
Cop
yri

gh
t I

EEE
Quality Of WordPress Plug-Ins:

An Overview of Security and User Ratings
Teemu Koskinen, Petri Ihantola, and Ville Karavirta

Aalto University, School of Science
Department of Computer Science and Engineering

teemu@teemukoskinen.com, petri.ihantola@aalto.fi, and ville.karavirta@aalto.fi

Abstract—We have applied static analysis to find out how
vulnerable the plugins available at the official WordPress plugin
directory are to well known security exploits. We have compared
the amount of potential vulnerabilities and vulnerability density
to the user ratings, to determine if user ratings can be used
for finding secure plugins. We conclude that the quality of the
plugins varies and there is no clear correlation between the
ratings of plugins and the number of vulnerabilities detected in
them. Indeed, an additional manual review exposed a simple but
severe SQL injection vulnerability in a plugin, which has both
good user ratings and a high download count. We recommend
plugins to be individually inspected for typical vulnerabilities
before using them in any WordPress powered site.

I. INTRODUCTION

WordPress is a highly popular online content management
platform used to power many blogs, home pages, and social
communities (e.g. Mashable, Plazaa, etc). There are over 73
million WordPress sites in the world and 300+ million people
view 2.5+ billion pages each month1. The vast amount of
plugins is one of the reasons for the popularity of WordPress.
At the time of writing, there were over 19,073 plugins in
the official WordPress plugin directory2 downloaded in total
of 286,416,770 times. The plugins are often developed by
individual developers and provided to others for free. There
are plugins for social communities (e.g. BuddyPress), picture
galleries, payment systems, etc.

While some of the plugins are more security critical than
others, a vulnerability in any plugin may expose the whole
system to attackers. Therefore, all plugins go through a manual
review before being accepted in the official plugin directory3.
This, however, is not able to prevent all the problems. At the
time of writing, there were 377 WordPress related vulnera-
bilities reported in the National Vulnerability Database4, 122
(32%) of which were related to a plugin or extension [7].

To help find high quality plugins, WordPress allows the
user community to rate the plugins and displays ratings and
download counts for each plugin. Our research question is
related to the usefulness of these ratings: ”Do plugin ratings
predict the amount of implementation related vulnerabilities
in WordPress plugins?”

1http://en.wordpress.com/stats/
2http://wordpress.org/extend/
3http://wordpress.org/extend/plugins/about/
4http://nvd.nist.gov/

To detect the potential vulnerabilities, we applied an open
source static analysis tool called RIPS [2] and compared our
findings with user ratings. Static analysis can lead to false pos-
itive findings. Therefore, in this report, when speaking about
the amount of vulnerabilities we actually refer to the potential
vulnerabilities detected in static analysis. We restricted our
analysis to the backends of the plugins, which, like WordPress
itself, are written in PHP.

This paper is structured as follows. In Chapter II, we
overview some previous research. Chapter III presents our
research methods, and results are discussed in Chapter IV. We
conclude our work in Chapter V.

II. BACKGROUND AND RELATED RESEARCH

A. User Reviews and Ratings

User reviews are a popular way for users to share their
experiences with on-line products and services. Typical forms
of review include star ratings, where the users can grade a
product on a scale from one to, lets say, five stars, and verbal
feedback, where the users write short comments.

The impact of online ratings and reviews to user behavior
has been studied extensively. Chevalier and Mayzlin [1], for
example, have described how improved reviews lead to better
sales. They also state that the verbal feedback has a bigger im-
pact than summary statistics (i.e. star ratings). More recently,
Mudambi and Schuff [6] also concluded that the helpfulness
depends on the depth of the review, and varies between product
type. In the star rating context, the users typically only see an
average rating and total number of reviews. The depth of such
information is clearly shallow, which makes it less helpful5.

B. Types of Vulnerabilities

According to the Open Web Application Security Project
(OWASP), the top 5 PHP related vulnerabilities are6: remote
code execution, cross-site scripting (XSS), SQL injection
(SQLI), PHP configuration and file system attacks. All but
the misconfigured PHP environment are implementation vul-
nerabilities possible to detect in static analysis. The list is
rather consistent with the more recent, language agnostic,
OWASP list of most critical web application security risks.7

5TornadoGuard, http://xkcd.com/937/
6https://www.owasp.org/index.php/PHP Top 5
7http://code.google.com/p/owasptop10/

Cop
yri

gh
t I

EEE

The top three items in this list are injection, XSS, and broken
authentication and session management.

Based on [8], we argue that certain language design choices
make it relatively easy for less experienced programmers to
cause implementation vulnerabilities into PHP web applica-
tions. Web applications created by experienced PHP program-
mers, however, are equally secure as web applications written
by users of other programming languages [4]. Unfortunately,
not all plugin developers are experienced PHP programmers.

C. Automated Detection of Vulnerabilities

The size and complexity of web applications make manual
code reviews challenging. Thus, automated approaches to
detect security vulnerabilities are widely applied. These can
be divided between black box (i.e. testing) and white box (e.g.
static analysis) approaches.

Black box security scanners access web services through
the HTTP interface the same way users do. These tools
are thus independent of the backend technologies. Doupé et
al. [3] compared eleven security scanners. They concluded
that, providing meaningful/valid test data is challenging, and,
therefore, black box scanners struggle to crawl the applications
deep enough to identify various vulnerabilities. The rate of
false negatives (i.e. a tool not being able to find a vulnerability)
are typically between 60 and 90% [3, 4].

White box approaches are based on analyzing the source
code. Static program analysis can be seen as an extreme
among white box approaches. It analyses software without
executing (or compiling) the code. Static analysis can answer,
for example, if it is possible that a variable used to construct
an SQL query originates from unsafe user input. Whereas false
negatives are the problem in fully automatic black box security
testing, the problem with static analysis is false positives. A
safe program sequence can be marked as vulnerable because
static analysis can not guarantee the safety. Fonseca et al. [5]
have evaluated three widely used commercial security scanners
for PHP applications. Their method included injecting typical
programming errors in two web-based applications, one of
them being WordPress, and then using each of the scanners
to determine if injected SQLI and XSS vulnerabilities were
detected. The three scanners had false positive rates varying
from 20% to 77%.

The two approaches complement each other, but, at least in
our context, black box testing would have required configuring
the tools to focus on UI behavior that is relevant for each
plugin. This is why we decide to apply static analysis that can
be done effectively without configuring parameters as we see
that uniform configurations make the results more comparable
between plugins.

There are commercial (e.g. Fortify Source Code Analyzer8)
and open source (e.g. Pixy9, RATS10, RIPS11) static analysis
tools to reason about security of web applications written in

8https://www.fortify.com/products/hpfssc/source-code-analyzer.html
9http://pixybox.seclab.tuwien.ac.at/pixy/
10https://www.fortify.com/ssa-elements/threat-intelligence/rats.html
11http://rips-scanner.sourceforge.net/

PHP. In this study, we chose to apply RIPS because it is open
source and it supports detecting more vulnerability types than
any other free tool we are aware of.

III. METHODS

We downloaded a randomized sample of 322 plugins listed
in the WordPress plugin directory. The plugins were down-
loaded directly from version control repository12. We contin-
ued by running static security analysis for each of the plugins.
For this, we used a slightly modified13 version of RIPS on
verbosity level 2. Verbosity level one creates smallest amount
of warnings whereas most warning are created on level 5.
Finally, for each plugin, we calculated the vulnerability density
(PV/KLOC14), that is the number of vulnerabilities divided by
the number of actual lines of code (i.e. comment and empty
lines removed). Ratings and the number of downloads were
also retrieved from the plugin directory.

IV. RESULTS

A. Vulnerabilities and Vulnerability Density
In our analysis of the 322 plugins, we discovered 860 vul-

nerabilities from 127 plugins. Vulnerabilities were distributed
unevenly across the plugins as illustrated in Figure 1. Most of
the vulnerabilities were related to XSS (see Table I).

Fig. 1. Distribution of vulnerabilities per plugin

TABLE I
VULNERABILITIES BY TYPE, 322 PLUGINS

Vulnerability type Total In how many plugins
Cross Site Scripting (XSS) 615 (72%) 107
File affect (FA) 86 (10%) 37
File read (FR) 38 (4%) 20
Unserialize (POP) 32 (4%) 15
Other 29 (3%) 14
Code execution (Code) 17 (2%) 6
Header injection 12 (1%) 7
File include (FI) 12 (1%) 9
SQL Injection (SQLI) 11 (1%) 3
Control flow (Con) 8 (1%) 7

The vulnerability densities varied among the plugins from
0 to an alarming 200 PV/KLOC. The highest amount of
vulnerabilities, 80, was found in a plugin having 446 lines
of PHP code (i.e. vulnerability density of 179 PV/KLOC).
The number of code lines correlates mildly with the number
of vulnerabilities (Spearman’s ρ = 0.53, p < 0.01) and
vulnerability density (Spearman’s ρ = 0.37, p < 0.01).

12http://plugins.svn.wordpress.org/
13We added batch processing and serialization of results to a textual format.
14Potential Vulnerabilities divided by Kilo Lines of Code

Cop
yri

gh
t I

EEE

B. The Number of Ratings and Downloads

How many times a plugin is graded contributes to the
trustworthiness of the star rating. Our sample of plugins were
downloaded a total of 3,792,711 times and rated 2,783 times.
Thus, only 0.07% of downloads lead to writing a review.
Interestingly, five most popular plugins contribute to more than
200,000 downloads which is 35.5% from all downloads in
our sample. There is a strong linear correlation between the
number of downloads and the number of ratings (Pearson’s
r = 0.89, p < 0.01). Distribution of the number of ratings
per plugin is skewed towards the lower end as illustrated in
Figure 2.

Fig. 2. Distribution of the number of ratings per plugin.

C. Ratings and Vulnerabilities

Ratings and total amount of vulnerabilities as well as
ratings and vulnerability densities are illustrated in Figure 3.
The figure shows three versions of both with all plugins,
plugins with at least five ratings, and plugins with at least
ten ratings. The smallest grade a plugin can get is 20 (i.e.
one star). Thus no stars (i.e. rating = 0) implies that no-
one has graded the plugin. After removing such plugins, we
found a weak negative correlation between the ratings and the
number of vulnerabilities (Spearman’s ρ = −0.23, p < 0.01)
and between the ratings and vulnerability density (Spearman’s
ρ = −0.20, p < 0.01). When focusing to plugins rated at least
5 or 10 times, we found correlation coefficients very similar
but no longer statistically significant p > 0.05. This could be
due to the smaller sample size. From the 270 rated plugins,
99 were rated at least 5 times and 49 at least 10 times (see
Figure 2).

D. Manual Review

After the static analysis we decided to make a closer
inspection by manually reviewing the plugin with most vul-
nerabilities. With 4,113 downloads, this was the 92nd most
downloaded plugin among the sample with a good average
rating of 77.6 out of 100. Five of the detected potential
vulnerabilities were SQLI vulnerabilities. We confirmed all
of those to be real so that with a well designed input data, a
malicious user could alter the database15 or even take over the
site. These vulnerabilities could be fixed by validating the type
of the input and by replacing special characters with escaped
ones.

15http://xkcd.com/327/

V. DISCUSSION

Although the security of the open source web platforms
themselves has been steadily increasing [9], plugins can in-
troduce new security threats to websites. Because installing
a plugin does not necessarily require technical skills nor
reviewing the plugin codebase, security of the plugins in the
first place is extremely important. The overall security of the
plugins was promising, as over half of the plugins passed the
static analysis with no vulnerabilities detected. However, we
discovered that the quality was not consistent across different
plugins. The brief manual review of just one plugin revealed
that vulnerable plugins can easily be found and that they may
be exploited easily. Inconsistency of security among individual
plugins was observed in terms of both vulnerability counts and
densities in the plugins.

Static analysis proved out to be very fast and cost efficient
in analyzing the quality of the large codebase, even though
manual review would be required in order to verify the issues
and to fix them. The vulnerabilities that were detected in the
analysis can not automatically be considered as defects, but
they are implemented in a way which makes them, under
certain conditions, vulnerable to attacks.

When studying if plugins with a high rating contain less
vulnerabilities, we found only weak evidence supporting that.
It is therefore questionable if the two values presented at the
plugin catalog, rating and download count, help users choose
high quality plugins. At least in terms of security.

The vulnerability densities are a measure to compare the
results with previous work and other applications. In our
research, the plugins contained a total of 179,393 lines of PHP
code with the overall vulnerability density 4.79 PV/KLOC.
This is consistent with similar web applications written in
PHP [9]. Although the earlier research, where vulnerability
densities ranged between 3.30 and 8.88PV/KLOC, was con-
ducted with a different analysis tool, the overall security of
the WordPress plugins appears to be on par with the typical
quality of open source PHP applications.

A. Concerns about Validity

The two main concerns related to the validity of the results
are that our data (i.e. plugins and ratings) are not representative
and that our approach to detect vulnerabilities suffers from
both false negative and false positive results. Related to the
first concern, some of the plugins are also available through
other distribution channels and therefore may have additional
reviews elsewhere. In addition, rating a plugin requires logging
in to the site, which may also alter the demographics of
the raters. On the other hand, this reduces fabricated ratings.
Related to the second concern, we tried different verbosity
levels and doing quick manual overviews of the reported
vulnerabilities, we decided to apply level 2. Earlier, Dahse [2]
have applied the same setting with good success rate. However,
to decrease the number of false positives, a better alternative
might be to use several vulnerability detection tools in parallel.

Cop
yri

gh
t I

EEEFig. 3. Ratings and the number of vulnerabilities (top) and vulnerability densities (bottom) of all plugins (left), plugins rated at least 5 times (middle) and
plugins rated at least 10 times (right).

VI. CONCLUSION

To answer our research question ”Do plugin ratings predict
the amount of implementation related vulnerabilities in Word-
Press plugins?”, we have analyzed 322 randomly selected
WordPress plugins. Wordpress plugin site allows users to grade
plugins and we have compared these ratings of the plugins
with the vulnerabilities identified through static analysis. We
found only a weak non-linear correlation between ratings and
number of vulnerabilities.

Based on our findings, we are confident that there are real
risks involved when using third-party plugins on a WordPress
site. Many plugins appeared not to be vulnerable, but as the
user ratings and download counts do not assist in finding
secure plugins, proper inspection should be done by static
analysis or manual review before using any plugin on a
WordPress site. The cost of software development and fast
schedules in the industry make installing plugins an attractive
solution, but we hope our findings encourage developers to
take the time to inspect the code before using it.

A. Future Work

The obvious future improvement, which we will implement,
is to run the same tests with a larger sample of plugins. We
also plan to manually inspect a higher number of potential
vulnerabilities to better understand how many of those are real.
Furthermore, it could be beneficial to research if other qualities
of the plugins have more impact on their popularity. Properties
such as usability, usefulness or even the plugin description
itself may have more impact on user satisfaction than security.
It could also be useful to combine the results from this study
with the results made by Mudambi and Schuff [6], and find
out if the extremeness of user ratings has an impact on their
usefulness. This would, however, require access to not just the
average rating of plugins, but also the distribution of individual
ratings in the five star scale, which are not publicly available.
Finally, more research on how often people downloading the
plugins use the ratings to support their decision making is also
needed. Is it possible that the minority of people who rate have
an impact on the majority of people downloading the plugins?

REFERENCES

[1] CHEVALIER, J. A., AND MAYZLIN, D. The effect of
word of mouth on sales: Online book reviews. Journal
of Marketing Research 43, 3 (2006), 345–354.

[2] DAHSE, J. RIPS – a static source code analyser for
vulnerabilities in PHP scripts. http://www.php-security.
org/downloads/rips.pdf, May 2010.

[3] DOUPÉ, A., COVA, M., AND VIGNA, G. Why Johnny
can’t pentest: an analysis of black-box web vulnerability
scanners. In Proceedings of the 7th international confer-
ence on Detection of intrusions and malware, and vulner-
ability assessment (Berlin, Heidelberg, 2010), DIMVA’10,
Springer-Verlag, pp. 111–131.

[4] FINIFTER, M., AND WAGNER, D. Exploring the rela-
tionship betweenweb application development tools and
security. In Proceedings of the 2nd USENIX conference on
Web application development (Berkeley, CA, USA, 2011),
WebApps’11, USENIX Association, pp. 99–111.

[5] FONSECA, J., VIEIRA, M., AND MADEIRA, H. Test-
ing and comparing web vulnerability scanning tools for
sql injection and xss attacks. In Proceedings of the
13th Pacific Rim International Symposium on Dependable
Computing (Washington, DC, USA, 2007), PRDC ’07,
IEEE Computer Society, pp. 365–372.

[6] MUDAMBI, S. M., AND SCHUFF, D. What makes a
helpful online review? a study of customer reviews on
amazon.com. MIS Quarterly 34, 1 (2010), 185–200.

[7] NIST COMPUTER SECURITY DIVISION. National Vul-
nerability Database. http://web.nvd.nist.gov/, 2012.

[8] SHIFLETT, C. PHP Security. O’Reilly Open Source
Convention, Portland, Oregon, USA, 2004.

[9] WALDEN, J., DOYLE, M., WELCH, G. A., AND WHE-
LAN, M. Security of open source web applications. In
Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement (Wash-
ington, DC, USA, 2009), ESEM ’09, IEEE Computer
Society, pp. 545–553.

