Worldwide Biomass Combustion: Energy, Air Pollution, and Health

Kirk R. Smith University of California, Berkeley

International Biomass Smoke Health Effects Conference

University of Montana, Missoula Center for Environmental Health Sciences

August 21-22, 2007

Itinerary Biomass Combustion

- Biomass combustion in the world
 - Fuel and non-fuel
 - Rich and poor
- Air pollution from biomass
 - Emissions
 - Exposures
- Health effects
 - Burden of disease calculations
 - Randomized trial in Guatemala

Oldest Pollution Source in Human History

Typical Household Energy Ladder

Post - Biomass Energy Transition in the Republic of Korea, 1965-1980

Source: RWEDP

Source: RWEDP

Source: RWEDP

Asia Pacific shares of 2.31 Gtoe

Cumulative Percent of World Population

Energy per capita

Woodsmoke is natural – how can it hurt you?

Or, since wood is mainly just carbon, hydrogen, and oxygen, doesn't it just change to CO_2 and H_2O when it is combined with oxygen (burned)?

Reason: the combustion efficiency is far less than 100%

CO levels Sep 2005

Indian Cookstoves Nominal Combustion Efficiency			
• Gas: `	99% (98-99.	5)	
• Kerosene:	97 (95-98)		
Solid Fuels		NCE = Carbon as CO2	
• Wood:	89 (81-92)	/carbon in fuel burned	
• Crop resid:	85 (78-91)		
• Dung:	84 (81-89)		
• Coal	(variable)		

Source: Smith, et al, 2000 Census, 2001

First person in human history to have her exposure measured doing one of the oldest tasks in human history

Filter

Kheda District, Gujarat, India 1981

Pump

What kind of exposures?

A Toxic Waste Factory!!

Typical biomass cookstoves convert 6-20% of the fuel carbon to toxic substances

Nominal Combustion Efficiency = 1/(1+k) = 89%

Toxic Pollutants in Biomass Fuel Smoke from Simple (poor) Combustion

- Small particles, Best measure of risk
- Hydrocarbons ~ 0.1-0.4% of fuel weight
 - 25+ saturated hydrocarbons such as *n*-hexane
 - 40+ unsaturated hydrocarbons such as 1,3 butadiene
 - 28+ mono-aromatics such as *benzene & styrene*
 - 20+ polycyclic aromatics such as *benzo*(α)*pyrene*
- Oxygenated organics
 - 20+ aldehydes including *formaldehyde* & *acrolein*
 - 25+ alcohols and acids such as *methanol*
 - 33+ phenols such as *catechol* & *cresol*
 - Many quinones such as hydroquinone
 - Semi-quinone-type and other radicals
- Chlorinated organics such as *methylene chloride* and *dioxin*

Naeher et al. 2007, <u>JIT</u>

Size Distribution of Biomass Smoke Particles

Figure 2.2. Size distribution of woodsmoke and dungsmoke particles. Measurements taken in the East-West Center simulated village house as reported in Smith *et al.* (1984b). (Figure prepared by Premlata Menon.)

Source: Smith, Apte et al. 1984

╬

IARC Evaluation Protocol

All data contribute to an evaluation

Cancer in humans

Sufficient evidence Limited evidence Inadequate evidence Evidence suggesting lack of carcinogenicity

Cancer in experimental animals

Sufficient evidence Limited evidence Inadequate evidence Evidence suggesting lack of carcinogenicity

Mechanistic and other relevant data

For each mechanism:

- Mechanistic data "weak," "moderate," or "strong"?
- Mechanism likely to be operative in humans?

Overall evaluation

- Group 1 Carcinogenic to humans
- Group 2A Probably carcinogenic to humans
- Group 2B Possibly carcinogenic to humans
- Group 3 Not classifiable as to its carcinogenicity to humans
- Group 4 *Probably not carcinogenic to humans*

A tour of IARC's classifications

- Preamble, Part B, Section 6(d)

EVIDENCE IN EXPERIMENTAL ANIMALS

	Sufficient	Limited	Inadequate	ESLC
Sufficient				
Limited				
EVIDENCE IN HUMANS				
Inadequate				
ESLC				

•

╬

E

IN

Group 1 (*carcinogenic to humans*) whenever there is *sufficient evidence* in humans

EVIDENCE IN EXPERIMENTAL ANIMALS

	Sufficient	Limited	Inadequate	ESLC
Sufficient	Group 1			
Limited				
EVIDENCE N HUMANS				
Inadequate				
ESLC				

ł

Group 2A (probably carcinogenic) with limited evidence in humans and sufficient evidence in animals

	Sufficient Sufficient	Limited	Inadequate	ESLC
Sufficient		Group 1		
Limited	Group 2A 🛛 🖛	Woodsmoke		
EVIDENCE IN HUMANS				
Inadequate				
ESLC				

EVIDENCE IN EXPERIMENTAL ANIMALS

"Thank God! A panel of experts!"

Courtesy of Ross Anderson

Comparative Risk Assessment

- 26 major risk factors
- Common methods and databases
- Consensual discipline on acceptance of evidence
- Mortality and morbidity by age, sex, and 14 world regions
- Lost healthy life years (DALYs) final metric

Diseases for which we have some epidemiological studies

Chronic obstructive lung disease

Only two qualified with sufficient evidence to be included in the CRA

ALRI/ Pneumonia (meningitis) Acute lower respiratory infections (ALRI)

Chief cause of death among the world's children (~2 million per year). Thus, it is the chief global cause of lost healthy life years.

Child mortality occurs almost entirely in developing countries, and as pneumonia.

Well-accepted risk factors (malnutrition, micro-nutrient deficiencies, other diseases, crowding, chilling) do not account for its scale.

Pneumonia Deaths in the United States

Not so long ago Pneumonia was chief cause of death in developed countries

SOURCE: National Center for Health Statistics, 2004. No age adjustment

The Energy Ladder: Relative Pollutant Emissions Per Meal

Smith, et al., 2005

CO Hydrocarbons PM

National Household Solid Fuel Use, 2000

Meta-analysis of studies of ALRI and solid fuels, in children aged <5 years

Subgroup analyses of ~14 studies	Odds ratio (95% CI)	
All studies	2.3 (1.9-2.7)	
Use of solid fuel	2.0 (1.4-2.8)	
Duration of time child spent near the cooking	2. 3 (1.8-2.9)	
Children in households using solid fuels have twice the rate of serious ALRI		
Stuares not aujusting for nutritorial status	2.2 (2.0-5.0)	
Children aged <2 years old	2.5 (2.0-3.0)	
Children aged <5 years old	1.8 (1.3-2.5)	

Smith et al in WHO, Comparative quantification of health risks, 2004

Meta-analysis of all studies adjusted for age Chronic Obstructive Pulmonary Disease (COPD) in women

Smith et al., 2004

Global Burden of Disease from Top 10 Risk Factors plus selected other risk factors

Need for Stronger Evidence

- Problem with observational data
- Randomized control trials (RCTs) are coin of realm in international health
- Decided to do RCT in 1984
- Received funding in 2001
- Publications coming out in 2007

First Randomized Trial in Air Pollution History*

Setting

Rural highlands of San Marcos, western Guatemala
Population nearly all indigenous Mayan Indians
Nearly all depend on wood for cooking and heating
Traditional stove is the 3-stone fire – no venting to outside
Very poor, high IMR, pneumonia, diarrhoea and

- stunting common
- Poor health service uptake culture, language, transport, time
- Intervention is a stove with chimney that is wellaccepted by community

RESPIRE: Randomized Exposure Study of Pollution Indoors and Respiratory Effects

Traditional 3-stone open fire

Plancha chimney wood stove

Need for fast, cheap, and easy monitoring for particles so that widespread temporal and spatial measurements can be done in easily in many places

Aerosol Science and Technology, 38:1054-1062, 2004 Copyright @ American Association for Aerosol Research ISSN: 0278-6826 print / 1521-7388 online DOI: 10.1080/027868290883333

Combined Optical and Ionization Measurement Techniques for Inexpensive Characterization of Micrometer and Submicrometer Aerosols

Chark and Ti ¹ Pittsbu ²School ³School 4EME S

TECHNICAL PAPER

ISSN 1047-3289 J. Air 8 Copyright 2006 Air & Waste

An Inexpensive Dual-Chamber Particle Monitor: Laboratory Characterization

this monitor.

Rufus Edwards School of Social Ed	CREATED USING THE RSC ARTICLE TEMPLATE (VER. 2.1) - SEE WWW.RSC.ORG/ELECTRONIC/FILES FOR DETAILS				
University of Califor	ARTICLE Journal of Environmental Monitoring]				
Kirk R. Smith School of Public H	An inexpensive light-scattering particle monitor: field validation				
Brent Kirby Chemistry Departm	Zohir Chowdhury,*" Rufus Edwards, ^b Michael Johnson," Kyra Naumoff Shields," Tracy Allen, ^d Eduardo Canuz' and Kirk R. Smith"				
Tracy Allen Electronically Monit	Receipt/Acceptance Data: Forthcoming 2007 , Publication data DOI: 10.1039/b000000x				
Charles D. Litton Pittsburgh Researc Disease Control an	We have developed a small, light, passive, inexpensive, datalogging particle monitor called the "UCB" (University of California Berkeley Particle Monitor). Following previously published laboratory assessments, we present here results of tests of its performance in field settings. We				
Susanne Hering Aerosol Dynamics,	³⁰ demonstrate the mass sensitivity of the UCB in relation to gravimetric filter-based PM _{2.5} mass estimates as well as commercial light-scattering instruments co-located in field chamber tests and in kitchens of wood-burning households. Although requiring adjustment for differences in sensitivity, Inter-monitor performance was consistently high (r ² >0.99). Moreover, the UCB can consistently estimate PM _{2.5} mass concentrations in wood-burning kitchens (Pearson r ² = 0.885;				
ABSTRACT In developing countries, his from the use of coal and bios	¹⁰ N=99), with good agreement between duplicate measures (Pearson r ² = 0.940; N=88). In addition, with appropriate cleaning of the sensing chamber, UCB mass sensitivity does not decrease with time when used intensively in open woodfire kitchens, demonstrating the significant potential of				

This and ang experim eter aer The rest adequat relation measure trum of health c the rang signal-to centrati

ing and heating are a major

INTRO Meæ

ter (<1. surface verse he Currenti

Guatemala house with open fire DustTrak vs UCB particle monitor

Co-location june 15 2004 100 90 80 70 60 Vlass (mg/m3) 50 40 30 20 10 0 -10 9:44 11:10 11:53 12:36 13:19 14:02 14:45 15:28 16:11 16:54 17:37 18:20 19:03 19:46 20:29 21:12 21:55 22:38 0:04 0:47 1:30 2:13 2:56 3:39 4:22 5:05 5:48 6:31 7:14 7:57 8:40 9:23 10:06 10:49 12:15 9:01 0:27 23:21 11:32

Time (hrs:min)

Overview of study design

Overview of child health outcomes assessment

* Respiratory syncitial virus

Results for MD-diagnosed Severe Pneumonia:

RSV+, hypoxic

OR (SE)	р	95%CI
0.93 (0.25)	0.79	0.55 – 1.57

Non-RSV, hypoxic

Dualinainama			
Preliminary	OR (SE)	р	95%CI
Results	0.59 (0.15)	0.031	0.36 – 0.95
Please do not cite			

Interpretation: Children in households with open woodfires seem to have ~ two-thirds (1/0.60) more serious non-RSV pneumonia than those in households with well-operating woodstoves with chimneys

Attributable Fractions do not add to 100%

Chimney Stove Intervention to Reduce Long-term Woodsmoke Exposure Lowers Blood Pressure among Guatemalan Women

> John P. McCracken, Kirk R. Smith, Murray A. Mittleman, Anaité Díaz, Joel Schwartz

(Published in Environmental Health Perspectives, July 2007)

Background

- Ambient particles associated with increased blood pressure (BP) (e.g. Linn, 1999; Zanobetti, 2004)
- Elevated BP predicts increased cardiovascular risk
- No studies of long-term air pollution exposures and BP
- Effects of biomass smoke have not been studied

Objectives

<u>Goal</u>: To evaluate the effect of long-term reductions in woodsmoke exposure on systolic (SBP) and diastolic blood pressure (DBP).

Specific hypotheses:

- 1. Personal fine particle $(PM_{2.5})$ exposures will be lower among women using chimney stoves to cook.
- 2. Chimney stove intervention will be associated with lower SBP and DBP.

Study Design

- Study population
 - Eligible: Women \geq 38 years, cooking daily
 - Excluded: pregnant, breastfeeding
- Two follow-up periods
 - Trial period (7/03-12/04)
 - Echo-intervention period (3/04-3/05)

Personal PM_{2.5}

SBP and DBP

Measures by Group and Period

Subjects (Measures)

	Trial Period	Echo-Intervention Period
Intervention Group	49 (115)	
Control Group	71 (111)	55 (65)

Between-Groups Results

	Number of subjects (measures)		Adjusted mean difference*			ence*
	Control group	Intervention group	Estima	ate	95% CI	p-value
SBP	71 (111)	49 (115)	-3.7		-8.1, 0.6	0.10
DBP	71 (111)	49 (115)	-3.0		-5.7, -0.4	0.02

* Adjusted for age, body mass index, daily temperature, season, day of the week, time of day, use of wood-fired sauna, household electricity, an asset index, ever smoking, and secondhand tobacco smoke exposure

Before-and-After Results

	Number of subjects (measures)		Adjusted mean difference*		
	Trial period	Echo-intervention	Estimate	95% CI	p-value
SBP	55 (88)	55 (65)	-3.1	-5.3, -0.8	0.01
DBP	55 (88)	55 (65)	-1.9	-3.5, -0.4	0.01

* Adjusted for age, body mass index, daily temperature, season, day of the week, time of day, use of wood-fired sauna, household electricity, an asset index, ever smoking, and secondhand tobacco smoke exposure

California's 2005 Combustion PM_{2.5} Emissions

Thank you