Energy for Development Conference ETH, Sept 10-11, 2009

Combustion, Climate, Health, and the Environmental Risk Transition

> Kirk R. Smith Professor of Global Environmental Health University of California, Berkeley

Road Map

- A bit on transition frameworks and an intro to the environmental risk transition
- Why household fuel use causes ill health
- Global and Indian health impacts of household fuel use
- How household fuel use interacts with climate
- Potential for Co-benefits health and climate
- Total impact of combustion mismanagement globally

The Demographic Transition

The Classic Epidemiological Transition

Development

Development

Development

The Risk Overlap

- Risk Genesis: new types of risk created
- Risk Transfer: attempts to control one type can make other types worse
- Risk Synergism: risk of one type changes sensitivity to other risks

The Environmental Risk Transition

comes before

the Epidemiologic Transition

which comes before

the **Demographic Transition**

The Full Environmental Risk Transition

Comparative Quantification of Health Risks

GLOBAL AND REGIONAL BURDEN OF DISEASE Attributable to Selected Major Risk Factors

Volume 1

Edited by

MAJID EZZATI, ALAN D. LOPEZ, ANTHONY RODGERS AND CHRISTOPHER J.L. MURRAY

World Health Organization Geneva Published in late 2004, 2 vols, ~2500 pp

Available on World Health Organization website

Being completely revised Publication in 2010

http://www.who.int/publications/cra/en/

Global Burden of Disease from Top 10 Risk Factors plus selected other risk factors

Percent of All DALYs in 2000

Woodsmoke is natural – how can it hurt you?

Or, since wood is mainly just carbon, hydrogen, and oxygen, doesn't it just change to CO_2 and H_2O when it is combined with oxygen (burned)?

Reason: the combustion efficiency is far less than 100%

Energy flows in a well-operating traditional wood-fired Indian cooking stove

A Toxic Waste Factory!!

Typical biomass cookstoves convert 6-20% of the fuel carbon to toxic substances

PIC = products of incomplete combustion = CO, HC, C, etc.

Source: Smith, et al., 2000

Toxic Pollutants in Biomass Fuel Smoke from Simple (poor) Combustion

- Small particles, CO, NO₂
- Hydrocarbons
 - 25+ saturated hydrocarbons such as *n*-hexane
 - 40+ unsaturated hydrocarbons such as 1,3 butadiene
 - 28+ mono-aromatics such as benzene & styrene
 - 20+ polycyclic aromatics such as $benzo(\alpha)pyrene$
- Oxygenated organics
 - 20+ aldehydes including *formaldehyde* & *acrolein*
 - 25+ alcohols and acids such as *methanol*
 - 33+ phenols such as *catechol* & *cresol*
 - Many quinones such as *hydroquinone*
 - Semi-quinone-type and other radicals
- Source: Naeher et al, J Inhal Tox, 2007
- Chlorinated organics such as *methylene chloride* and *dioxin*

More than 75% of households

50-74% of households

2000 Census

First person in human history to have her exposure measured doing one of the oldest tasks in human history

~5200 µg/m3 during cooking

Kheda District, Gujarat, 1981

Location	Region	Number of households WHO Glo	Range (24 hour average of PM 10) Obal Air	Mean (ug/n (24 hr avera Kitchen & L Concentrati PM10)	n3) age of iving ons of	Other Determinants
Tamil Nadu	Southµ	4 Quality G for Indoo	Guideline r/Outdoor	223		Fuel/ Kitchen/Stove
Andhra Pradesh	South	³ particle L	evels	485		Fuel/ Kitchen
Karnataka	South	3 20 µg/m3	3	898		Fuel/ Stove
Madhya Pradesh	West/Central	7 Absolute populatio	ly no n even	690		Fuel/ Kitchen
Gujarat	West	6 even poc countries	orest should	780		Fuel/ Kitchen
Goa	West	1 be exposed more that	sure to n	635		Fuel/ Kitchen
West Bengal	East/North East	⁹ 70 μg/3		795		Fuel/ Kitchen
Haryana	North	1		850		Fuel/ Kitchen
Uttaranchal	North/Mountain	76	270-2240	620		Fuel/ Kitchen

Data compliled by SRU, Chenna

Cumulative CO₂ emissions from fossil fuels (as depleted by natural processes)

Patz JA, Gibbs HK, Foley JA, Rogers JV, Smith KR, 2007, <u>Climate</u> change and global health: Quantifying a growing ethical crisis, <u>EcoHealth</u> 4(4): 397–405, 2007.

Cartogram of Climate-related Mortality (per million pop) yr. 2000

Patz JA, Gibbs HK, Foley JA, Rogers JV, Smith KR, 2007, <u>Climate change</u> and global health: Quantifying a growing ethical crisis, <u>EcoHealth</u> 4(4): 397–405, 2007.

Distribution of Health Impacts from Climate Change (Ratio: Imposing/Experiencing)

The climate change problem is caused not only by too much complete combustion of fossil fuels (CO2), but also by too much incomplete combustion of all fuels (PIC)

IPCC, 2007

Where do these PIC come from?

From forest and savannah fires – not directly human caused in general

Where else?

Popu Total Per ca

Per capita energy consumption: 1.67 toe

World Energy Assessment, 2004

Controllable Global Warming from Black Carbon Emissions

Net of OC, Forcings from IPCC, 2007: 0.25 W/m² Inventory from T Bond Database, V 7.1.1 Feb 2009

Controllable Global Warming from Black Carbon Emissions

Net of OC, Forcings from IPCC, 2007: 0.25 W/m² Inventory from T Bond Database, V 7.1.1 Feb 2009

National Household Solid Fuel Use, 2000

20-month average ground-level PM2.5 from satellite data

45

IODIS

A Biomass Gasifier Stove

Tests show emissions nearly at levels of gas stoves: Low health risk and essentially no greenhouse emissions

Chinese Na	tional St	007					
	CO/CO2	NCE**	Eff %	CO g/kg	PM g/kg	Relative PM/ meal	Less PM/ meal
Traditional Coal*	0.12	89.3%	25	166	1.6	23%	4.3x
Traditional Biomass*	0.15	87.0%	18	92	5.0	100%	1

Biomass Stove Winners

<u>Linhong</u>	<u>0.011</u>	<u>98.9%</u>	<u>35.9</u>	<u>2.2</u>	<u>0.22</u>	<u>2.2%</u>	<u>45x</u>
Luoyang	0.019	98.1%	35.9	4.4	0.24	2.4%	42x
Zhenghong	0.019	98.1%	32.6	5.1	0.24	2.7%	37x
Daxu	0.020	98.1%	32.6	5.8	0.28	3.1%	32x

* Typical values

** Nominal combustion efficiency

Chinese National Stove Contest - 2007							
	CO/CO2	NCE**	Eff %	CO g/kg	PM g/kg	Relative PM/ meal	Less PM/ meal
Traditional Coal*	0.12	89.3%	25	166	1.6	23%	4.3x
Traditional Biomass* Biomass Sto	<u>Compared to traditional</u> <u>biomass stove</u>						1
Linhong Luoyang Zhenghong Daxu	32-45 times less mass of small particles per meal						45x 42x 37x 32x

** Nominal combustion efficiency

* Typical values

Health and Greenhouse Gas Benefits of Biomass Stove Options

Smith & Haigler, 2008

Paying for Rural Energy Development

PARACELSUS 1492-1541

Born in Einsiedeln near Zurich

Paracelsus: "father of health science" - ?

- Praised "reason and experiment" as the true sources of knowledge:
 - "The patients are your textbook, the sickbed is your study."
 - "Nothing so secret that it cannot be made apparent."
- Proposed the prime directive of public health:

- "Privilege and lineage pale to nothingness, only distress has meaning."

Paracelsus: "father of toxicology and environmental health"

• "Poison is in everything, and no thing is without poison. The dosage makes it either a poison or a remedy."

• Usually shortened to

"The Dose Makes the Poison"

Intake Fraction (IF)

• For air pollution, *IF* is the fraction breathed in by the exposed population compared to amount emitted.

IF = 1.0

It matters where the burning is done

Intake Fraction Varies as Much as Toxicity (these are rough calculations for typical examples of sources in each class)

Smith, 1993

Grams Inhaled per Tonne Emitted

Combustion Mismanagement: Bad to put PIC in the wrong places

- Sticking burning stuff in your mouth
- In your home
- In your workplace
- In your community
- On your planet

Combustion Risk Factor	Million Deaths	Percent of Global Deaths	Percent of Disease Burden
Tobacco	4.9	8.7%	4.1%
Indoor smoke from household solid fuel	1.6	2.9	2.6
ETS and Workplace	0.5	0.6	1.5
Urban outdoor air pollution	0.80	1.4	0.8
Climate change	0.15	0.3	0.4
Adjusted totals	~ 8	~ 14%	~ 10%

Publications and presentations available at http://ehs.sph.berkeley.edu/krsmith/

Thank you