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Focus here is on 
these shorter-lived
CAPs – Climate
Active Pollutants

First BC&OC

Then CH4

Warming in 2005 
from emissions
since 1750
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Figure 2.21. Components of RF for emissions of principal gases, aerosols and aerosol precursors and other changes. Values represent RF in 2005 due to emissions and changes since 1750. (S) and (T) next to gas species represent stratospheric and tropospheric changes, respectively. The uncertainties are given in the footnotes to Table 2.13. Quantitative values are displayed in Table 2.13.
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Inventories for CO2, CH4, and N2O

Carefully parsed into “natural and “human-caused”
as well as “pre-industrial and post-industrial”

Not done yet for BC, OC, Ozone-precursors, etc.
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FAQ 7.1, Figure 1. Breakdown of contributions to the changes in atmospheric greenhouse gas concentrations, based on information detailed in Chapters 4 and 7. In (a) through (d), human-caused sources are shown in orange, while natural sources and sinks are shown in green. In (e), human-caused tropospheric ozone amounts are in orange while natural ozone amounts are in green. (a) Sources and sinks of CO2 (GtC). Each year CO2 is released to the atmosphere from human activities including fossil fuel combustion and land use change. Only 57 to 60% of the CO2 emitted from human activity remains in the atmosphere. Some is dissolved into the oceans and some is incorporated into plants as they grow. Land-related fluxes are for the 1990s; fossil fuel and cement fluxes and net ocean uptake are for the period 2000 to 2005. All values and uncertainty ranges are from Table 7.1. (b) Global emissions of CFCs and other halogen-containing compounds for 1990 (light orange) and 2002 (dark orange). These chemicals are exclusively human-produced. Here, ‘HCFCs’ comprise HCFC-22, -141b and -142b, while ‘HFCs’ comprise HFC-23, -125, -134a and -152a. One Gg = 109 g (1,000 tonnes). Most data are from reports listed in Chapter 2. (c) Sources and sinks of CH4 for the period 1983 to 2004. Human-caused sources of CH4 include energy production, landfills, ruminant animals (e.g., cattle and sheep), rice agriculture and biomass burning. One Tg = 1012 g (1 million tonnes). Values and uncertainties are the means and standard deviations for CH4 of the corresponding aggregate values from Table 7.6. (d) Sources and sinks of N2O. Human-caused sources of N2O include the transformation of fertilizer nitrogen into N2O and its subsequent emission from agricultural soils, biomass burning, cattle and some industrial activities including nylon manufacture. Source values and uncertainties are the midpoints and range limits from Table 7.7. N2O losses are from Chapter 7.4. (e) Tropospheric ozone in the 19th and early 20th centuries and the 1990 to 2000 period. The increase in tropospheric ozone formation is human-induced, resulting from atmospheric chemical reactions of pollutants emitted by burning of fossil fuels or biofuels. The pre-industrial value and uncertainty range are from Table 4.9 of the IPCC Third Assessment Report (TAR), estimated from reconstructed observations. The present-day total and its uncertainty range are the average and standard deviation of model results quoted in Table 7.9 of this report, excluding those from the TAR.
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Total Black Carbon Emissions in 2000
Source: T Bond Database, V 7.1.1 Feb 2009

Plus Bond et al., 2004
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One-third of emissions from natural sources – not put into anthropogenic group
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C - fluxes

In CO2 Inventories:  rest is 
considered non-controllable or?
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Figure 7.3. The global carbon cycle for the 1990s, showing the main annual fluxes in GtC yr –1 : pre-industrial ‘natural’ fluxes in black and ‘anthropogenic’ fluxes in red (modified from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of –39 GtC is inferred from cumulative fossil fuel emissions minus atmospheric increase minus ocean storage. The loss of –140 GtC from the ‘vegetation, soil and detritus’ compartment represents the cumulative emissions from land use change (Houghton, 2003), and requires a terrestrial biosphere sink of 101 GtC (in Sabine et al., given only as ranges of –140 to –80 GtC and 61 to 141 GtC, respectively; other uncertainties given in their Table 1). Net anthropogenic exchanges with the atmosphere are from Column 5 ‘AR4’ in Table 7.1. Gross fluxes generally have uncertainties of more than ±20% but fractional amounts have been retained to achieve overall balance when including estimates in fractions of GtC yr –1 for riverine transport, weathering, deep ocean burial, etc. ‘GPP’ is annual gross (terrestrial) primary production. Atmospheric carbon content and all cumulative fluxes since 1750 are as of end 1994.
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Controllable Black Carbon Emissions in 2000
Source: T Bond Database, V 7.1.1 Feb 2009
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Really three categories

• Natural  – not amendable to human 
interventions (e.g., some wildfires)

• Pre-industrial, but still amendable to 
human interventions (e.g. household 
biomass fuel burning)

• Post-industrial (e.g., essentially all fossil 
fuel use)
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Controllable Black Carbon Emissions in 2000
Source: T Bond Database, V 7.1.1 Feb 2009

Ag Burning
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Household
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No forest or
grassland fires

Total 5300 gigagrams

If total is 0.9 W/m2 (Ramanathan & Carmichael, 2008)

--Controllable portion is ~ 0.6 W/m2

--Post-1750 portion is ~ 0.34 W/m2

But then, the OC emissions need to be
parsed into these categories also
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Intimately linked:
Generally
not possible to control
one without the other
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Figure 2.21. Components of RF for emissions of principal gases, aerosols and aerosol precursors and other changes. Values represent RF in 2005 due to emissions and changes since 1750. (S) and (T) next to gas species represent stratospheric and tropospheric changes, respectively. The uncertainties are given in the footnotes to Table 2.13. Quantitative values are displayed in Table 2.13.
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BC-OC Comparisons ~2005 Forcing
Total, Controllable, and Post-1750
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Equivalent to 
471 ppm CO2

(on top of CO2 
background ~270 ppm)

May be a bit bigger if
less historical emissions
are determined.
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Controllable PIC Emissions Plus CO2

Radiation Forcing in 2005
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Warming in 2005 
from emissions
since 1750

More than half
due to methane

How much allocated
to each living person
from both GHGs
--- our natural debts?
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Figure 2.21. Components of RF for emissions of principal gases, aerosols and aerosol precursors and other changes. Values represent RF in 2005 due to emissions and changes since 1750. (S) and (T) next to gas species represent stratospheric and tropospheric changes, respectively. The uncertainties are given in the footnotes to Table 2.13. Quantitative values are displayed in Table 2.13.
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Brazil: 0.8%

Smith and Rogers, 
in preparation
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Patz JA, Gibbs HK, Foley JA, Rogers JV, Smith KR, 2007, Climate 
change and global health: Quantifying a growing ethical crisis, 
EcoHealth 4(4): 397–405, 2007. 

National Natural Debts: 
Cumulative CO2 emissions, depleted by natural processes
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Patz JA, Gibbs HK, Foley JA, Rogers JV, Smith KR, 2007, Climate 
change and global health: Quantifying a growing ethical crisis, 
EcoHealth 4(4): 397–405, 2007. 

Ratio of largest to smallest emitting
countries ~ 500x

This kind of calculation, however
is based only on CO2 emissions from
fossil fuels and cement:

National Natural Debts: 
Cumulative CO2 emissions, depleted by natural processes
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~47 kg/cap
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Fossil fuel 
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USA Anthropogenic Methane Emissions ~2005
25 million tons (8% of world)

USEPA
2006

~83 kg/cap
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Methane Emissions from India in 2005
26.1 Mt (9% of world)

http://www.epa.gov/nonco2/econ-inv/international.html

24 kg/cap

http://www.epa.gov/nonco2/econ-inv/international.html
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Solid fuel 
combustion, 
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Coal 
mining, 16%

Waste 
water, 13%

Chinese Methane Emissions in 2005
41 MT (13% of world)

31 kg/capita

USEPA, 2006
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Math of GHG Decay (AR4)
• CO2 goes into four compartments:

– 19% of total with a lifetime* of 1.2 years
– 34% at 18.5 y
– 26% at 173 y
– 21% with a lifetime of “many thousand 

years”
• Methane has a 12 y lifetime, 

– but contributes to ozone, a GHG
– and eventually oxidizes to CO2

*Lifetime refers to the time to reach 1/e (37%) of the original amount 
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Natural CO2 and CH4 Depletion - first 10 years
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Natural CO2 and CH4 Depeletion - 100 years
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Relative Warming from CO2 and CH4 emitted in 2009
(one ton of each)
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Hypothetical Choice of 
Interventions

1. Stop emitting CH4 today for rest of 
century

2. Stop emitting CO2 today for rest of 
century

• Which will produce the biggest drop in 
integrated radiative forcing over a 
century?
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Interventions for China and Australia 
Where CH4=CO2 in 2005
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Amount of Warming Reduction in 100 Years: 
Comparison of CH4 and CO2
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Historical Framework 
• Human societies have been contributing to 

incipient climate change for several millennia.
• Reversing what would have been a natural 

decline in CO2 and methane in this period
• Contributing substantial CO4 and CH4, but also 

BC-OC, VOC, and CO
• Excess GHGs are not just a feature of 

industrialization, but of human activates since at 
least the control of fire.

• However, the rate has risen dramatically after 
the industrial revolution, which also 
corresponded to great increases in population.
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Laws of Carbon-thermodynamics

I. Keep all fossil and forest carbon out of 
the atmosphere

II. If you cannot do so, the least-damaging 
form to release is carbon dioxide 
because all other forms are worse for 
climate and health.

III. Even renewable (non-fossil) carbon is 
damaging for climate and health if not 
released as carbon dioxide.
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Ranking of Carbon Emissions: 
The Pharmaceutical Index

• Carbon dioxide is noxious if fossil or forest 
derived, but benign if from renewable sources

• Products of incomplete combustion (PIC) such 
as carbon monoxide and hydrocarbons are like 
CO2 on caffeine – several times worse

• Methane from any source (fossil, biologic, or 
incomplete combustion) is like CO2 on steroids – 
dozens of times worse.

• Black carbon in particles from incomplete 
combustion is like CO2 on crack – hundreds of 
times worse.
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Conclusions
• For good policy, need consistent frames to compare 

CAPs from an emissions (not atmospheric chemistry) 
standpoint
– Controllable (may need to be revisited)
– Post-industrial (how to deal with non-FF emissions not well 

developed)
• The metrics used to compare CAPs – Kyoto gases and 

100-year time-horizons -- came out of the early 1990s 
when climate change seemed far off and less certain.

• Today, however, it seems to be neither, being 
demonstrateably upon us already

• More emphasis is thus needed to sustainably control 
shorter-lived CAPs because
– These can achieve large reductions sooner in RF and,
– Only their control can affect the rate of as well as the total 

warming
– They also exert substantial human health and ecosystem 

impacts (cobenefits)
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Conclusions, cont.
• Products of incomplete combustion -- BC, OC, CO, NMVOCs, 

however, are difficult to make policy for because
– They so short lived as to not be globally mixed – difficult to treat in same 

framework as longer lived CAPs, such as CO2 and N2O
– Their science is still quite uncertain, particularly for aerosols
– Essentially all control measures affect multiple species at once

• Methane, however, holds a unique niche 
– High RF and large emissions: 2nd largest total impact after CO2
– Relatively short-lived, but long-enough to be globally mixed – can be 

treated under existing framework
– Two-thirds of its emissions are amenable to control measures using 

existing technology and policy tools, much at low cost
– Interventions commonly target methane alone 

• Adding in shorter-lived CAPs shifts the political landscape – more 
responsibility to LDCs in the case of methane, but also
– Controls in LDCs wield greater leverage for making an impact – 

opportunities are greater and response to them faster than in rich ones
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Thank you

Publications and presentations available at

http://ehs.sph.berkeley.edu/krsmith/
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