Co-benefits from Air Pollution Control for Health and Climate in China

Kirk R. Smith, MPH, PhD Professor of Global Environmental Health University of California, Berkeley

美国国家科学院 院士 (1997)

Honorary University Professor Sichuan University, Chengdu

Beijing Forum, Peking University November 7, 2008

Why Worry about Co-benefits?

- Helps share the cost of greenhouse pollutant mitigation with achievement of other societal goals, such as providing acceptable levels of health protection
- Potentially reduces political gap between developed and developing countries in international climate negotiations – early achievement of more certain benefits that directly relate to development needs ("no regrets investments")

Roadmap

- Many types of co-benefits (e.g., changing built environment)
- Energy related air pollution probably has strongest links
- Two categories discussed here
 - Methane: under-appreciated greenhouse and health-related pollutant
 - Household Fuels in China

Air Pollution from Energy Use

Household solid fuels

- Large source of ill-health worldwide in poorest populations 1.6 million premature deaths
- Non-renewable biomass and coal carbon emissions
- Poor combustion leads to non-CO2 GH-related emissions
- Outdoor emissions from energy systems
 - 0.8 million premature deaths
 - Most well documented benefits, climate and health
- Special advantage to eliminating black carbon, but difficult to ascertain relative climate impacts of different aerosols.
- China has the largest global impacts for both these categories of air pollution

Estimated PM10 Concentration in World Cities (pop=100,000+)

WHO, 2004

DALYs Attributable Globally to Urban Outdoor Air Pollution

Chinese Burden of Disease from Top 10 Risk Factors

Plus Selected Other Risk Factors

National Household Solid Fuel Use, 2000

The Methane Story: CH₄

Methane and Global Warming

- A much more powerful greenhouse gas (GHG) than CO₂
- Partly due to its direct effect, but also because it creates ozone (O₃), another powerful GHG
- Nearly 100 times more per ton than CO₂ at any one time (73x from direct effects)
- Eventually turns to 2.75 times as much CO₂ by mass
- Methane has thus contributed a significant amount to global warming, more than half that of CO₂
- But has a much shorter atmospheric lifetime compared to CO₂

Math of GHG Decay (AR4)

- CO₂ goes into four compartments:
 - 19% of total with a lifetime* of 1.2 years
 - 34% at 18.5 y
 - 26% at 173 y
 - 21% with a lifetime of "many thousand years"
- Methane has a 12 y lifetime,
 - but contributes to ozone, a GHG
 - and eventually oxidizes to CO₂

*Lifetime refers to the time to reach 1/e (37%) of the original amount

Natural CO2 and CH4 Depletion - first 10 years

Time perspective makes a difference

horizon

IPCC, 2007

Global Anthropogenic Methane Emissions ~2005 Total ~ 305 million tons

Expected to grow at ~1.5% per year

Warming Contribution of Total ~2008 Emissions of Methane Compared to Total CO2 Emissions

Chinese Methane Emissions in 2005 41 MT = 13% of world

31 kg/capita

USEPA, 2006

Future Warming from 2008 Chinese Methane and CO₂ Emissions

Methane as a Global Ozone Precursor

Background Ozone is Growing ...

Ozone trend at European mountain sites, 1870-1990 (Marenco et al., 1994).

Mauzerall 2007

... and Will Continue to Grow!

Historic and future increases in background ozone are due mainly to increased methane and NO_x emissions (Wang *et al.*, 1998; Prather et al., 2003).

2100 (IPCC A2) - 2000

Effect of a reduction of 20% (~61 MT) in global methane emissions on tropospheric ozone

West et al., PNAS, 2006

Reduction in ozone mortality from 20% reduction in methane emissions

West et al, PNAS, 2006

Rural Energy in China: 2004

Total

Households

Ministry of Agriculture

National Bureau of Statistics

Household Energy in China

- >65% of China's population is rural.
- ~ 80% of energy use is simple solid biomass (wood, agricultural wastes)
- ~13% as coal
- Thus, it is still true to say that in China most people rely on biomass fuels for most of their energy
- A situation that has not changed since the mastery of fire by the human race

Greenhouse warming commitment per meal for typical wood-fired cookstove in China

Role of Technology: Co-benefits

Improved Biomass Cookstoves

- Reduction in air pollution and GHGs
- Improvement in health outcomes
- Increase in fuel efficiency
- Solution to rural biomass fuel shortage
- Reallocation of time for women and kids
- Decrease in forest degradation

China National Stove Contest - 2007

		<u>PM</u>					
	<u>CO/CO2</u>	<u>%</u>	<u>g/kg</u>				
Coal [#]	0.12	17.1	1.6				
Traditional Biomass [#]	0.13	19.1	4.0				
Biomass Stove Contest Winners							
Daxu	0.020	41.9	0.28				
Luoyang	0.019	35.2*	0.24				
Xintai	0.025	32.6*	0.36				
Zhenghong	0.019	35.9	0.24				

Zhang, et al., 2000

*Not including water heating function

Health and Greenhouse Gas Benefits of Biomass Stove Options

ug/m³ Coal Daxu Semi-gasifier stove compared to coal stove MOLEvel 17% to 41% fuel efficiency 0.12 to 0.02 CO/CO₂ 1.6 to 0.26 g PM/kg fuel ₂-eq Plus a chimney

Smith & Haigler, 2008

Global Warming Commitment per Meal

Exposure-Response Relationships in China: Global Comparative Risk Assessment

Table 2 Risks from outdoor and indoor air pollution with example from China. Disability-adjusted life years (DALYs)/exposure will be different in other countries because of different background disease risks. Sources: References 12 and 64

			Relative risk		
	Population	Exposure metric	per unit	DALYs/exposure ^a	
Outdoor		1000 people		3% DALY	0% DALY
Cardiovascular	Adults >30	10 μg/m ³ PM2.5	1.059	1.56E-01	3.1E-01
Lung cancer	Adults >30	10 μg/m ³ PM2.5	1.082	2.26E-02	4.4E-02
Acute lower respiratory infections	Children <5	10 μg/m ³ PM10	1.01	1.64E-02	3.8E-02
(ALRI)					
Indoor		Household (HH)			
Chronic obstructive pulmonary	Adults >30	Solid fuel use	3.2	2.72E-02	5.4E-02
disease (COPD)					
Lung cancer	Adults >30	Solid fuel use	1.9	1.00E-03	2.0E-03
ALRI	Children <5	Solid fuel use	2.3	1.48E-02	3.4E-02

^aThese values would be different in other parts of the world. See References 17 and 55.

Smith and Haigler, 2008

Smith & Haigler, 2008

Paying for Rural Energy Development

Monitoring Requirements

Fuel Use and Savings
 GHG Emissions
 Air Pollution Exposures

You don't get
 what you expect,
 but what you inspect.

Monitoring: Indoor Air Pollution

- PM_{2.5}: Pump/filter is standard method,
 but cumbersome,
 slow, and poor
 resolution
- Need new method: Small, smart, fast, and cheap
- UCB Monitor using smoke detector technology is an example

Source: Chowdhury, Z., R. D. Edwards, et al. (2007). "An inexpensive light-scattering particle monitor: field validation." Journal of Environmental Monitoring **9**(10): 1099-1106.

With low cost and ease of use, many UCBs can be used at once

10% of cost of commercial devices

And much smarter!

Measuring Personal Exposure to PM2.5 from Woodsmoke with the UCB-Particle Monitor and the UCB-Personal Locator

20-month average ground-level PM2.5 from satellite data

45° S

MODIS

Large areas of rural China have high ambient air pollution –

much from household fuel

Conclusion

- Methane emissions are more important than current official weighting factors indicate because of its large effect over the next generation
- Contributes directly to global tropospheric ozone levels
- Methane is emitted as part of the poor combustion process of solid fuels: Chinese stoves produce ~2 MT of the 300 MT global human methane emissions.
- This incomplete combustion also produces much directly health-damaging pollution and wastes fuel
- Improving this combustion offers substantial GHG as well as health and other benefits in a cost-effective manner – using carbon offsets provides a mechanism
- Focuses on the poorest communities in the country

Publications and presentations available at

http://ehs.sph.berkeley.edu/krsmith/

