, let along sell

the results, is inspiring enough. I hope you have learned enough from these notes

to get yourself started on the fun you can have with this platform.

Rob Miles

November 2010

