
MonoGame and XNA
in Teaching at Hull

Rob Miles

Agenda

• Computer Science Teaching at Hull

• Using XNA to Teach

• XNA Overview

• XNA and MonoGame

• Targeting Platforms

26-Mar-13 2

Computer Science Teaching
at

Hull

26-Mar-13 3

Computer Science at Hull

• We teach C# as a first language

• We move into C++ and other languages in
the Second Year

• You can have our course for free if you
like:

www.csharpcourse.com

26-Mar-13 4

C# Teaching Structure

• We teach algorithms and programming in
the first semester and then move into
objects in the second semester

• We’ve found that this works well, in that it
keeps the focus on problem solving in the
early stages

26-Mar-13 5

C# and XNA

• XNA is a framework for game creation

• It is provided as a set of libraries and a
content management system

• It allows you to quickly create 2D sprite
based games and can also be used as the
basis of more ambitious work

• You can even write shaders if you want

26-Mar-13 6

Using XNA to Teach

26-Mar-13 7

Using XNA in the course

• We have found XNA useful for a number
of reasons

– It is a well thought out object framework that
serves as a nice exemplar

– It is very motivating for the students to be able
to write games of their own

– It provides a ready path to market (which
quite a few students follow)

26-Mar-13 8

Teaching with XNA

• We spend one week of the second
semester on XNA development

• This introduces the
LoadContent/Draw/Update behaviours
and the fundamentals of game
development

• We also set a lab and coursework on XNA

26-Mar-13 9

Having Fun with XNA

• We use XNA as the basis of our “Three
Thing Game” 24 hour game development
events

• We have also promoted it as the basis of
MonoGame team entries

26-Mar-13 10

XNA Overview

26-Mar-13 11

HOW GAMES WORK

• Every game that has ever been written has
these fundamental behaviours:

• Initialise all the resources at the start
– fetch all textures, models, scripts etc

• Repeatedly run the game loop:
– Update the game world

• read the controllers, update the state and position of
game elements

– Draw the game world
• render the game elements on the viewing device

METHODS IN AN XNA GAME

• The XNA Game class contains methods that
will provide these behaviours

• Initialise all the resources at the start
– The Initialize and LoadContent methods

• Repeatedly run the game loop:
– Update the game world

• The Update method

– Draw the game world

• The Draw method

GETTING STARTED WITH XNA

• When you create a new XNA game project
you are provided with empty versions of the
game methods

• Creating an XNA game is a matter of filling in
these methods to get the game behaviours
that are required

• We are going to start by getting some clouds
moving around the display

• Then we are going to add some complication
and see where it gets us

Cloud and Games

• Apparently the future
of computing is “in the
cloud”

• Perhaps the future of
games is too

• We can start with a
drawing of a cloud and
see where this takes us

• For me this is the fun of
making games

Creating a Game World

// Game World

Texture2D cloudTexture;

Vector2 cloudPosition;

Loading the Cloud Texture
protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 cloudPosition = new Vector2(0, 0);

 cloudTexture = Content.Load<Texture2D>("Cloud");

}

MonoGame Digression

• When we use MonoGame in Visual Studio
2012 we can’t actually process the textures
directly in the project

• We have to create the assets using an XNA
project running under Visual Studio 2010
and copy them in

• More on this later

26-Mar-13 18

Drawing the Cloud Texture
protected override void Draw(GameTime gameTime)
{
 GraphicsDevice.Clear(Color.CornflowerBlue);
 spriteBatch.Begin();
 spriteBatch.Draw(cloudTexture, cloudPosition,
 Color.White);
 spriteBatch.End();
 base.Draw(gameTime);
}

Drifting our Cloud
Vector2 cloudSpeed = new Vector2(1.5f, 0);

protected override void Update(GameTime gameTime)
{
 cloudPosition += cloudSpeed;

 base.Update(gameTime);
}

1: Drifting Cloud

Creating Game Components
interface ISprite
{
 void Draw(CloudGame game);
 void Update(CloudGame game);
}
// Game World
List<ISprite> gameSprites = new List<ISprite>();

The Cloud Class
class Cloud : CloudGame.ISprite

{

 public Texture2D CloudTexture;

 public Vector2 CloudPosition;

 public Vector2 CloudSpeed;

 public void Draw(CloudGame game) ...

 public void Update(CloudGame game) ...

 public Cloud(Texture2D inTexture, Vector2 inPosition,
 Vector2 inSpeed) ...

}

Making Random Clouds
Vector2 position =
 new Vector2(rand.Next(GraphicsDevice.Viewport.Width),
 rand.Next(GraphicsDevice.Viewport.Height));

Vector2 speed = new Vector2(rand.Next(0, 100) / 100f, 0);

Cloud c = new Cloud(cloudTexture, position, speed);

gameSprites.Add(c);

Updating Sprites
protected override void Update(GameTime gameTime)
{
 foreach (ISprite sprite in gameSprites)
 sprite.Update(this);

 base.Update(gameTime);
}

2: Lots of Clouds

Cloud Bursting Game

• We could add a simple game mechanic so
that players can burst the clouds by
touching them

• To do this our game must detect touch
events This is very easy to do

• Each cloud can check during its Update

method to see if it has been burst

Getting Touch Locations
TouchCollection Touches;

protected override void Update(GameTime gameTime)
{
 Touches = TouchPanel.GetState();

 foreach (ISprite sprite in gameSprites)
 sprite.Update(this);
}

Using Touch Locations
foreach (TouchLocation touch in game.Touches)
{
 if (touch.State == TouchLocationState.Pressed) {
 if (CloudContains(touch.Position)) {
 CloudPopSound.Play();
 Burst = true;
 return;
 }
 }
}

Cloud Contains method
public bool CloudContains(Vector2 pos)
{
 if (pos.X < CloudPosition.X) return false;
 if (pos.X > (CloudPosition.X + CloudTexture.Width)) return false;
 if (pos.Y < CloudPosition.Y) return false;
 if (pos.Y > (CloudPosition.Y + CloudTexture.Height)) return false;
 return true;
}

Pop Sound Effect
public SoundEffect CloudPopSound;

...

SoundEffect CloudPopSound =
Content.Load<SoundEffect>("Pop");

...

CloudPopSound.Play();

3: Bursting Clouds

Touch States

• An active touch location can occupy one of a
number of states:
– TouchState.Pressed
– TouchState.Moved
– TouchState.Released

• Each touch location also has a unique ID so
that it can be identified throughout its
lifecycle

• This gives very good control of touch events
at a very low level

Flicking Clouds using Gestures

• The touch panel also provides gesture support
• We can use the gestures to allow the player to

flick clouds around the sky
• The game program can register an interest in

gesture events
• These are then tracked and buffered by the

touch panel
• Each gesture gives a particular set of

information

Registering for a Gesture
 TouchPanel.EnabledGestures = GestureType.Flick;

Using a Gesture
while (TouchPanel.IsGestureAvailable)

{

 GestureSample gesture = TouchPanel.ReadGesture();

 if (gesture.GestureType == GestureType.Flick)

 {

 waterCloud.CloudSpeed = gesture.Delta / 100f;

 }

}

4: Flicking Clouds

Using the Accelerometer

• You can also use the accelerometer to control the
behaviour of objects in your game

• The Accelerometer can measure acceleration in X,
Y and Z

• You can use just the X and Y values to turn it into a
replacement for a gamepad

• The values that are returned are in the same range
– -1 to +1 in each axis

• A value of 1 means 1G (G is the acceleration due to
gravity)

Accelerometer Events

• The accelerometer in XNA is event driven
• It generates events when new readings are

available
• You must bind a method to the event
• The method can store the settings for later

use
• The code in an Update method can read the

settings and use them to update the position
of game objects

Starting the Accelerometer
Accelerometer accel;
void startAccelerometer()

{

 accel = Accelerometer.GetDefault();

 if (accel != null)
 accel.ReadingChanged += accel_ReadingChanged;

}

Accelerometer Event Handler
void accel_ReadingChanged(Accelerometer sender,
 AccelerometerReadingChangedEventArgs args)
{
 lock (this)
 {
 accelReading.X = (float)args.Reading.AccelerationX;
 accelReading.Y = (float)args.Reading.AccelerationY;
 accelReading.Z = (float)args.Reading.AccelerationZ;
 }
}

Reading the Accelerometer
Vector3 getAccReading()
{
 Vector3 result;

 lock (this) {
 result = new Vector3(accelReading.X, accelReading.Y,
 accelReading.Z);
 }
 return result;
}

Acceleration and Physics
Vector3 acceleration = game.getAccReading();

CloudSpeed.X += (acceleration.X * 0.1f);

CloudPosition += CloudSpeed;

5: Tipping Clouds

XNA and MONOGame

MonoGame

• MonoGame is an Open Source
implementation of the XNA Game
Development Framework

• It is based on Version 4.x of the framework

• It lets you take your XNA games into all
kinds of interesting places

26-Mar-13 46

Running MonoGame

• MonoGame runs on top of the .NET
framework

• On Microsoft platforms this means that
MonoGame just works

• On non-Microsoft platforms this means that
MonoGame must run on top of an
installation of Mono which provides the .NET
underpinnings
– Although MonoGame is free, Mono is something

you have to buy

26-Mar-13 47

Platform Abilities

• This is the current level of platform
support

• Note that this is continually changing

26-Mar-13 48

XNA Games for Windows 8

• I’m going to focus on writing XNA games
for Windows 8

• You can make proper Windows 8 versions
of your games which will run on all
Windows 8 platforms, including Surface
RT

26-Mar-13 49

XNA Games for Windows Phone 8

• You can also use MonoGame to make XNA
games for Windows Phone 8

– However this is not as well developed as it is
for Windows 8, and at the moment I don’t
think you can put them in market place

• For Windows 8 Phones you can still use
XNA 4.0 and target Windows Phone 7.5
devices as well

26-Mar-13 50

Getting Started on Windows 8

1. Install Visual Studio 2012

2. Install Visual Studio 2010
http://www.microsoft.com/visualstudio/eng/downloads

3. Install the Games for Windows Client
http://www.xbox.com/en-US/LIVE/PC/DownloadClient

4. Install XNA 4.0
http://www.microsoft.com/en-us/download/details.aspx?id=23714

5. Install MonoGame
http://www.monogame.net/

26-Mar-13 51

Making a MonoGame Project

• Monogame adds new project types

26-Mar-13 52

Running the application

• You can run the application on your
development device, in an emulator on
your device or remotely debug it in
another device

– Including a Microsoft Surface 

• You have to load the Debugging Tool into
that to make it work

26-Mar-13 53

Content Management

• There is no support for creating content
for MonoGame solutions

• You have to use XNA for this

26-Mar-13 54

Making Content

• This is a rather convoluted process

1. Create the content (Image and Sounds)

2. Make an XNA 4.0 project using Visual
Studio 2010 and load it with the content

3. Drop the XNB files from the XNA project
into your MonoGame project

26-Mar-13 55

Why we have to do this

• XNA manages content by creating
intermediate files from the images and
sounds we give it to put in our game

• These are the “.xnb” files

• When the game runs on the target
platform these content files are loaded

• MonoGame only has the code that reads
these content files

26-Mar-13 56

Placing the Resources

26-Mar-13 57

cheeseTexture = Content.Load<Texture2D>("cheese");

Content Management

• You will need to make
a Content folder in the
MonoGame project

• You will have to set
the build action to
“Content” for any
content items that you
add into this folder

26-Mar-13 58

Windows 8 Features

• MonoGame exposes the Windows
interfaces in a similar way to the ones on
Windows Phone

– You get the touch screen, with gesture
support, and the accelerometer

• These are very easy to use in a game

26-Mar-13 59

And so….

• Students like learning with XNA

• Writing XNA from scratch for Windows 8
is easy

• Converting existing XNA games is also easy

• MonoGame provides a path to many
markets, including Windows 8

26-Mar-13 60

Resources

• MonoGame

 http://www.monogame.net/

• Mono Project

 http://www.mono-project.com

• Me

 http://www.robmiles.com

26-Mar-13 61

