Combustion Particles and Global Health: Cooking and Climate

Kirk R. Smith Professor of Global Environmental Health University of California Berkeley

Presentations at University of Southern California and Stanford University – Feb 2011

Households Using Solid Cooking Fuels

% of HH Exposed to HAP

For 2005, CRA-10 preliminary

Woodsmoke is natural – how can it hurt you?

Or, since wood is mainly just carbon, hydrogen, and oxygen, doesn't it just change to CO_2 and H_2O when it is combined with oxygen (burned)?

Reason: the combustion efficiency is far less than 100%

Energy flows in a well-operating traditional wood-fired Indian cooking stove

A Toxic Waste Factory!!

Typical biomass cookstoves convert 6-20% of the fuel carbon to toxic substances

PIC = products of incomplete combustion = CO, HC, C, etc.

Source: Smith, et al., 2000

Toxic Pollutants in Biomass Fuel Smoke from Simple (poor) Combustion

Organics known to be mutagens, immune system suppressants, severe irritants, inflammation agents, central nervous system depressants, cilia toxins, endocrine disrupters, or neurotoxins.

Several chemicals firmly established as human carcinogens.

Other toxic inorganic chemicals.

- 25+ alcohols and acids such as methanol
- 33+ phenols such as *catechol* & *cresol*
- Many quinones such as *hydroquinone*
- Semi-quinone-type and other radicals
- Chlorinated organics such as *methylene chloride* and *dioxin*

Health-Damaging Air Pollutants From Typical Woodfired Cookstove in India.

"Thank God! A panel of experts!"

Courtesy of Ross Anderson

ALRI/ Pneumonia

Diseases for which we had epidemiological studies available around 2001 Chronic obstructive lung disease

 Lung cancer from coal only

Three outcomes qualified with sufficient evidence to be included in the WHO CRA of 2004

Global Burden of Disease from Top 10 Risk Factors plus selected other risk factors

Percent of All DALYs in 2000

ALRI/ Pneumonia (meningitis)

Low birth weight

Stillbirth Cognitive Impairment

Birth defects? Asthma?

Burns, health and safety impacts of fuel gathering?

Diseases for which we have

epidemiological studies - 2010

Chronic obstructive lung disease

Interstitial lung disease Cancer (lung, NP, cervical, aero-digestive)

Blindness (cataracts, opacity)

Tuberculosis

Heart disease? Blood pressure ST-segment

	_		-				14					5 6		-			101		_
A E	B C	D E F	G	н		J	K	s L	M	N	0	PG	R S	S 1	U	V	VV	X	
Population ((thousan	ids/	6224384.81	317077.27	622741.70	817442.87	66,3966,39	42505129	168160.20	30443.11	28149.24	3131052.05	301091.79	589229.34	782026.21	646513.30	425848.34	181906.42	100
BD 200	02: 0	DALYs by age, sex and ca	use for the	year 200	2														
VORID	5			1															
TONLD			-					10-1-					-				France de	-	<u> </u>
			7-1-1			45.00	22.44	IVIATE	00.00			7.4.4			48.00	22.44	remaie	ca ca	
00e	Cau	se	10(2)	U-4	5-74	75-29	30-44	45-59	60-69	70-79	80+	10(3)	0-4	5-74	75-29	30-44	45-59	60-69	1
000	All (Causes	1490125643	222552079	56142418	141637847	130501742	115374678	60641455	36229210	9832834	772912264	211279454	54559890	141633214	108257333	90621463	53460940	
001 I.	. Com	umunicable, maternal, perinatal																	
	and	nutritional conditions	610319230	******	20979612	29721669	36148775	16631072	5676094	2913759	849889	******	******	25248712	59740290	35979204	114.9.9502	4476964	
002	Lencu		350333574	07077510	12010107	0EE40004	00070707	14005710	0710010	1510353	245520	170007105	00740440	10504004	A1E 40407	22070502	0010070	2050112	<u>+</u>
002	A. 1	Infectious and parasitic diseases	330332371	87977910	702421	20016201	33372707	14085712	3710016	1019292	310039	21005200	83743113 72074E	13334884	31343467	23070592	3011020	2638113	
003			34733300	033201	202431	1000000	60000	4000103	1032003	21041	JU012 7415	21303200	1730045	021733	4160000	3022011	2041333	033203	
004		2. STDS excluding HIV	4200029	1029452	20243	1000020	205540	254590	00102	20294	C007	1970275	1265722	37221	F21750	262407	107005	1012	÷
005		a. Syphilis h. Chlowerdia	2571404	1199	7209	241592	50929	1169	126	30334	0307	202224	1152	60220	2625460	429449	109659	14094	-
000		o. Chamyula	2265159	462945	16559	C07964	201215	ECCA	719	91	°.	1472160	447709	24222	909222	422675	6262	1616	
007		d Other STDa														22947	37012	13420	1
nna						Dur		of L	line	000		otoh	000			13746555	2624463	230670	t
005	7	1 Diarrhogal diseases		GIO	Jal	DUI	Jen		ЛSE	ast	ナレ	alaD	ase			545936	373258	201900	÷
011	7.	Childhood cluster disc														53966	19174	4837	
012		Pertuccic								Γ.Λ.			1			00000	13		Ť
013		h Poliomzelitis						ive	RIS	KA:	sse	SSI	ent			16931	3822	615	1
014		c Dinktherie														200	572	29	i
015		d Mooaloa														20	20	20	ŝ
016		d. Ivieasies														23	14707	4100	j
010																30620	140345	4132	100
J17	C	b. Meningins														167759	110215	48779	
210		7. Hepannis B														115391	110437	36630	
J19 J19		Hepatitis C														53705	61307	30322	
J2U	2	5. Malaria			_	_										453207	280704	99111	
J21	1	. Tropical-cluster disea			Re	ina	con	onle	toh	/ 11n	dat					593336	496341	75537	
J22		a. Trypanosomiasis				шу	COL	DID	ICI	v up	ual	leu				79329	46509	3694	į
023		b. Chagas disease				U			y							51644	48058	15987	1
124		c. Schistosomiasis					or 2	011	rol	000	0					128589	58850	17056	
025		d. Leishmaniasis					JI Z		Tel	eas	e					67203	30097	11647	
026		e. lymphatic filariasis														206680	266630	15772	
)27		f. Onchocerciasis														59892	46198	11380	1
)28	1	10. Leprosy														15828	9135	4389	
029	1	11. Dengue														10408	6396	2644	
030		12. Japanese encephalitis									11					26926	7282	2513	
031	1	13. Trachoma			FOI	no	use			$\mathbf{D}\mathbf{O}$	IIUT	lon:				517423	559520	344796	
)32	1	14. Intestinal nematode ir									IIMC	<u>.</u>				5192	5921	3469	
)33		a. Ascariasis									4		1.1			161	21	111	i
)34		b. Trichuriasis		New	exi	nnsi	Ire	assi	220	me	nt n	node	na			388	433	238	į
35		c. Hookworm disease						400				nouc	Jing			4212	4859	2723	į
)36		Other intestinal infection														432	607	397	i
037		Other infectious disease			me	Deti	mai	20	12 C		nn i	mote	a-an	alve	COC	1795391	1650048	667703	į
)38	B. 1	Respiratory infections				000	ma		Jus	<u>u</u>				aryc		1481589	1357246	1460806	
)39	1	1. Lower respiratory infect														1434738	1329549	1425397	•
)40	r.	2. Upper respiratory infec				\mathbf{P}		רוכ			` an	cor				45228	26339	34405	į
)41		3. Otitis media				INI, Y		$\boldsymbol{\nu},$	LUI	IY C	Jan					1622	1358	1004	
)42	С. 1	Maternal conditions														9947305	403615	19	
143		Maternal haemorrhage			NA/ h	irth	MO	aht	on		` otc	root	0			1944088	133887		i
44	*	2 Maternal sensis				ווו וו	VVE	Igni	, all	IU C	alc	llau	.			1625431	72999		ì
145	Ŕ	3 Humertensive disorders						J	·							722909	40216		i
146	7	1 Obstructed lebour	Eat	mot	ab	1 int	oro	alat	00	for	oor	diav		lor		794568	12162	Ň	i
147		5 Abortion	ESU	IIal	e b	v II II	erb	Jal	UI	101	Cal	ulov	asci	JIal		705860	1596	ů. N	í
142		Other maternal condition			-											4154451	142755	19	i
10	п 1	Parinatal conditions*	97225096	52209265	124.2	1021	247	00	12	0	n	E2212095	44121066	1195	400	160	34	20	l
50	. ,	I CIMARAI COMMINIS	4600400	25001000	10 7 0 E9	1001)†te 20	03	12 0	3 0	U A	25062062	2127244	1133	7 30 ^	1 90 0	97 0	23	i
150		Disthermore and high to	45334234	20061333	9Z 700	13	20	U ^^	3	0	U ^	192542032	21272111	31	U 107	U ^	U 	U ^	
101		2. Birin asphyxia and birin trauma	34445/58	19353003	790	302	73	33	3	U	U	19354204	15090851	5/3	107	U 	15	U 	
JJ2 152		Other permatal conditions	16555094	8794262	502	/16	253	56	0	9	0	8795799	//58104	591	392	158	19	29	
201	e I	vummonal deficiencies	34416632	10258276	1921013	1/93247	1025783	698252	230984	132831	39983	16100369	10385030	2582483	2149411	1479558	1121930	357998	
JD4		 Protein-energy malnutrition 	16910328	7556012	560106	156056	69278	103279	71114	45451	18671	8579966	7350453	620870	66437	68728	81418	70683	
ccu		2. Iodine deficiency	3519322	1283895	471857	528	748	1215	641	236	50	1759171	1305105	450178	1681	1046	1287	439	,
J56		Vitamin A deficiency	792562	257306	84825	3330	6358	7864	3519	983	100	364284	320394	84034	10506	3807	6687	Full Scree	

Estimated PM2.5 indoors for <u>all</u> households

Estimated PM2.5 for <u>only</u> solid-fuel-using households

				Study	Odds Ratio (random)	Weight	Odds Ratio (random)
Ctudy	NI*			or sub-category	95% CI	70	95% CI
Sludy	IN		90% 01	01 Intervention Studies			
design				Smith(2007)a		5.53	1.18 [0.88, 1.58]
uesign				Smith(2007)b		5.73	1.35 [1.05, 1.73]
				Subtotal (95% CI)	••••••••••••••••••••••••••••••••••••••	11.26	1.28 [1.06, 1.54]
Intervention	2	1.28	1.06. 1.54	Test for heterogeneity: Chi ² = 0.48, df	= 1 (P = 0.49), ² = 0%		
				Test for overall effect: Z = 2.54 (P = 0			
				02 Cohort Studies			
	-	0.40		Armstrong(1991)a		2.80	0.50 [0.20, 1.22]
Conort	1	2.12	1.06, 4.25	Armstrong(1991)b		3.65	1.90 [0.96, 3.75]
				Cambell(1989)		3.25	2.80 [1.29, 6.08]
				Ezzati(2001)		3.86	2.33 [1.23, 4.40]
				Jin(1993)		5.69	0.80 [0.62, 1.03]
				Pandey(1989)a		4.34	2.45 [1.43, 4.19]
				Pandey(1989)b	100 million 100	1.52	40.65 [9.79, 168.75]
				Subtotel (95% C) Test for beteregenetis Chill - 54.07	H - 6 (D - 0 00001) 12 - 99 09	25.11	2.12 [1.05, 4.25]
				Test for overall effect: 7 = 2.11 (P = 0	1 = 0 (P < 0.00001), P = 00.9%		
				Test for overall effect. 2 = 2.11 (F = 0			
^				03 Case-Control Studies			
Case-	15	1.97	1.47, 2.64	Azizi(1995)		3.97	1.20 [0.65, 2.21]
			· ·	Broor(2001)		4.49	2.51 [1.51, 4.17]
control				Collings(1990)		4.85	2.16 [1.40, 3.33]
				De Francisco(1993)		→ 2.15	5.23 [1.72, 15.91]
				Fonsecca(1996)		4.68	1.14 [0.71, 1.82]
				Johnson(1992)a		3.15	0.80 [0.36, 1.78]
				Kossove(1982)		→ 1.96	4.77 [1.44, 15.74]
				Mahalanahas(2002)		2.45	3.07 [1.42, 10.57]
				Morris(1990)		- 2.41	4.85 [1.75 13.40]
				O'Dempsey(1996)		2.59	2.55 [0.98, 6.64]
				Robin(1996)a		2.95	1.40 [0.60, 3.28]
				Victora(1994)a		4.08	1.10 [0.61, 1.98]
				Wayse(2004)		2.90	1.39 [0.58, 3.30]
				Wesley(1996)		1.87	1.35 [0.39, 4.63]
				Subtotal (95% CI)		48.15	1.97 [1.47, 2.64]
				Test for heterogeneity: Chr = 32.72, o	11 = 14 (P = 0.003), P = 57.2%		
0	0	4 40		Test for overall effect. Z = 4.55 (P < 0			
Cross-	3	1.49	1.21, 1.85	04 Cross-sectional Studies			
agetional				Mishra(2003)		3.83	2.20 [1.16, 4.18]
sectional				Mishra(2005)		5.87	1.58 [1.28, 1.95]
				Wichmann(2006)		5.79	1.29 [1.02, 1.63]
				Subtotal (95% CI)	•	15.48	1.49 [1.21, 1.85]
				Test for heterogeneity: Chi ² = 3.19, df	= 2 (P = 0.20), ² = 37.3%		
				Test for overall effect: Z = 3.74 (P = 0	1.0002)		
	26	1 78	45 2 18	Tetel (OSS) ON		100 00	1 80 11 15 1 10 10
				Test for beterogeneity: Chil - 101 74	4t = 26 (B < 0 (0001) 12 = 74 49	100.00	1.78 [1.45, 2.18]
				Test for overall effect: $7 = 5.61 (P \times 0)$	000001) = 74.4%		
Dhorani ot a	Rul		(2008)				
Dherani et a	Dui			0.1 0	0.2 0.5 1 2 5	10	
					Increased risk Decreased risk		

Preliminary CRA Effect Estimates

Health Outcome	Sex	Age	Level of Outcome	Risk Estimate
ALRI	M&F	< 60 mo	la	1.78 (1.45 to 2.18)
ALRI:	M&F	< 60 mo	lb	2.3 (95% Cl ?)
exposure/response				
COPD	F	>15 yr	la	2.7 (1.95 to 3.75)
COPD	М	>15 yo	la	1.9 (1.15 to 3.13)
Lung Cancer (coal)	F	> 15 yr	la	1.98 (1.16 to 3.36)
Lung Cancer (coal)	М	> 15 yr	la*	1.38
Cataract	F	> 30 yr	la	2.45 (1.61 to 3.73)
Cataract	М	> 30 yr	la	?
LBW (OR)	M&F	Perinatal	la	1.52 (1.25 to 1.80)
LBW (mean weight)	M&F	Perinatal	la	93.1g (64.6, 121.6)
Lung Cancer (biomass)	F	> 15 yr	la	1.81 (1.07 to 3.06)
Lung Cancer (biomass)	М	> 15 yr	la	1.26 (1.04 to 1.52)
CVD	F	> 30 yr	lb	1.3 to 1.4 (95% CI)
CVD	Μ	> 30 yr	lb*	1.16

Story of Two Conferences

- Air pollution conference
 - High exposures to large vulnerable population
 - No more health effects work needed
- International health conference
 - Still doubt about causality
 - Need to know exact benefit to be expected
- Where are your randomized controlled trials?

History of an RCT

- ~1980: Early studies of health effects in Nepal and elsewhere
- 1981: First measurements of pollution levels in India
- 1984: International meeting to decide on needed research
 <u>Chose randomized control trial (RCT) of ALRI</u>
- 1986-89: Unfunded proposals to do RCT in Nepal
- 1990: WHO establishes committee to find best sites
- 1990-1992: Criteria established and site visits made
- 1992: Highland Guatemala chosen
- 1991-1999: Pilot studies to establish data needed for proposal
- 1996-1999: Unfunded proposals
- 2001: NIEHS funding secured
- 2002-2005: Fieldwork completed
- 2011: Main results published
- 25+ years from deciding to conduct RCT to results!

RESPIRE: (Randomized Exposure Study of Pollution Indoors and Respiratory Effects)

Traditional 3-stone open fire

Chimney woodstove

Overview of RESPIRE study design

Randomisation: balance of groups at baseline

Variable	Control	Intervention
Socio-demographic factors		
Mother's Age (years)	27.0	26.4
Pregnant at recruitment (%)	48.3	51.3
Own home (%)	92.8	94.1
Migrates part of year (%)	17.7	17.1
House structure		
Separate enclosed cooking area (%)	76.2	74.3
Completely open eaves (%)	42.7	40.6
Walls – adobe (mud) (%)	88.7	90.7
Roof – metal (%)	77.4	74.3
Floor – earth (%)	92.5	88.8
Leaks in roof (water) (%)	24.5	33.3
Electricity (%)	70.8	69.3
Other sources of smoke		
Other fire near house (%)	14.6	14.4
Smoking (tobacco) indoors (%)	26.8	20.4
Use traditional sauna bath (%)	84.5	87.8
Geographic		
Mean altitude (metres)	2613	2601

Overview of child health outcomes assessment

* Respiratory syncitial virus

Overview of weekly visits

		Plancha	Control	
Number of childre	en	265	253	
Weekly visits	Total possible in follow up period	16,446	15,664	
	Completed	14,756	14,369	
% of possible wee	ekly visits completed	89.7%	91.7%*	
Mean (SD, range)	visits per child	55.7 (17.8; 1 to 80)	56.8 (17.3; 2 to 81)	
Number (%) child	lren - no missed visit	17 (6.4%)	19 (7.5%)	
Withdrawals		19 (7.2%)	14 (5.5%)	

* P < 0.001

Unpublished results from RESPIRE have been removed

Watch the website below where they will be posted as soon as they are published.

http://ehs.sph.berkeley.edu/krsmith/

Chimney stove did not protect all children

Guatemala RCT: Kitchen Concentrations

2010

Infant Exposures

Effect of Plancha on PM2.5 Log Scale 1000 Open fire ~90% Reduction, sig. 100 Plancha 48-h ug/m3 10 1 Kitchen

Reasons that child personal exposures did not lower as much as kitchen levels:

- --Time-activity: the kids do not spend their entire day in the kitchen
- --Household (or "neighborhood") pollution: a chimney does not reduce smoke, but just shifts it outside into the household environment, where the difference between intervention and control households was less
 --Other burning around house not different

Child Cognitive Function: First Pilot Study

[results removed until publication – watch website]

Increasing Number of Studies on Disease Signs: Objective Measures

- Lung function, cross-sectional
- Blood pressure, EHP, 2007
- ST-segment, EHP, forthcoming
- Opacity, submitted

Dioxin Daily Dose Estimates

[Unpublished results of measurements in households in Guatemala removed.

Watch website for publication]

Poisonous Coal Use and Household Exposures

Arsenic and Fluorine Exposures in China from Household Coal Use

- More than 95% of the fluorine dose came from food consumption, with the rest mainly from direct inhalation of airborne fluoride -- Ando et al., *EHP* (1998)
- The estimated sources of total arsenic exposure are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct skin contact (<1%)
 -- Liu et al., EHP (2002)
- Dioxin might be expected to have a similar pattern.

Kitchen PM_{2.5} in household using open cookfire <u>How many hours should we measure to obtain</u> <u>good estimate of mean?</u>

Inter-instrument Comparison: 30 UCB-PATS UCB Particle and Temperature Monitoring System (custom PM monitor using smoke alarm technology)

> Lopez Kitchen La Cienaga Plancha with chimney

5 PM Sept 24 to 10 AM Sept 25, 2004.

Long-term Household Measurements

hhid=hh04041020

How Close to the True Mean With One Measurement?

Attenuation Bias in Measurement Error

Highland Guatemala Friday, Feb 20, 2004 ~6:15 AM

Sources of Primary PM_{2.5}: India and China

IIASA, 2010

NASA INTEX_B Database Percent PM_{2.5} emissions from households

Global warming in 2005 due to all human emissions since 1750

 CO_2 is important for climate, Several of the non- CO_2 , but so are many other greenhouse gases create pollutants, including the ones a good proportion of both circled that, unlike CO_2 , also their climate forcing and have significant health as health damage through well as climate impacts the secondary pollutant,

twpospheriplozenand organic carbon particles however, have cooling impacts on climate but are still health damaging

IPCC, 2007

Household Fuels and Climate

- Climate impacts come from non-renewable biomass and coal, i.e., from net CO₂ emissions
- Poor combustion also leads to other emissions such as the relatively well-understood GHGs – methane and nitrous oxide – which are "Kyoto" GHGs
- In addition, a wide range of less well-understood shortlived GH-related emissions are emitted including
 - CO and black carbon warming agents
 - Ozone precursors warming But also cooling agents such as sulfates and organic carbon particles
- There are also indirect climate impacts of these pollutants including
 - Reducing carbon capture of forests by ozone damage
 - Darkening of snow/ice by black carbon

Greenhouse warming commitment per meal for typical biomass-fired cookstove in China

Zhang, et al., 2000

India in 2005

Venkataraman et al. 2010

Controllable Global Warming from Black Carbon Emissions

Net of OC, Forcings from IPCC, 2007: 0.25 W/m² Inventory from T Bond Database, V 7.1.1 Feb 2009

Climate Warming in 2020 Under Present Trends

Perfect Storm for Health Impacts

- Highly polluting activity
- Half of world households
- Several times a day
- Just when people are present
- Most vulnerable (women and young children) most likely to be there

In other words, the Intake Fraction is extremely large

IF is the fraction of material emitted that is actually breathed in by someone

IF = 1.0

Intake Fractions : these are rough calculations for typical examples of sources in each class

Smith, 1993

Grams Inhaled per Ton Emitted

Heart Disease and Combustion Particle Doses

Adjusted Relative Risk

Argument from consistency across combustion particle exposure settings

- Assumes fine combustion particles are best measure of risk in each setting and have similar effects per unit mass across the four source types
 - Three are mainly biomass
 - OAP contains significant biomass particles
 - Probably difference by outcome, however e.g., LBW and lung cancer may be related to other components as well
- Remarkable consistency across 3 orders of magnitude of dose measured in mg/day of PM_{2.5}
- Where HAP has no direct epi data, seems reasonable to interpolate for outcomes where there are well established effects at both lower and higher doses.

Dose PM2.5 - mg/day

Dose PM2.5 - mg/day

Relative Risk

Wood is the fuel that

- Heats you twice as Thoreau said?
 - Once when you chop it and
 - Once when you burn it
- Or four times?
 - The fever from respiratory infection and
 - Global warming
- Better combustion will get rid of the second pair

Many thanks

Publications and presentations available at my website: <u>http://ehs.sph.berkeley.edu/krsmith/</u> Or just Google "Kirk R. Smith"