How can simple cookfires cause so much ill-health?

Kirk R. Smith, Professor of Global Environmental Health University of California, Berkeley

V Reunion Nacional RED Mexicana de Bioenergia CIEco-UNAM, Morelia, Michoacan September 30, 2008

Global Burden of Disease from Top 10 Risk Factors plus selected other risk factors

Percent of All DALYs in 2000

Oldest Pollution Source in Human History

Why does it still cause so much ill-health?

----Physical reasons ----Physiological reasons ----Political/economic/social reasons #1 Widely used

World Energy Assessment, 2004

Áreas accesibles de **10km** de radio alrededor de localidades y **3km** al costado de caminos Productividad **media** de madera para energía por hectárea por año.

Fuente: Ghilardi 2007; IFN 2000; INEGI 2000; INEGI 1995. Creado en ArcGIS 9.2 utilizando ArcMap. Elaboró: Ghilardi A. Diciembre, 2007. 125 250 500 750 1,000

1:12,500,000

Albers Equal Area Conic Projection North American Datum 1927 Ver detalles en el Anexo III

National Household Solid Fuel Use, 2000

#2 Highly polluting

Woodsmoke is natural – how can it hurt you?

Or, since wood is mainly just carbon, hydrogen, and oxygen, doesn't it just change to CO_2 and H_2O when it is combined with oxygen (burned)?

Reason: the combustion efficiency is far less than 100%

Nominal Combustion Efficiency = 1/(1+k) = 89%

Indian Cookstoves				
Nominal		Approximate %		
Combustion Efficiency		<u>of Households -</u> <u>2001</u>		
• Gas: `	99% (98-99.5	5) [18%]		
• Kerosene:	97 (95-98)	[7]		
Solid Fuels				
• Wood:	89 (81-92)	[53]		
Crop resid:	85 (78-91)	[10]		
• Dung:	84 (81-89)	[10]		
Coal	(variable)	[2]		

Source: Smith, et al, 2000 Census, 2001

Toxic Pollutants in Biomass Fuel Smoke from Simple (poor) Combustion

- Small particles. Best measure of risk
- Hydrocarbons ~ 0.1-0.4% of fuel weight
 - 25+ saturated hydrocarbons such as *n*-hexane
 - 40+ unsaturated hydrocarbons such as 1,3 butadiene
 - 28+ mono-aromatics such as *benzene & styrene*
 - 20+ polycyclic aromatics such as $benzo(\alpha)pyrene$
- Oxygenated organics
 - 20+ aldehydes including *formaldehyde* & *acrolein*
 - 25+ alcohols and acids such as *methanol*
 - 33+ phenols such as *catechol* & *cresol*
 - Many quinones such as *hydroquinone*
 - Semi-quinone-type and other radicals
- Chlorinated organics such as methylene chloride and dioxin

Naeher et al. 2007, <u>JIT</u>

Size Distribution of Biomass Smoke Particles

Figure 2.2. Size distribution of woodsmoke and dungsmoke particles. Measurements taken in the East-West Center simulated village house as reported in Smith *et al.* (1984b). (Figure prepared by Premlata Menon.)

Source: Smith, Apte et al. 1984

20-month average ground-level PM2.5 from satellite data

45

IODIS

#3 High Intake Fraction

Intake Fraction (IF)

- *IF* is the fraction of material emitted that crosses some person's physiological barriers (skin, GI tract, Resp. tract, etc.)
- For air pollution, *IF* is the fraction breathed in by the exposed population.

Defining "Intake Fraction"

For an inhaled pollutant:

C = Concentration (g/m³) $Q_{B} = Breathing Rate (m³/s)$ E = Emissions (g/s) P = Populationt = time

Marshall et al., 2001

IF = 1.0

Intake Fraction Varies as Much as Toxicity (these are rough calculations for typical examples of sources in each class)

Smith, 1993

Grams Inhaled per Tonne Emitted

What Does iF (Inhalation) Depend On?

- 1. Proximity (Source type)
 - indoor / outdoor
 - stack / ground-level

2. Persistence (Pollutant dynamics)

- reaction kinetics
- removal mechanisms

3. Population

4. Breathing rate

... and temporal and spatial variability of these factors

Power of Intake Fraction

- "Rule of One Thousand" = Pollutants released indoors are 1000 times more likely to reach someone's lungs than if released outdoors.
- Sample comparison: U.S. power plant versus cigarettes
 - Source:
 - 1 ton coal = 1 million cigarettes (1 g each)
 - Emissions of particles
 - 1 ton coal = 24,000 cigarettes
 - Approximate particle intake equivalence
 - 1 ton coal = 24 cigarettes (ETS)
- Thus, even though there are more than 40 times more primary particles released from coal power plants in the US than from cigarettes, less than a 2-5% reduction in passive smoking (ETS exposures) would be equivalent to eliminating all the power plants in the country in terms of particle exposure. Smith, 1988

First person in human history to have her exposure measured doing one of the oldest tasks in human history

Filter

Kheda District, Gujarat, India 1981

Pump

What kind of exposures?

Indoor pollution concentrations from typical woodfired cookstove during cooking

#4 Not easy to fix - ventilation

RESPIRE: (Randomized Exposure Study of Pollution Indoors and Respiratory Effects)

Traditional 3-stone open fire

Plancha chimney wood stove

Effect of Plancha on PM2.5 Log Scale 1000 Open fire ~90% Reduction, sig. 100 Plancha 48-h ug/m3 10 1 Kitchen

Reasons that child personal exposures did not lower as much as kitchen levels:

- --Time-activity: the kids do not spend their entire day in the kitchen
- --Household (or "neighborhood") pollution: a chimney does not reduce smoke, but just shifts it outside into the household environment, where the difference between intervention and control households was less
 --Other burning around house not different

Effect of Plancha on PM2.5 Log Scale 1000 Open fire ~90% Reduction, sig. 100 Plancha 48-h ug/m3 10 1 Kitchen

Neigborhood Pollution

Highland Guatemala Friday, Feb 20, 2004 ~6:15 AM

Neighborhood Pollution in an Indian Village

#5 Not easy to fix--combustion

Internal Stove Efficiencies (carbon balance method)

- Overall efficiency is function of two internal efficiencies: OE = NCE * HTE
- Nominal Combustion Efficiency (NCE) = percent of fuel carbon released as CO₂
- Heat transfer efficiency (HTE) = OE/NCE
- NCE = CO₂/(CO₂ + PIC) -- on a carbon basis

Energy flows in well-operating traditional woodfired cookstove

PIC = products of incomplete combustion.

Increasing Fuel Efficiency Does not Always Decrease Emissions Per Meal

How can less fuel mean more pollution?

Stove	Overall Efficiency	Heat Transfer Efficiency	Nominal Combustion Efficiency
Traditional	14	15	97
"Improved"	27	30	90
Change =	27/14 =		(1-0.90)/
73% more	1.93x fewer		(1/0.97) =
pollution	kg fuel per		3.33x more
per meal!	meal		PIC per kg fuel

Biomass smoke – a global concern

- A significant contribution to PM2.5 emissions around the world – more than half in many developed countries (Canada, Denmark, much of USA, etc.)
 - Ag burning a function of ag production, not income California
 - Wood heating and fireplace use common in many developed countries – Silicon Valley
- Growing because of energy prices
- And climate change

Source: RWEDP

Source: RWEDP

Source: RWEDP

Asia Pacific shares of 2.31 Gtoe

Income

Income

California's 2005 Combustion PM_{2.5} Emissions

Most the papers and other publications from which these data were taken are available at http://ehs.sph.berkeley.edu/krsmith

Thank you

Physiological Reason #1

- Smoke's main impact is not by causing new diseases
- But by exacerbating risk of existing diseases
- Thus, populations with high background disease rates are most vulnerable
- Women and children in rural areas of poor countries are the most vulnerable in the world

