The Danger of Incomplete Combustion for Environment, Health, and Climate

The Impacts of Humanity's Oldest Occupation

Kirk R. Smith, MPH, PhD 施君, 公共卫生学硕士, 博士 Professor of Global Environmental Health University of California, Berkeley

美国国家科学院 院士 (1997)

300-400 thousand years ago, the hearth became a regular feature in human habitation

"On the earliest evidence for habitual use of fire" Roebroeks and Villa, PNAS, 2011

Households using biomass or coal to cook today

% of HH Exposed to HAP

Comparative Risk Assessment (CRA) 2011- preliminary,

Biomass Cooking in History

- Only quite recently in human history did more than half of households use non-solid fuels for cooking perhaps around 1980.
- Today, ~43% use solid fuels, about 3 billion people
- Although the percentage is dropping, the absolute number is still rising.
- Perhaps 20 million people a year are added to the total each year.
- Indeed, there are more people using solid fuels today for cooking than the total world population in 1950
- Or any year previously

A problem that has lasted one-third of a million years and is showing no sign of quickly going away by itself.

Rural Energy in China: 2004

Total

Households

Ministry of Agriculture

National Bureau of Statistics

Household Energy in China

- ~60% of China's population is rural.
- >70% of energy use in rural areas is simple solid biomass (wood, agricultural wastes)
- >15% as coal
- Thus, it is still true to say that in China most people rely on biomass fuels for most of their energy
- Substitution of biomass by coal is increasing probably worse for health and climate

complex:

Road Map

- Why is there so much pollution?
- What are the major constituents of the smoke?
- What adverse health effects have been measured?
- What is the climate connection?
- What interventions have been evaluated in China?

Woodsmoke is natural – how can it hurt you?

Or, since wood is mainly just carbon, hydrogen, and oxygen, doesn't it just change to CO_2 and H_2O when it is combined with oxygen (burned)?

Reason: the combustion efficiency is far less than 100%

Energy flows in a well-operating traditional wood-fired Chinese cooking stove

A Toxic Waste Factory!!

Typical biomass cookstoves convert 6-20% of the fuel carbon to toxic substances

PIC = products of incomplete combustion = CO, HC, C, etc.

Source: Zhang, et al., 2000

Toxic Pollutants in Biomass Fuel Smoke from Simple (poor) Combustion

- Small particles, CO, NO₂
- Hydrocarbons
 - 25+ saturated hydrocarbons such as *n*-hexane
 - 40+ unsaturated hydrocarbons such as 1,3 butadiene
 - 28+ mono-aromatics such as *benzene & styrene*
 - 20+ polycyclic aromatics such as *benzo*(α)*pyrene*
- Oxygenated organics
 - 20+ aldehydes including *formaldehyde & acrolein*
 - 25+ alcohols and acids such as *methanol*
 - 33+ phenols such as *catechol* & *cresol*
 - Many quinones such as *hydroquinone*
 - Semi-quinone-type and other radicals
- Source: Naeher et al, *J Inhal Tox*, 2007
- Chlorinated organics such as *methylene chloride* and *dioxin*

Health-Damaging Air Pollutants From Typical Woodfired Cookstove in China.

How much Ill-health?

ALRI/ Pneumonia

Diseases for which we have epidemiological studies

COPD Lung cancer (coal)

These three diseases were included in the 2004 Comparative Risk Assessment Managed and published by the World Health Organization

First ever comprehensive risk assessment with consistent rules of evidence and common databases

Major Causes of Death in China

Global Burden of Disease from Top 10 Risk Factors plus selected other risk factors

Chinese Burden of Disease from Top 10 Risk Factors

Plus Selected Other Risk Factors

Eile Edit	<u>View Insert Format Tools D</u> ata	<u>W</u> indow <u>H</u>	elp Ado <u>b</u> e	e PDF													-	đΧ
A B	ICDE F	G	Н	l I	J	K	L	M	N	0	P G	F S	T	U	V	W	Х	
1 Population (6224384.81	317077.27	622741.70	817442.87	66.3968.38	42707129	166160.20	30443.11	28143.24	3131052.05	301091.79	589229.34	782702621	646519.90	427846.34	181906.42	110
2 GBD 200	D2: DALYs by age, sex and cause	se for the y	year 2002	2														
3 WORLD														-				
4					-		Male	200		1000						Female		
5 Code	Cause	Total	0-4	5-14	15-29	30-44	45-59	60-69	70-79	80+	Totai	0-4	5-14	15-29	30-44	45-59	60-69	
6 U000	All Causes	1490125643	222552079	56142418	141637847	130501742	115374678	60641455	36229210	9832834	772912264	211279454	54559890	141633214	108257333	90621463	53460940	40'
U001 I.		610319230		20979812	29721889	36148775	16651072	5676094	2915759	849889	******		23248712	59740290	35979204	114.99502	4476964	25
7	and nutritional conditions																	
8 U002 9 U003	A. Infectious and parasitic diseases 1. Tuberculosis	350332571 34735908	87977510 839261	12810197 782431	25516201 5497848	33372707 7335503	14085712 4868489	3710016 1832663	1519252 658401	315539 90612	179307135 21905208	89749119 738745	13534884 821735	31549467 4163278	23070592 3822011	8616676 2041939	2658113 833205	14
10 U004	2. STDs excluding HIV	11347067	1521528	26245	1080828	660600	423721	1032003	31641	7415		1726606	97221	4158088	1147558	260537	71612	
11 U005	a. Syphilis	4200039	1039452	2292	151945	285546	354596	99162	30394	6987	1970375	1265722	3432	521758		107605	42492	
12 U006	b. Chlamydia	3571404	1199	7209	241593	50929	1169	136	0	0	302234	1152	69338	2635460	439449	109658	14084	
13 U007 14 U008	c. Gonorrhoea d. Other STDs	2265159	462945	16668	CONCA	201215	CCC4	710	Q1	2	14 70160	447700	04000	000000	422675 22947	6262 37012	1616 13420	
15 U009	3. HIV/AIDS		Clak		Durc	lon	of F	liec			atab	200			13746555	2624463	230670	
16 U010	4. Diarrhoeal diseases	· · · · · ·	GIUL	Jali	Juic			JISE	a30		alau	ase			545936	373258	201900	1
17 U011	5. Childhood-cluster dise					4									53966	19174	4837	
18 U012 19 U013	a. Pertussis		and	Co	mna	arat	ive_	RIS	κA	sse	ssm	ent_			0	13	0	
20 U014	b. Poliomyelitis c. Diphtheria											ont			16931 386	3822 572	615 29	
21 U015	d. Measles				orld		lth-	Ore		Zot	ion-				29	30	23	
22 U016	e. Tetanus				Ла	Пee			all	Zal	ION				36620	14737	4192	
23 U017	6. Meningitis*							C							167759	110215	48775	
24 U018	7. Hepatitis B														115391	110437	36630	
25 U019 26 U020	Hepatitis C 8. Malaria														53705	61307 280704	30322	
27 U021	9. Tropical-cluster disea				•			1 - 1-							453207 593336	496341	99111 75537	
28 U022	a. Trypanosomiasis			Ве	ing	con	nble	ten	/ UD	oai	led				79329	46509	3694	
29 U023	b. Chagas disease														51644	48058	15987	
30 U024	c. Schistosomiasis					or O	011	rol	000						128589	58850	17056	
31 U025 32 U026	d. Leishmaniasis					ע וכ		IEI	eas	e					67203	30097	11647	
33 U026	e. lymphatic filariasis f. Onchocerciasis														206680 59892	266630 46198	15772 11380	
34 U028	10. Leprosy														15828	9135	4389	
35 U029	11. Dengue														10408	6396	2644	
36 U030	12. Japanese encephalitis				ha					11 4					26926	7282	2513	
37 U031	13. Trachoma			FOI	hoi	usei		l all	$\mathcal{D}\mathcal{O}$	ΠUL	ION.				517423	559520	344796	1
38 U032 39 U033	14. Intestinal nematode in a. Ascariasis														5192 161	5921 21	3469 111	
40 U034	b. Trichuriasis			ΔΥΙ	nnei	Iro ·	200	200	ma	nt r	node	aling			388	433	238	
41 U035	c. Hookworm disease				1030		233	-33			noue	Jing			4212	4859	2723	
42 U036	Other intestinal infection		. 1		1						1				432	607	397	
43 U037	Other infectious disease	W OL	JICO	me	esti	mai	es l	oas	ea	on	meia	a-an	aivs	ses	1795391	1650048	667703	
44 U038 45 U039	B. Respiratory infections 1. Lower respiratory infect														1481589 1434738	1357246 1329549	1460806 1425397	13
46 U040	2. Upper respiratory infec			Λ	RI, (חכ		na C	20	cor				1434738 45228	26339	1425397 34405	
47 U041	3. Otitis media			AL	$\overline{\mathbf{N}}, \underline{\mathbf{V}}$		$-\mathcal{D},$	LUI	I <u>y</u> (Jan					1622	1358	1004	
48 U042	C. Maternal conditions														9947305	403615	19	
49 U043	1. Maternal haemorrhage		7 bir	th w	<u>/eia</u>	ht c	cata	rac	ts (car	diova	ASCL	Ilar_		1944088	133887	0	
50 U044 51 U045	2. Matemal sepsis					, (rao							1625431	72999	0	
51 0045 52 U046	3. Hypertensive disorders 4. Obstructed labour	3048291	ů O	n	0	n	n	n	n	ñ	0	0	0.0	2241561	722909 794568	40216 12162	U	
53 U047	5. Abortion	4652171	0		0	0	0	0	0	0	0	0		3721304	705860	1596	0 0	
54 U048	Other maternal conditions	12427759	0	0	0	0	0	0	0	0	0	0		8128555		142755	19	
55 U049	D. Perinatal conditions*	٥	53209265	1343	1031	347	89	12	9	0		44121066	1195	498	158	34	29	
56 U050	1. Low birth weight	46334234	25061999	52	13	20	0	9	0	0	25062092	21272111		0	0	0	0	
57 U051 58 U052	 Birth asphyxia and birth trauma Other perinatal conditions 	34445758	19353003 9794262	790 502	302 716	73 253	33 56	3 0	0	0	19354204 8795799	15090851		107 392		15 19	0 29	
58 0052 59 0053	E Nutritional deficiencies	16555094 34416632	8794262 10258276	502 1921013	1793247	203 1025783	56 698252	230984	9 132831	39983		7758104 10385030		392 2149411		19 1121930	29 357998	
60 U054	1. Protein-energy malnutrition	16910328	7556012	560106	156056	69278	103279	71114	45451	18671	8579966	7350453		66437		81418	70683	
61 U055	2. Iodine deficiency	3519322	1283895	471857	528	748	1215	641	236	50		1305105		1681		1287	439	
62 U056	3. Vitamin A deficiency	792562	257306	84825	3330	6358	7864	3519	983	100	364284	320394	84034	10506	3807	6687	ull Scree	• x
🏉 Start 🛛 🧞 B	Eudora - [In] 🛛 🛛 📝 5 Microsoft Offic	:e 🖣 🐻 1	2 Microsoft	Office +	S Mici	osoft Offic	e • 🕑	Windows M	edia Player	🗌 🥔 W	HO Statistical	Infor	ype to searcl	h 🔽 🕇	⊐ ≪ 🗹 🛃			
					,											~ ~ ~		

ALRI/ Pneumonia

Low birth weight

Stillbirth

Diseases for which we have epidemiological studies - 2011 COPD

Lung cancer (coal)

Lung cancer (biomass)

Blindness (cataracts, opacity)

Heart disease Blood pressure ST-segment

These additional diseases will be included in the 2011 Comparative Risk Assessment

In addition, using evidence from other exposure sources, CVD will be included

Pollution and health effects of indoor fuel smoke exposure in China*

- Lung cancer
- Respiratory illnesses
- Lung function impairment
- Immune system weakening
- CO poisoning
- Endemic arsenism and fluorosis

*120+ publications from studies conducted in China

Household Coal Use and Lung Cancer

Overall							2.10 (1.61-2.89
Lan <i>et al.</i> Subtotal	1985-90	498	498		-	>	7.40 (4.10–13.1 2.27 (1.6 –3.12
Galeone <i>et al.</i> ²⁸ Lan <i>et al.</i> ³⁰	1987-90	218	436		1	1.0	2.10 (1.08-4.46
liang et al. ²⁶	2001-02	152	152		1.1		2.02 (1.20-3.39
u et al.27	1998-2001		and the second		1	1-22-1	3.44 (1.38-8.57
Sun et al.29	1996-99	libili	<u>r mos</u> e	using (eleaner f	ueis	2.22 (1.28-3.86
Kleinerman et al.25	1994-98	that	thage		looporf		1.29 (1.03-1.61
Lee et al.24	1993-99	nav				5 cancer	2.10 (1.20-3.70
Lan et al.21	1995-96	hav	<u>e 2 27</u>	times n	nore lung	g cancer	2.40 (1.30-4.40
Wu et al.20	1997						1.58 (0.89-2.80
Huang et al. ¹⁹	1993-96	(Chi	nese h	ouseho	ds using	coa	1.76 (1.27-2.42
Hao et al.18	1981-86	<u></u>		1	1 •		1.99 (1.16-3.43
Ko et al. ¹⁷	1992-93	117	117	0			1.30 (0.30-5.80
uo et al.23	1990-91	102	306			-	6.00 (5.07-7.10
in et al. ¹⁶	1985-90	122	122				3.24 (1.05-9.94
Dai et al. ¹⁵	1992-93	120	120				4.70 (1.28-17.1
<i>i et al.</i> ¹⁴	1986-92	161	161		-		2.08 (0.85-5.08
Ger et al.22	1990-91	131	524	20			1.44 (0.44-4.69
Huang et al. ¹³	1990-91	135	135				1.59 (1.01-2.07
Sun et al.12	1985-87	418	398		-		2.26 (1.53-3.33
Wu-Williams et al. ¹¹	1985-87	965	959				1.30 (1.00-1.70
Mainland China and	Taiwan						
Subtotal					-		3.02 (1.42-6.46
Sapkota et al.6	2001-04	793	718				3.76 (1.64-8.63
ndia Gupta <i>et al.</i> ¹⁰	1995-97	265	525		*	-	1.52 (0.33-6.98
							2.00 (1.00-0.00
Subtotal	1901-02	220	220				2.30 (1.00-5.50
North America Nu <i>et al.</i> 9	1981-82	220	220				2.30 (1.00-5.50

Health Benefits of Fuel/stove Intervention

Best published studies in the world were done by examining introduction of improved coal stoves in China

Improved Stoves Brought to Xuanwei County in early 1980s

- The reduction in particle levels was ~a factor of about three.
- Reduction in lung cancer was ~40% in men and ~45% in women. (*Journal of the National Cancer Institute*)
- Reduction in COPD rates was also significant at about 50% in both men and women (*British Medical Journal*)
- Reduction in lung cancer and COPD took 10 years to fully develop after IAQ improvement.

Product limit survival plots showing probability of not having chronic obstructive pulmonary disease (COPD) by age in years in men and women according to whether they had a chimney, Xuanwei, 1976-92 One of the few stove intervention studies in the world with a health outcome. A "natural experiment" – retrospective study of COPD after introduction of chimney stoves in a Yunnan county in late 1970s

Coal is the primary fuel in these households

Chapman et al. BMJ, 2005

Why We Know Now that Chimneys are not Enough

Traditional open 3-stone fire: kitchen 48-hour PM_{2.5} levels of 600 - 1200 µg/m³

Chimney wood stove, locally made and popular with households

Guatemala RCT: Kitchen Concentrations

2010

Infant Exposures

Chimney stove did not protect all children

Kitchens down by 10x, but children exposure down by only 2x, because

- --Time-activity: the kids do not spend their entire day in the kitchen
- --Household (or "neighborhood") pollution: a chimney does not reduce smoke, but just shifts it outside into the household environment, where the difference between intervention and control households was less
 --No significant difference in bedrooms

Reduction in Kitchen 24-h $PM_{2.5}$ (ug/m³)

Langzhong

YiLong

Nanbu

Enshi

Yongshun

45

MODIS

Large areas of rural India and China have high ambient air pollution – much from household fuel

Sources of Primary PM_{2.5}: India and China

Chafe, 2010

China: PM2.5 mass by province (2005)

PM2.5 Emissions in China (2005)

Chafe, 2010; data from GAINS-China (2010) http://gains.iiasa.ac.at

NASA INTEX_B Database Percent PM_{2.5} emissions from households

China Primary PM2.5 Emissions

Percent of Total PM2.5 Primary Emissions

Source: GAINS-China (2010) http://gains.iiasa.ac.at

Controllable Global Warming from Black Carbon Emissions

Net of OC, Forcings from IPCC, 2007: 0.25 W/m² Inventory from T Bond Database, V 7.1.1 Feb 2009

Climate Warming in 2020 Under Present Trends

Why we need really clean combustion

- Chimneys by themselves do nothing for outdoor air pollution or climate
- We now know they do not help very much with health only a factor of two reduction in exposure
- This is not enough to either reach WHO or Chinese standards
- Or to obtain the health benefits needed

Heart Disease and Combustion Particle Doses

Heart Disease and Combustion Particle Doses

After independence, China had special concerns for rural areas than were reflected in energy programs for decades

- China led the world in rural energy development in the 1970s and 80s
- It introduced ~180 million improved biomass stoves, for example – one of the largest rural development projects in world history

China's National Improved Stove Program (NISP)

- More than 180 million improved stoves with chimneys were introduced from early 80s to mid 90s
- Evaluation showed that NISP improved energy efficiency and IAQ in rural households, but not sufficiently to meet current Chinese air pollution standards or WHO guidelines.

• It focused on biomass; the rising coal use in rural areas is threatening to erode the benefits unless action is taken soon. This is particularly a problem in the areas of "poisonous coals".

Improved Stove in Shanxi

China's National Improved Stove Program (NISP) 1981-1998

New generation of Chinese stoves show low particle emissions. But can they be reliably achieved in the field?

How clean do they need to be?

Modeling indoor air pollution from cookstove emissions in developing countries using a Monte Carlo single-box model

Michael Johnson^{a,*}, Nick Lam^{a,b}, Simone Brant^a, Christen Gray^a, David Pennise^a

Berkeley Air Monitoring Group, 2124 Kittredge St #57, Berkeley, CA 94704, USA

^b Environmental Health Sciences, University of California, 725 University Hall, Berkeley, CA 94720, USA

Box model for Indoor Pollution

$$C_t = \frac{qf}{\propto V} (1 - e^{-\propto t}) + C_o (e^{-\propto t})$$

Ct = Concentration of pollutant (PM2.5 or CO) at time t (mg m-3)q = emission rate (mg min-1) α = nominal air exchange rate (ventilation rate) (min-1) V = kitchen volume (m3)t = time (min)Co = concentration from preceding time unit (mg m-3)f = fraction of emissions that enter kitchen (Note: time and emissions rates are a function of thermal efficiency, emission factor, stove power, and daily cooking energy needs.)

Top Performers in the Chinese National Cookstove Competition – 2007

	CO/CO ₂	Nominal Combustion Efficiency	PM ₁₀ g/kg	Efficiency	grams PM ₁₀ /MJ delivered
Daxu	0.020 (24%)**	98.1%	0.28 (13%)	41.9% (3%)	0.037
Luoyang*	0.019 (37%)	98.1%	0.24 (8%)	35.2% (2%)	0.038
Xintai*	0.025 (43%)	97.6%	0.36 (7%)	32.6% (2%)	0.061
Zhenghong	0.019 (19%)	98.1%	0.24 (22%)	35.9% (4%)	0.037
<u>Mean</u>	0.021	98.0%	0.28	36.4%	0.043

How clean does the stove have to be to meet the WHO Guidelines to protect health?

% meeting WHO Annual Interim Target-1 PM _{2.5} (35 μg m ⁻³)	50%	75%	90%
g MJ-delivered ⁻¹	0.055	0.030	0.018
Mean Concentration (µg m ⁻³)	52	28	17
Median Concentration (µg m ⁻³)	35	19	11

Mean performance of 4 top stoves in the Chinese National Cookstove Contest was about 0.043 g/MJ-delivered.

Thus, if the fraction of particles entering the house from stove is less than $0.18/0.43 \sim 40\%$, 90% or more of households will meet the WHO Air Quality Guideline

Conclusions: Intervention.

- Reductions in exposures through simple improvements, such as chimney stoves, are intrinsically limited because smoke from the solid fuel is still around the household.
- Future improvements should focus on stoves and fuels that reduce emissions, such as the biomass gasifier stoves being developed in the country.
- Advanced combustion stoves can lower pollution levels substantially, with 90+% reduction documented
- Substituting cleaner fuels for the poisonous coals used in tens of millions of households should have an especially high priority.

SMALL, SMART, FAST, & CHEAP

monitoring devices for household energy & health

Alay Pillarisetti, lise Ruiz-Mercado, and Nick Lam on behalf of Prof. Kirk R. Smith's Research Group at University of California, Berkeley Visit ebs.seb.berkeley.ede/krswith for more information

STOVE USE MONITORS UTILIZATION

Time-of-use measuring devices allow more accurate estimations and objective definitions of usage patterns including cooking periods, meal times, and technology adoption rates.

Stove Use Monitors (SUMS) quantify utilization of cookstoves to improve estimates of personal exposure and environmental benefits related to household energy use. SUMS are based on commercially available, low-cost, small temperature loggers.

The stainless steel temperature sensors are the size of a coin and can record time, date, and temperature. Programming and downloading data can be easily performed in the field. They are easy to use, unobtrusive, waterproof and tamper-resistant. They come with algorithms and software to systematically assess stove use patterns.

Measurements of stove surface temperature can be used to test the effectiveness of behavioral interventions on stove use. Because they give precise, unbiased measures of a simple physical parameter, statistically reliable information is provided using smaller sample sizes than required for a household survey.

PARTICLE AND TEMP SENSOR CONCENTRATION

The ability to measure concentrations of small airborne particles is vital in understanding adverse health effects from combustion-derived air pollution. Available instrumentation to conduct such measurements is complex and expensive. Such devices are appropriate for developed countries and ambient air monitoring stations. However, their routine use in real-world household environments is expensive & cumbersome. Monitoring locations may also be remote, where security is questionable and electrical power not available,

Alle.

limiting the applicability of conventional instruments. In an effort to fulfill the needs for small, smart, fast, and cheap particle monitors that could be deployed easily in remote settings, a commercial smoke detector that uses optical scattering was identified and modified so that real-time signals could be logged continuously. This modified particle and temperature sensor is dubbed the UCB-PATS. Customized software handles data importing, graphing, and manipulation.

Device Software & Sample Output

Each device is controlled by polyness allowing assignment insuch, data downlos and manipulation, and experting of data time for the the analysis. Devices come with the colference was a partial and or views 2000 to Serial convertes.

TIME-ACTIVITY MONITORING LOCATION

Measurement of exposure to pollutants is vital to the field of environmental health. The significance of a hazard depends on the amount of time a person is in contact with it. For instance, high indoor air pollution levels have been found in many homes globally. The risk of respiratory disease depends on the amount of time people spend in the presence of this pollution.

Time-Activity Monitoring System (TAMS) detects the presence or absence of individuals in an enclosed space. The system consists of one to five small ultrasound emitting devices worn on an individual's clothing. Each produces a distinct pattern that is emitted every few seconds. An ultrasound receiver is mounted on the wall of a room and detects the unique pattern from the device worn by an individual.

If the identifying signal pattern emitted from a particular locator

is received a certain number of times during a minute, that locator, and presumably the person wearing it, is recorded as being present in the room. Field trials show good results, with a 93% accuracy rate as measured against direct observation.

		14						
	Personal and Kitohan PM2.8 Concentrations							
a second	154		Latin Adams	-				
	helen		4 ~	_				
		Report property with	-					
in the second	personal and it is the other	N assetsion	and purpose and	and the				

For more information, google "Kirk R Smith" • To acquire devices, visit berkeleyair.com

Stove Use Monitors (SUMs) in Action

Ruiz et al., submitted

Ruiz et al., submitted

Inter-instrument Comparison: 30 UCB-PATS UCB Particle and Temperature Monitoring System (custom PM monitor using smoke alarm technology)

> Lopez Kitchen La Cienaga Plancha with chimney

5 PM Sept 24 to 10 AM Sept 25, 2004.

UCB Particle Monitor <u>How many hours should we measure to obtain</u> <u>good estimate of the long-term mean?</u>

Long-term Household Measurements

hhid=hh04041020

How Close to the True Mean With One Measurement?

The main reason household air pollution causes so much ill-health is

The Intake Fraction is large

IF is the fraction of material emitted that is actually breathed in by someone

IF = 1.0

Intake Fractions : these are rough calculations for typical examples of sources in each class

Smith, 1993

Grams Inhaled per Ton Emitted

Combustion Particles cause more health damage than any other environmental contaminant

- Worst thing to do is stick burning stuff in your mouth ~5 million deaths globally
- Not so great to have other people sticking in their mouths nearby ~ 300k deaths
- Bad even to have poorly burning stuff in your city ~ 1 million deaths
- The oldest of burning practice, however -poorly combusted fuels in the home -- is still the cause of more ill-health than any other particle source except smoking ~ 1.6 million deaths

Origins of the Chinese Rural Energy Program

At a biogas stove exhibit in Wuhan on April 11, 1958, Mao Zhedong instructed,

"This should be well promoted."

Publications and presentations available at my website. Just "google" Kirk R. Smith

