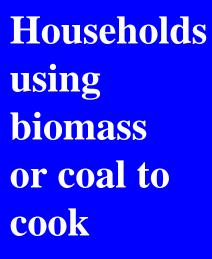
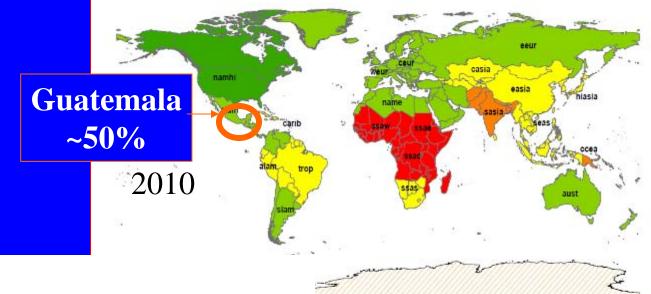
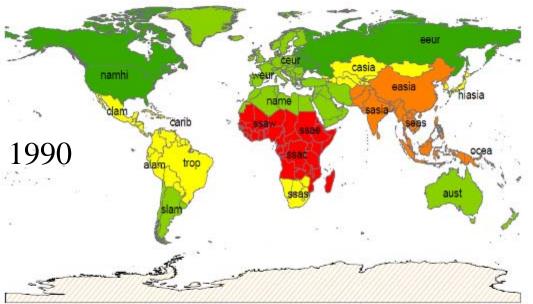

Household Air Pollution

New Evidence of Health Impacts from Guatemala and Elsewhere


> Kirk R. Smith Professor of Global Environmental Health University of California Berkeley


August 2, 2011 Centro de Estudios en Salud Universidad del Valle



300-400 thousand years ago, hearths became a regular feature in human habitation

"On the earliest evidence for habitual use of fire" Roebroeks and Villa, PNAS, 2011

% of HH Exposed to HAP

Comparative Risk Assessment (CRA) 2011- preliminary, Adair, et al.

World Population Using Solid Fuels

Biomass Cooking in History

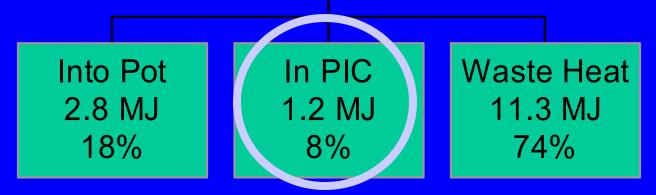
- Today, ~40% use solid fuels, about 2.7 billion people
- Although the percentage is dropping, the absolute number is still rising.
- Indeed, there are more people using solid fuels today for cooking than the total world population in 1950
- Or any year previously

A problem that has lasted one-third of a million years and is showing no sign of quickly going away by itself.

The three major solid fuels

Woodsmoke is natural – how can it hurt you?

Or, since wood is mainly just carbon, hydrogen, and oxygen, doesn't it just change to CO_2 and H_2O when it is combined with oxygen (burned)?

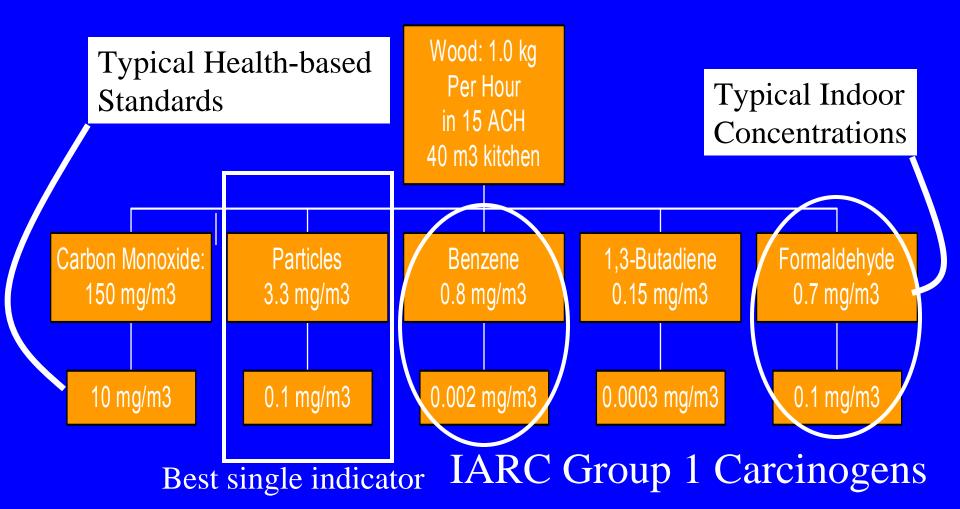


Reason: the combustion efficiency is far less than 100%

Energy flows in a well-operating traditional wood-fire cookstove

A Toxic Waste Factory!!

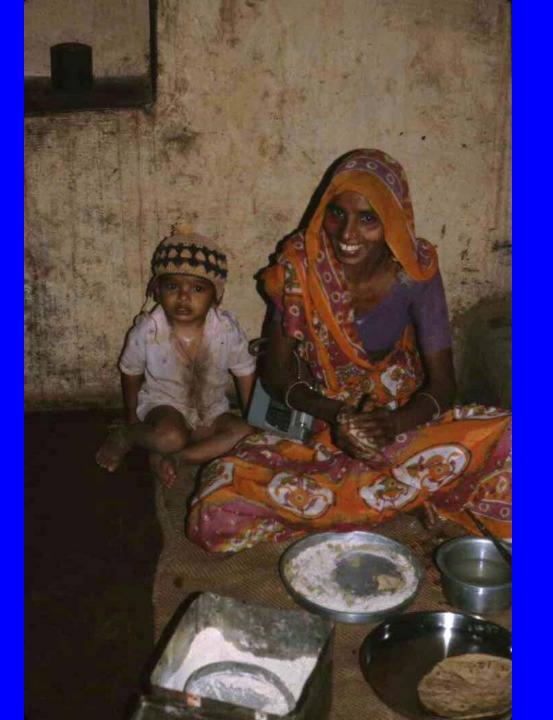
Typical biomass cookstoves convert 6-20% of the fuel carbon to toxic substances


PIC = products of incomplete combustion = CO, HC, C, etc.

Source: Smith, et al., 2000

Toxic Pollutants in Biomass Fuel Smoke from Simple (poor) Combustion

- Small particles, CO, NO₂
- Hydrocarbons
 - 25+ saturated hydrocarbons such as *n*-hexane
 - 40+ unsaturated hydrocarbons such as 1,3 butadiene
 - 28+ mono-aromatics such as benzene & styrene
 - 20+ polycyclic aromatics such as $benzo(\alpha)pyrene$
- Oxygenated organics
 - 20+ aldehydes including *formaldehyde* & *acrolein*
 - 25+ alcohols and acids such as *methanol*
 - 33+ phenols such as *catechol* & *cresol*
 - Many quinones such as *hydroquinone*
 - Semi-quinone-type and other radicals
- Source: Naeher et al, *J Inhal Tox*, 2007
- Chlorinated organics such as *methylene chloride* and *dioxin*


Health-Damaging Air Pollutants From Typical Woodfired Cookstove

First person in human history to have her exposure measured doing the oldest task in human history

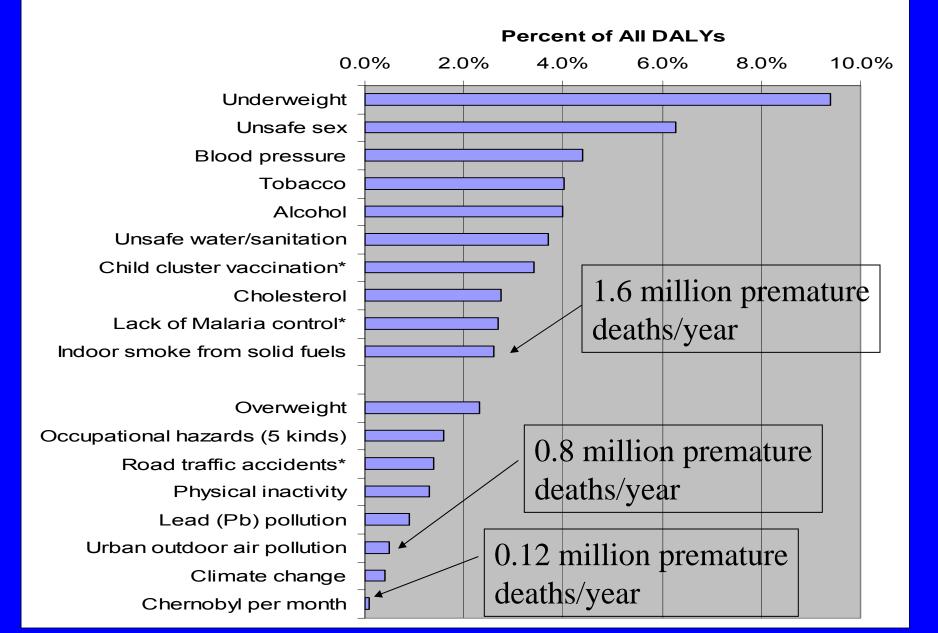
How much exposure?

Kheda District, Gujarat, 1981

How much Ill-health?

ALRI/ Pneumonia

Diseases for which we have epidemiological studies


COPD Lung cancer (coal)

These three diseases were included in the 2004 Comparative Risk Assessment Managed and published by WHO

First ever comprehensive risk assessment with consistent rules of evidence and common databases

Global Burden of Disease from Top 10 Risk Factors plus selected other risk factors

Eile Edit	<u>View Insert Format Tools D</u> ata	<u>W</u> indow <u>H</u>	elp Ado <u>b</u> e	e PDF													-	đΧ
A B	ICDE F	G	Н	l I	J	K	L	M	N	0	P G	F S	T	U	V	W	Х	
1 Population (6224384.81	317077.27	622741.70	817442.87	66.3968.38	42707129	166160.20	30443.11	28143.24	3131052.05	301091.79	589229.34	782702621	646519.90	427846.34	181906.42	110
2 GBD 200	D2: DALYs by age, sex and cause	se for the y	year 2002	2														
3 WORLD														-				
4					-		Male	200.000		1000						Female		
5 Code	Cause	Total	0-4	5-14	15-29	30-44	45-59	60-69	70-79	80+	Totai	0-4	5-14	15-29	30-44	45-59	60-69	
6 U000	All Causes	1490125643	222552079	56142418	141637847	130501742	115374678	60641455	36229210	9832834	772912264	211279454	54559890	141633214	108257333	90621463	53460940	40'
U001 I.		610319230		20979812	29721889	36148775	16651072	5676094	2915759	849889	******		23248712	59740290	35979204	114.99502	4476964	25
7	and nutritional conditions																	
8 U002 9 U003	A. Infectious and parasitic diseases 1. Tuberculosis	350332571 34735908	87977510 839261	12810197 782431	25516201 5497848	33372707 7335503	14085712 4868489	3710016 1832663	1519252 658401	315539 90612	179307135 21905208	89749119 738745	13534884 821735	31549467 4163278	23070592 3822011	8616676 2041939	2658113 833205	14
10 U004	2. STDs excluding HIV	11347067	1521528	26245	1080828	660600	423721	1032003	31641	7415		1726606	97221	4158088	1147558	260537	71612	
11 U005	a. Syphilis	4200039	1039452	2292	151945	285546	354596	99162	30394	6987	1970375	1265722	3432	521758		107605	42492	
12 U006	b. Chlamydia	3571404	1199	7209	241593	50929	1169	136	0	0	302234	1152	69338	2635460	439449	109658	14084	
13 U007 14 U008	c. Gonorrhoea d. Other STDs	2265159	462945	16668	CONCA	201215	CCC4	710	Q1	2	14 70160	447700	04000	000000	422675 22947	6262 37012	1616 13420	
15 U009	3. HIV/AIDS		Clak		Durc	lon	of F	liec			atab	200			13746555	2624463	230670	
16 U010	4. Diarrhoeal diseases	· · · · · ·	GIUL	Jali	Juic			JISE	a30		alab	ase			545936	373258	201900	1
17 U011	5. Childhood-cluster dise					4									53966	19174	4837	
18 U012 19 U013	a. Pertussis		and	Co	mna	arat	ive_	RIS	κA	sse	ssm	ent_			0	13	0	
20 U014	b. Poliomyelitis c. Diphtheria											ont			16931 386	3822 572	615 29	
21 U015	d. Measles				orld		lth-	Ore		Zot	ion-				29	30	23	
22 U016	e. Tetanus				Ла	Пee			all	Zal	ION				36620	14737	4192	
23 U017	6. Meningitis*							C							167759	110215	48775	
24 U018	7. Hepatitis B														115391	110437	36630	
25 U019 26 U020	Hepatitis C 8. Malaria														53705	61307 280704	30322	
27 U021	9. Tropical-cluster disea				•			1 - 1-							453207 593336	496341	99111 75537	
28 U022	a. Trypanosomiasis			Ве	ing	con	nble	ten	/ UD	nai	led				79329	46509	3694	
29 U023	b. Chagas disease														51644	48058	15987	
30 U024	c. Schistosomiasis					or O	011	rol	000						128589	58850	17056	
31 U025 32 U026	d. Leishmaniasis					ע וכ		IEI	eas	e					67203	30097	11647	
33 U026	e. lymphatic filariasis f. Onchocerciasis														206680 59892	266630 46198	15772 11380	
34 U028	10. Leprosy														15828	9135	4389	
35 U029	11. Dengue														10408	6396	2644	
36 U030	12. Japanese encephalitis				ha					11 4					26926	7282	2513	
37 U031	13. Trachoma			FOI	hoi	usei		l all	$\mathcal{D}\mathcal{O}$	ΠUL	ION.				517423	559520	344796	1
38 U032 39 U033	14. Intestinal nematode in a. Ascariasis														5192 161	5921 21	3469 111	
40 U034	b. Trichuriasis			ΔΥΙ	nnei	Iro ·	200	200	ma	nt r	node	aling			388	433	238	
41 U035	c. Hookworm disease				1030		233	-33			noue	Jing			4212	4859	2723	
42 U036	Other intestinal infection		. 1		1						1				432	607	397	
43 U037	Other infectious disease	W OL	JICO	me	esti	mai	es l	oas	ea	on	meia	a-an	aivs	ses	1795391	1650048	667703	
44 U038 45 U039	B. Respiratory infections 1. Lower respiratory infect														1481589 1434738	1357246 1329549	1460806 1425397	13
46 U040	2. Upper respiratory infec			Λ	RI, (חכ		na C	20	cor				1434738 45228	26339	1425397 34405	
47 U041	3. Otitis media			AL	$\overline{\mathbf{N}}, \underline{\mathbf{V}}$		$-\mathcal{D},$	LUI	<u>I</u> <u>y</u> <u></u>	Jan					1622	1358	1004	
48 U042	C. Maternal conditions														9947305	403615	19	
49 U043	1. Maternal haemorrhage		7 bir	th w	<u>/eia</u>	ht c	cata	rac	ts (car	diova	ASCL	Ilar_		1944088	133887	0	
50 U044 51 U045	2. Matemal sepsis					, (rao							1625431	72999	0	
51 0045 52 U046	3. Hypertensive disorders 4. Obstructed labour	3048291	ů O	n	0	n	n	n	n	ñ	0	0	0.0	2241561	722909 794568	40216 12162	U	
53 U047	5. Abortion	4652171	0		0	0	0	0	0	0	0	0		3721304	705860	1596	0 0	
54 U048	Other maternal conditions	12427759	0	0	0	0	0	0	0	0	0	0		8128555		142755	19	
55 U049	D. Perinatal conditions*	٥	53209265	1343	1031	347	89	12	9	0		44121066	1195	498	158	34	29	
56 U050	1. Low birth weight	46334234	25061999	52	13	20	0	9	0	0	25062092	21272111		0	0	0	0	
57 U051 58 U052	 Birth asphyxia and birth trauma Other perinatal conditions 	34445758	19353003 9794262	790 502	302 716	73 253	33 56	3 0	0	0	19354204 8795799	15090851		107 392		15 19	0 29	
58 0052 59 0053	E Nutritional deficiencies	16555094 34416632	8794262 10258276	502 1921013	1793247	203 1025783	56 698252	230984	9 132831	39983		7758104 10385030		392 2149411		19 1121930	29 357998	
60 U054	1. Protein-energy malnutrition	16910328	7556012	560106	156056	69278	103279	71114	45451	18671	8579966	7350453		66437		81418	70683	
61 U055	2. Iodine deficiency	3519322	1283895	471857	528	748	1215	641	236	50		1305105		1681		1287	439	
62 U056	3. Vitamin A deficiency	792562	257306	84825	3330	6358	7864	3519	983	100	364284	320394	84034	10506	3807	6687	ull Scree	• x
🏉 Start 🛛 🧞 B	Eudora - [In] 🛛 🛛 📝 5 Microsoft Offic	:e 🖣 🐻 1	2 Microsoft	Office +	S Mici	osoft Offic	e • 🕑	Windows M	edia Player	🗌 🥔 W	HO Statistical	Infor	ype to searcl	h 🔽 🕇	⊐ ≪ 🗹 🛃			
					,											~ ~ ~		

ALRI/ Pneumonia

Low birth weight

Diseases for which we have epidemiological studies - 2011 COPD

Lung cancer (coal)

Lung cancer (biomass)

Blindness (cataracts, opacity)

CV disease Blood pressure ST-segment

These additional diseases will be included in the 2011 Comparative Risk Assessment

In addition, using evidence from other exposure sources, CVD will be included

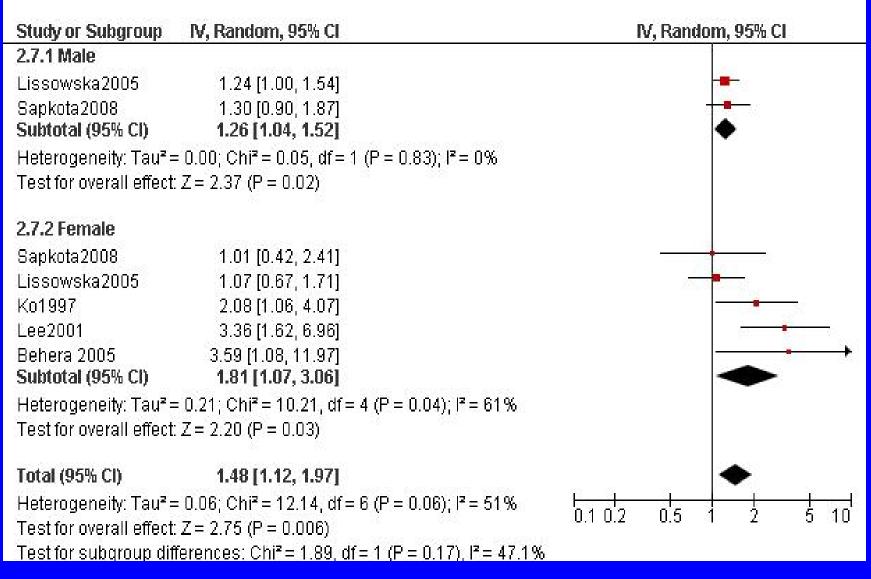
Stillbirth

There is epi evidence for these other diseases, but considered insufficient to include in the 2011 Comparative Risk Assessment

Burns and the health/safety impacts of fuel gathering

Tuberculosis
ALRI

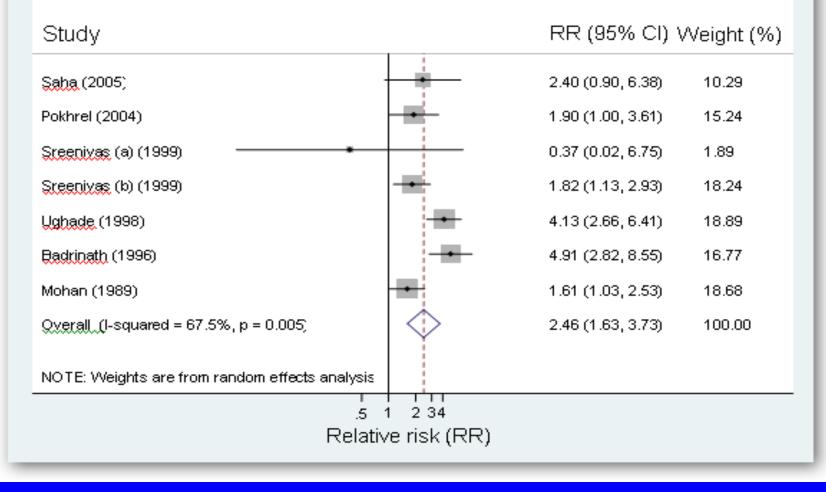
Other cancers (cervical, NP, upper airway)


Asthma?

Cognitive

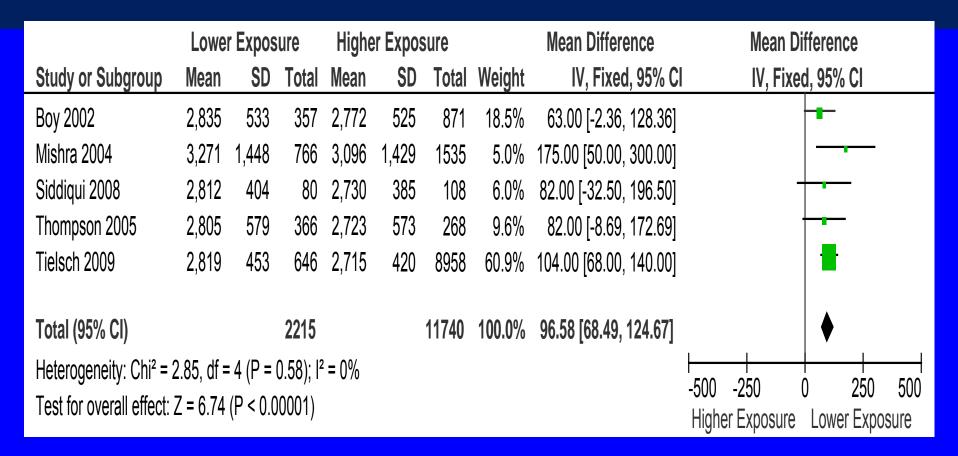
Impairment

Birth defects


Lung Cancer: Biomass vs. clean fuel

CRA, Imran et al. preliminary

Cataracts and Biomass Cooking Smoke*


Active Smoking Adjusted- Random Effects Model

CRA Preliminary, Adair et al.

* Adjusted for UV

Pooled birth weight difference (low minus high exposure): Adjusted estimates (Boy and Tielsch have GA)

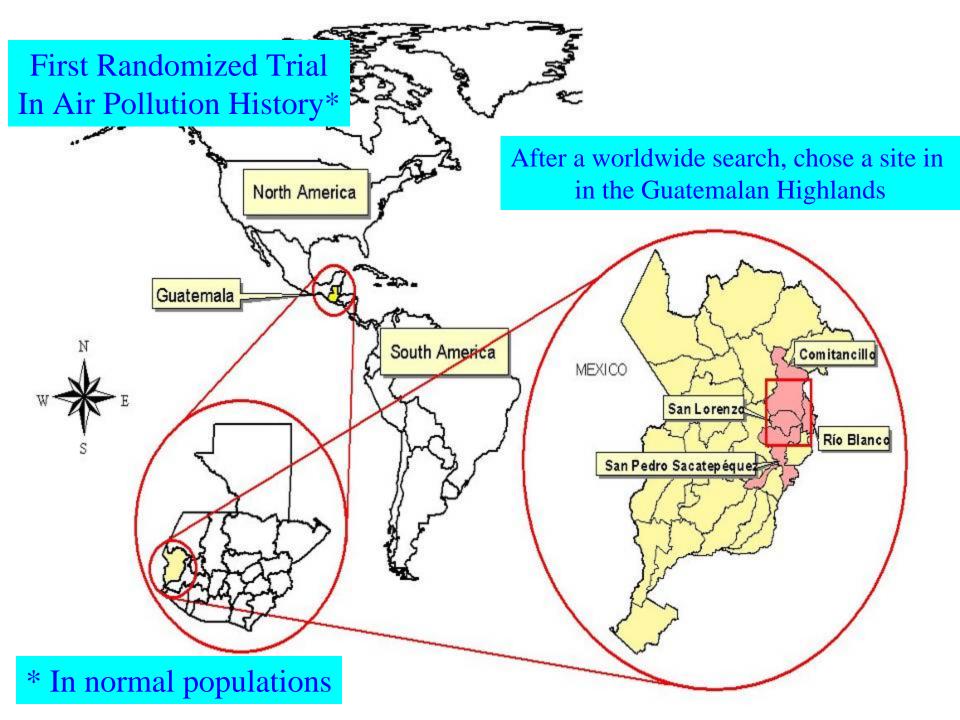
All estimates: +96.6g (68.5, 124.7) Excluding self-reports +93.1g (64.6, 121.6)

CRA: Pope et al., 2010

Preliminary CRA Effect Estimates

Health Outcome	Sex	Age	Level of Outcome	Risk Estimate
ALRI	M&F	< 60 mo	la	1.78 (1.45 to 2.18)
ALRI:	M&F	< 60 mo	lb	2.3 (95% Cl ?)
exposure/response				
COPD	F	>15 yr	la	2.7 (1.95 to 3.75)
COPD	М	>15 yo	la	1.9 (1.15 to 3.13)
Lung Cancer (coal)	F	> 15 yr	la	1.98 (1.16 to 3.36)
Lung Cancer (coal)	М	> 15 yr	la*	1.38
Cataract	F	> 30 yr	la	2.45 (1.61 to 3.73)
Cataract	М	> 30 yr	la	?
LBW (OR)	M&F	Perinatal	la	1.52 (1.25 to 1.80)
LBW (mean weight)	M&F	Perinatal	la	93.1g (64.6, 121.6)
Lung Cancer (biomass)	F	> 15 yr	la	1.81 (1.07 to 3.06)
Lung Cancer (biomass)	М	> 15 yr	la	1.26 (1.04 to 1.52)
CVD	F	> 30 yr	lb	1.3 to 1.4 (95% CI)
CVD	М	> 30 yr	lb*	1.16

				Study Odds Ratio (randor		Odds Ratio (random)
Study design	N*	OR	95% CI	or sub-category 95% Cl	%	95% CI
ciady accigin				01 Intervention Studies		
Intervention	2	1 00	1 06 1 54	Smith(2007)a	5.53	1.18 [0.88, 1.58] 1.35 [1.05, 1.73]
Intervention	2	1.28	1.06, 1.54	Subtotal (95% Cl)	5.73 11.26	1.28 [1.06, 1.54]
				Test for heterogeneity: Chi ² = 0.48, df = 1 (P = 0.49), ² = 0%	11.26	1.28 [1.06, 1.84]
				Test for overall effect: $Z = 2.54$ (P = 0.01)		
Cohort	7	2.12	1.06, 4.25	02 Cohort Studies		
Conort	· '	2.12	1.00, 1.20	Armstrong(1991)a	2.80	0.50 [0.20, 1.22]
				Armstrong(1991)b		1.90 [0.96, 3.75]
				Cambell(1989)	3.25	2.80 [1.29, 6.08]
				Ezzati(2001)	3.86	2.33 [1.23, 4.40]
				Jin(1993)	5.69	0.80 [0.62, 1.03]
				Pandey(1989)a	4.34	2.45 [1.43, 4.19]
				Pandey(1989)b	▶ 1.52	40.65 [9.79, 168.75]
				Subtotel (95% CI)	25.11	2.12 [1.05, 4.25]
		П	٠		00.3%	
Coop control	45	Pne	eumonia –	- the biggest single		
Case-control	15				3.97	1.20 [0.65, 2.21]
		Car	ise of chil	d death in the world	4.49	2.51 [1.51, 4.17]
		Cut			4.85	2.16 [1.40, 3.33]
				De Francisco(1993)	2.15	5.23 [1.72, 15.91]
				Fonsecca(1996)	4.68	1.14 [0.71, 1.82]
				Johnson(1992)a	3.15	0.80 [0.36, 1.78]
				Kossove(1982)	→ 1.96	4.77 [1.44, 15.74]
				Kumar(2004)	2.45	3.87 [1.42, 10.57]
				Mahalanabas(2002) -	3.63	3.97 [2.00, 7.88]
				Morris(1990)	2.41	4.85 [1.75, 13.40]
				O'Dempsey(1996) Robin(1996)a	2.59 2.95	2.55 [0.98, 6.64] 1.40 [0.60, 3.28]
				Victora(1994)a	4.08	1.10 [0.61, 1.98]
				Wayse(2004)	- 2.90	1.39 [0.58, 3.30]
				Wesley(1996)	1.87	1.35 [0.39, 4.63]
				Subtotal (95% CI)	48.15	1.97 [1.47, 2.64]
				Test for heterogeneity: Chi ² = 32.72, df = 14 (P = 0.003), I ² = 5	57.2%	
				Test for overall effect: Z = 4.53 (P < 0.00001)		
Cross-	3	1.49	1.21, 1.85	04 Cross-sectional Studies		
a settem al				Mishra(2003)	3.83	2.20 [1.16, 4.18]
sectional				Mishra(2005)	5.87	1.58 [1.28, 1.95]
				Wichmann(2006)	5.79	1.29 [1.02, 1.63]
				Subtotal (95% Cl)	15.48	1.49 [1.21, 1.85]
				Test for heterogeneity: Chi ² = 3.19, df = 2 (P = 0.20), ² = 37.3		
				Test for overall effect: Z = 3.74 (P = 0.0002)		
All	26	1.78	1.45, 2.18			
	20	1.70	1.40, 2.10	Total (95% CI) Test for heterogeneity: Chi ² = 101.74, df = 26 (P < 0.00001), P	100.00	1.78 [1.45, 2.18]
				Test for overall effect: Z = 5.61 (P < 0.00001)	- / 4,470	
Dherani et a	Ru		(2008)			
Diferant et a	Bui			0.1 0.2 0.5 1 2	5 10	
				Increased risk Decrea	ased risk	


Story of Two Conferences

- Air pollution conference

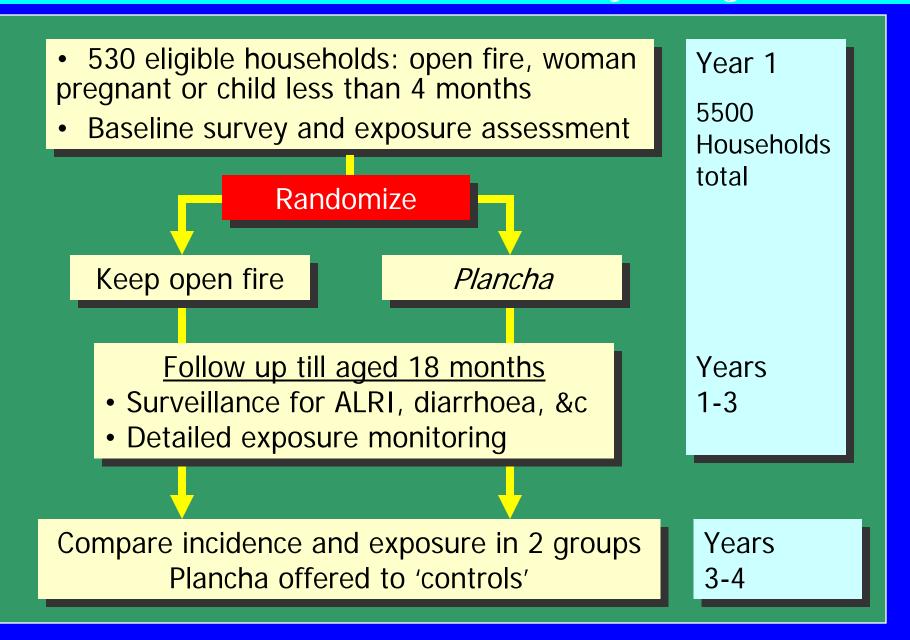
 High exposures to large vulnerable population
 - No more health effects work needed
- International health conference
 - Still doubt about causality
 - Need to know exact benefit to be expected
- Where are your randomized controlled trials?

History of an RCT

- ~1980: Case reports of health effects in South Asia
- 1981: First measurements of pollution levels in India
- 1984: International meeting to decide on needed research
 - Chose randomized controlled trial (RCT) of ALRI
- 1986-89: Unfunded proposals to do RCT in Nepal
- 1990: WHO establishes committee to find best sites
- 1990-1992: Criteria established and site visits made
- 1992: Highland Guatemala chosen
- 1991-1999: Pilot studies to establish data needed for proposal does stove work and do people use it?
- 1996-1999: Unfunded proposals
- 2001: NIEHS funding secured
- 2002-2006: Fieldwork completed
- 2011: Main results published (we hope)
- 25+ years from deciding to conduct RCT to results!

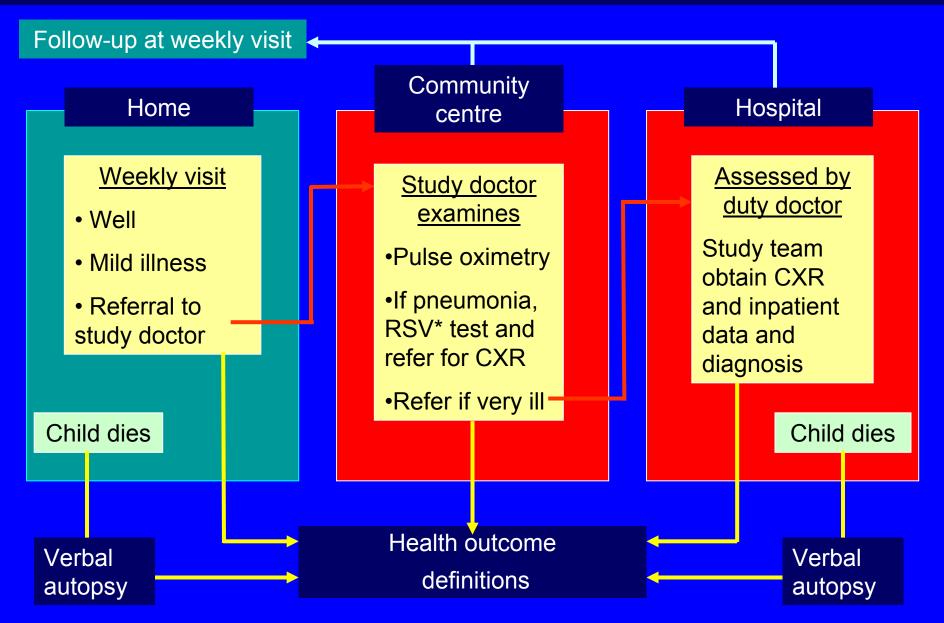
RESPIRE – ALRI in Children under 18

Randomized Exposure Study of Pollution Indoors and Respiratory Effects



Traditional open 3-stone fire: kitchen 48-hour PM_{2.5} levels of 600 - 1200 µg/m³

Plancha, a chimney wood stove, locally made and popular with households


Overview of RESPIRE study design

Randomisation: balance of groups at baseline

Variable	Control	Intervention
Socio-demographic factors		
Mother's Age (years)	27.0	26.4
Pregnant at recruitment (%)	48.3	51.3
Own home (%)	92.8	94.1
Migrates part of year (%)	17.7	17.1
House structure		
Separate enclosed cooking area (%)	76.2	74.3
Completely open eaves (%)	42.7	40.6
Walls – adobe (mud) (%)	88.7	90.7
Roof – metal (%)	77.4	74.3
Floor – earth (%)	92.5	88.8
Leaks in roof (water) (%)	24.5	33.3
Electricity (%)	70.8	69.3
Other sources of smoke		
Other fire near house (%)	14.6	14.4
Smoking (tobacco) indoors (%)	26.8	20.4
Use traditional sauna bath (%)	84.5	87.8
Geographic		
Mean altitude (metres)	2613	2601

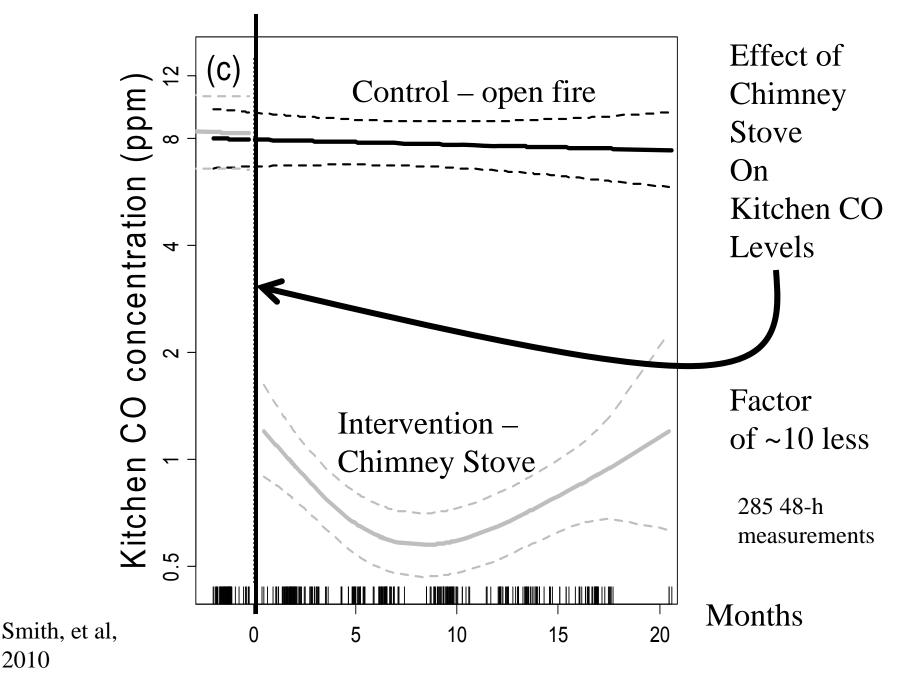
Overview of child health outcomes assessment

* Respiratory syncitial virus

Overview of weekly visits

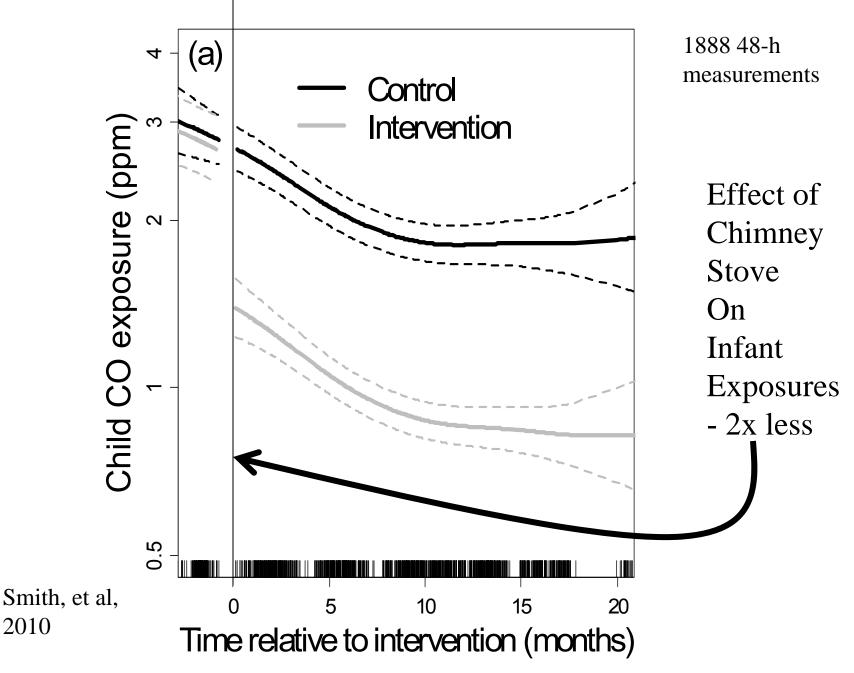
		Plancha	Control	
Number of childre	en	265	253	
Weekly visits	Total possible in follow up period	16,446	15,664	
	Completed	14,756	14,369	
% of possible wee	ekly visits completed	89.7%	91.7%*	
Mean (SD, range)	visits per child	55.7 (17.8; 1 to 80)	56.8 (17.3; 2 to 81)	
Number (%) child	lren - no missed visit	17 (6.4%)	19 (7.5%)	
Withdrawals		19 (7.2%)	14 (5.5%)	

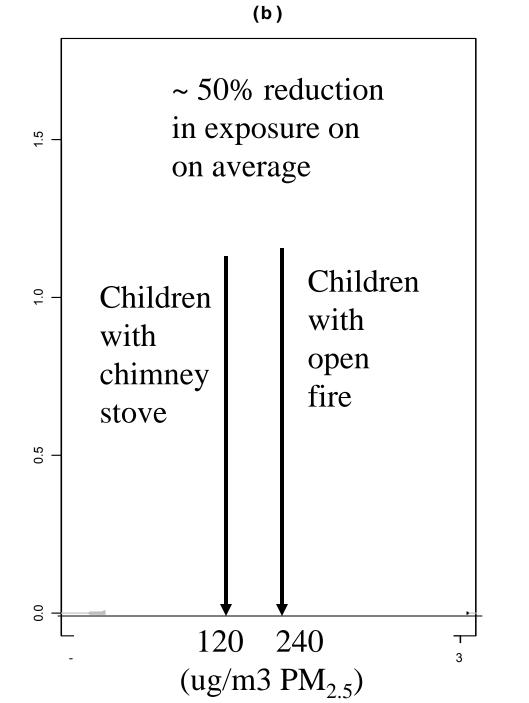
* P < 0.001


RESPIRE Results

(Randomized Exposure Study of Pollution Indoors and Respiratory Effects)

- Intention-to-Treat analysis of the RCT under journal embargo
- Will present preliminary results of the exposure-response analysis, which is most relevant to this audience

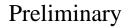


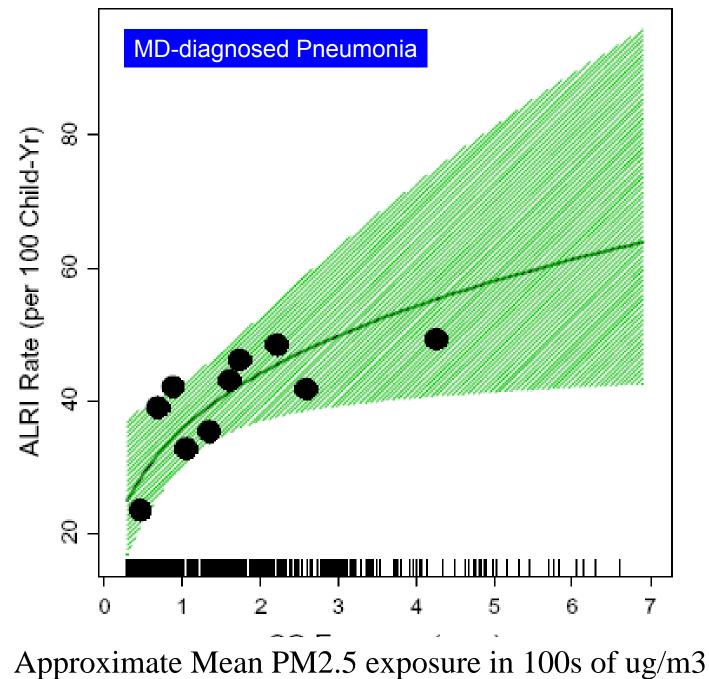

Guatemala RCT: Kitchen Concentrations

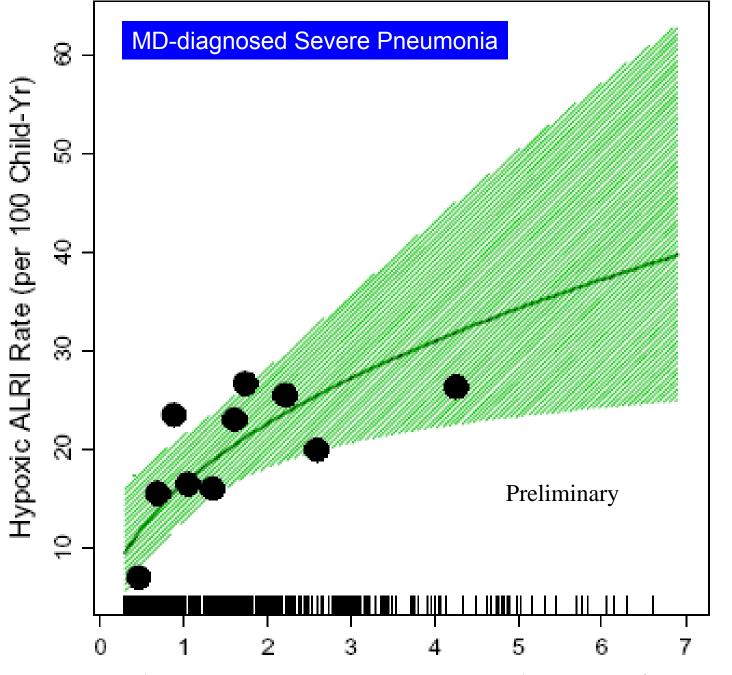
2010

Infant Exposures

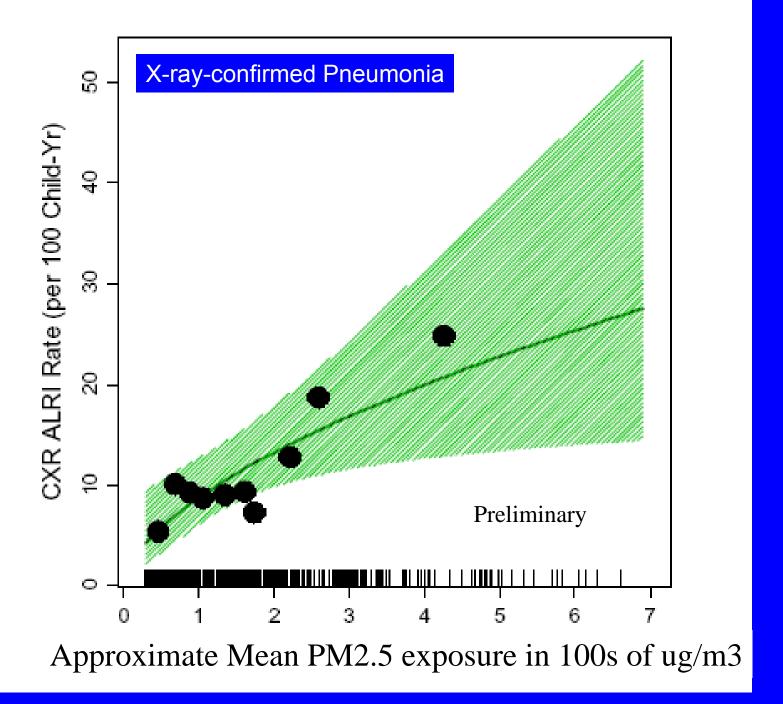
Chimney stove did not protect all children

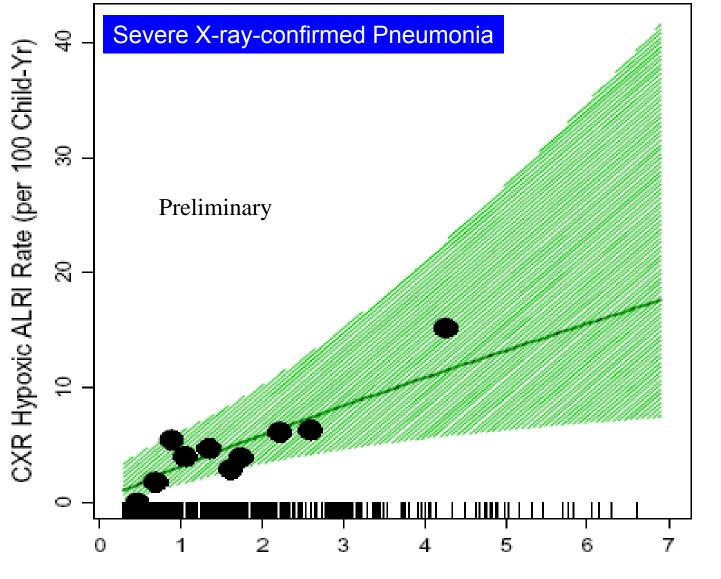

Kitchens down by 10x, but children exposure down by only 2x, because


- --Time-activity: the kids do not spend their entire day in the kitchen
- --Household (or "neighborhood") pollution: a chimney does not reduce smoke, but just shifts it outside into the household environment, where the difference between intervention and control households was less
 --No significant difference in bedrooms



Preliminary Adjustments for Exposure-Response Model


Adjusted for child's age (quadratic), sex, birth interval less \bullet than 2 yr (yes/no), mother's age (quadratic), maternal education and paternal education (none/primary/ secondary), secondhand tobacco smoke exposure (yes/no), latrine (yes/no), piped water (yes/no), electricity (yes/no), kerosene lamp (yes/no), wood-fired sauna (yes/no), bedroom in kitchen (yes/no), roof type (metal sheet/tiles/straw), earth floor (yes/no), asset index (linear over range 0 to 6), animal ownership index (linear over range 0 to 4), crowding index (people per room), altitude (5 categories), occupation (farm other land/farm own land/other), and season (cold dry, warm wet, warm dry).



Approximate Maan DM25 approximation 100g of ug/m2

Approximate Mean PM2.5 exposure in 100s of ug/m3

RESPIRE: Pneumonia Reductions with Exposure Reduction **Preliminary Results**

Exposure reduction	Overall MD- pneumonia	Severe (hypoxic) MD-pneumonia	CXR pneumonia	Severe (hypoxic) CXR pneumonia
25%	0.92 (0.86, 0.99)	0.88 (0.80, 0.97)	0.84 (0.74, 0.96)	0.79 (0.69, 0.95)
50%	0.82 (0.70, 0.98)	0.73 (0.59, 0.92)	0.66 (0.49, 0.91)	0.56 (0.40, 0.88)
75%	0.67 (0.50, 0.96)	0.53 (0.35, 0.84)	0.44 (0.24, 0.83)	0.31 (0.16, 0.78)
90%	0.51 (0.31, 0.93)	0.35 (0.17, 0.76)	0.26 (0.09, 0.74)	0.15 (0.05, 0.67)

RESPIRE - Guatemala

Other studies at San Lorenzo Household Air Pollution Research Site

- <u>First</u>: Blood pressure, *Environmental Health Perspectives*, 2007
- <u>First</u>: ST-segment, *Environmental Health Perspectives,* in press
- Low birth weight, *Environmental Health Perspectives*, 2011 (<u>first</u> with exposure measures)
- <u>First</u>: measurements of dioxin levels in village kitchens using biomass in review
- <u>First</u>: cognitive function in children related to prenatal exposures of mothers in review
- CRECER chronic respiratory outcomes

New exposure methods

- Inexpensive datalogging particle monitor based on smoke alarm technology
- Inexpensive time-activity monitor based on ultrasound technology
- Inexpensive stove-use monitor based on temperature dataloggers
- Application of industrial hygiene monitors to determine long-term exposure of infants
- Urinary biomarkers of woodsmoke exposure

SMALL, SMART, FAST, & CHEAP

monitoring devices for household energy & health

Alay Pillarisetti, lise Ruiz-Mercado, and Nick Lam on behalf of Prof. Kirk R. Smith's Research Group at University of California, Berkeley Visit ebs.seb.berkeley.ede/krswith for more information

STOVE USE MONITORS UTILIZATION

Time-of-use measuring devices allow more accurate estimations and objective definitions of usage patterns including cooking periods, meal times, and technology adoption rates.

Stove Use Monitors (SUMS) quantify utilization of cookstoves to improve estimates of personal exposure and environmental benefits related to household energy use. SUMS are based on commercially available, low-cost, small temperature loggers.

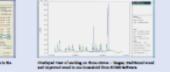
The stainless steel temperature sensors are the size of a coin and can record time, date, and temperature. Programming and downloading data can be easily performed in the field. They are easy to use, unobtrusive, waterproof and tamper-resistant. They come with algorithms and software to systematically assess stove use patterns.

Measurements of stove surface temperature can be used to test the effectiveness of behavioral interventions on stove use. Because they give precise, unbiased measures of a simple physical parameter, statistically reliable information is provided using smaller sample sizes than required for a household survey.

PARTICLE AND TEMP SENSOR CONCENTRATION

The ability to measure concentrations of small airborne particles is vital in understanding adverse health effects from combustion-derived air pollution. Available instrumentation to conduct such measurements is complex and expensive. Such devices are appropriate for developed countries and ambient air monitoring stations. However, their routine use in real-world household environments is expensive & cumbersome. Monitoring locations may also be remote, where security is questionable and electrical power not available,

Alle.


limiting the applicability of conventional instruments. In an effort to fulfill the needs for small, smart, fast, and cheap particle monitors that could be deployed easily in remote settings, a commercial smoke detector that uses optical scattering was identified and modified so that real-time signals could be logged continuously. This modified particle and temperature sensor is dubbed the UCB-PATS. Customized software handles data importing, graphing, and manipulation.

Device Software & Sample Output

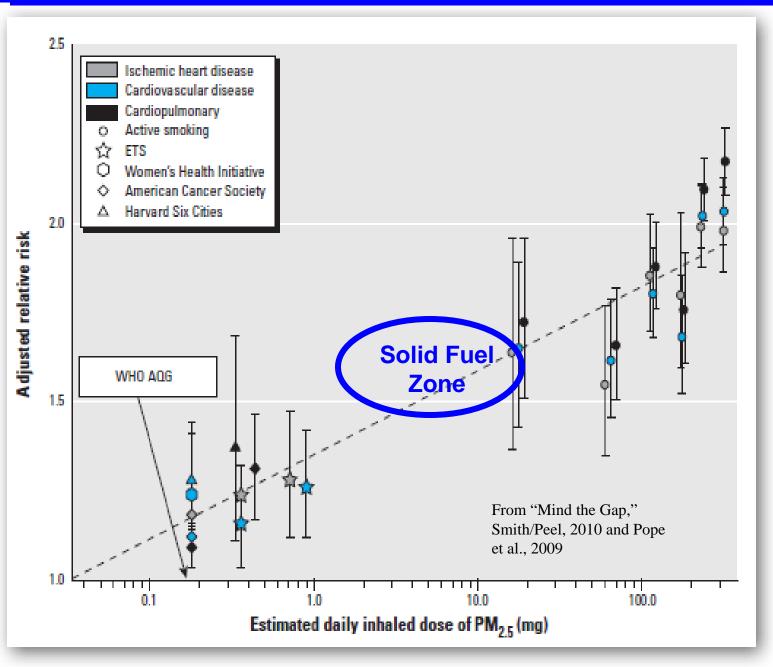
Each device is controlled by polyness allowing assignment insuch, data downlos and manipulation, and experting of data time for the the analysis. Devices come with the colference was a partial and or views 2000 to Serial convertes.

TIME-ACTIVITY MONITORING LOCATION

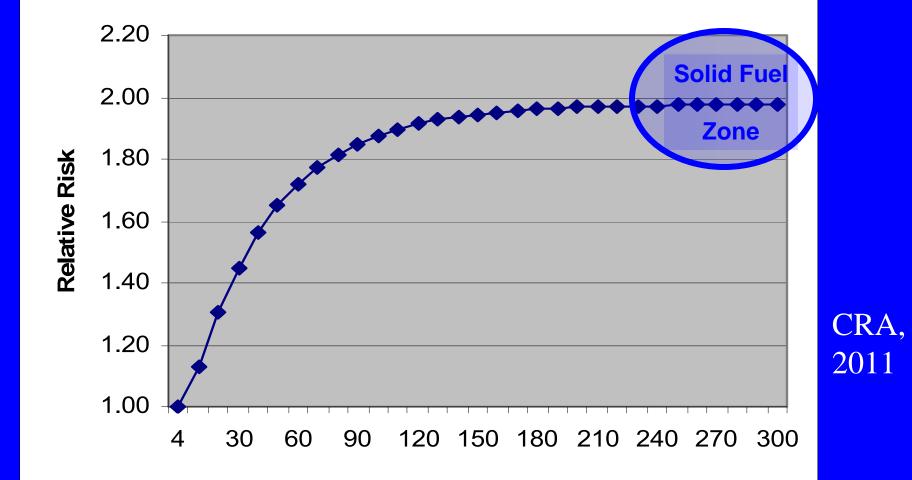
Measurement of exposure to pollutants is vital to the field of environmental health. The significance of a hazard depends on the amount of time a person is in contact with it. For instance, high indoor air pollution levels have been found in many homes globally. The risk of respiratory disease depends on the amount of time people spend in the presence of this pollution.

Time-Activity Monitoring System (TAMS) detects the presence or absence of individuals in an enclosed space. The system consists of one to five small ultrasound emitting devices worn on an individual's clothing. Each produces a distinct pattern that is emitted every few seconds. An ultrasound receiver is mounted on the wall of a room and detects the unique pattern from the device worn by an individual.

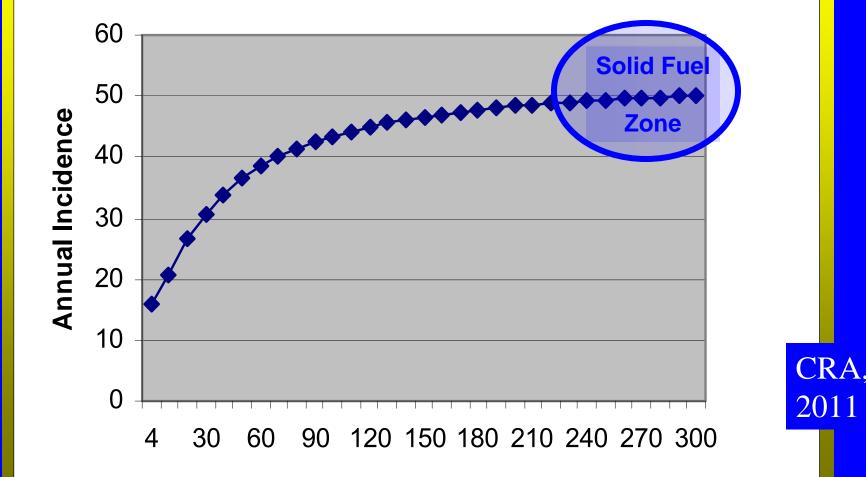
If the identifying signal pattern emitted from a particular locator


is received a certain number of times during a minute, that locator, and presumably the person wearing it, is recorded as being present in the room. Field trials show good results, with a 93% accuracy rate as measured against direct observation.

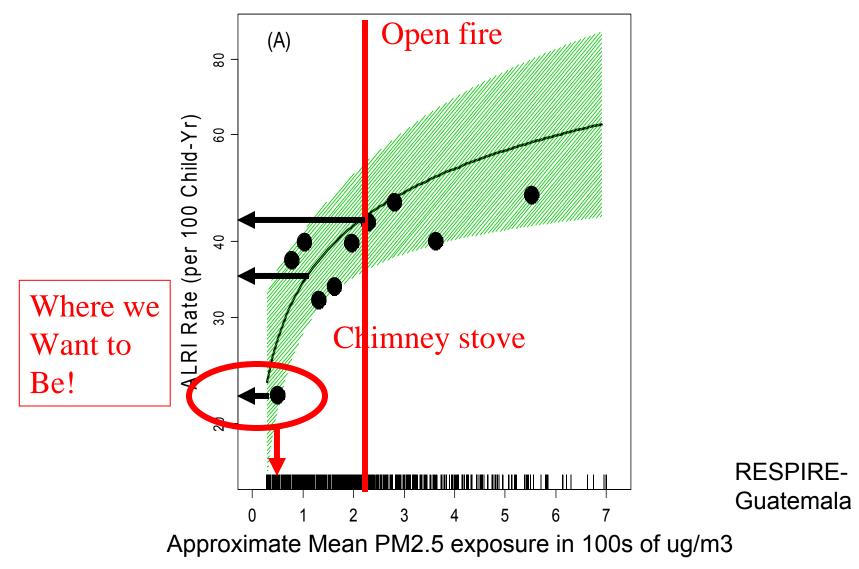
		14						
	Personal and Kitohan PMD 5 Concentrations							
a second	154		Latin Adams	-				
	helen		4 ~	_				
		Report property with	-					
in the second	personal and it is the o	N assetsion	and purpose and	and the				


For more information, google "Kirk R Smith" • To acquire devices, visit berkeleyair.com

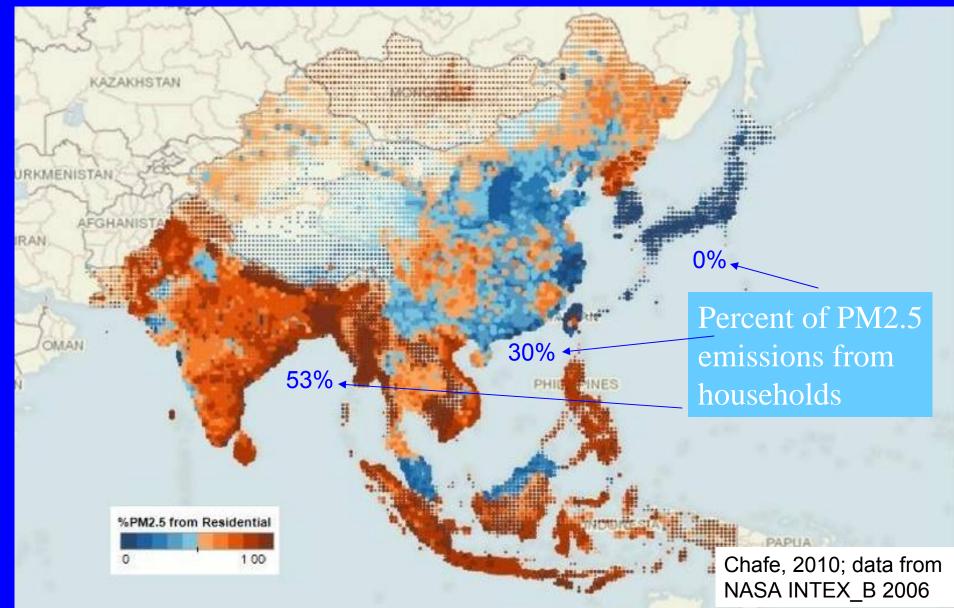
Heart Disease and Combustion Particle Doses


Generalized Exposure-Response: Outdoor Air, SHS, and Smoking

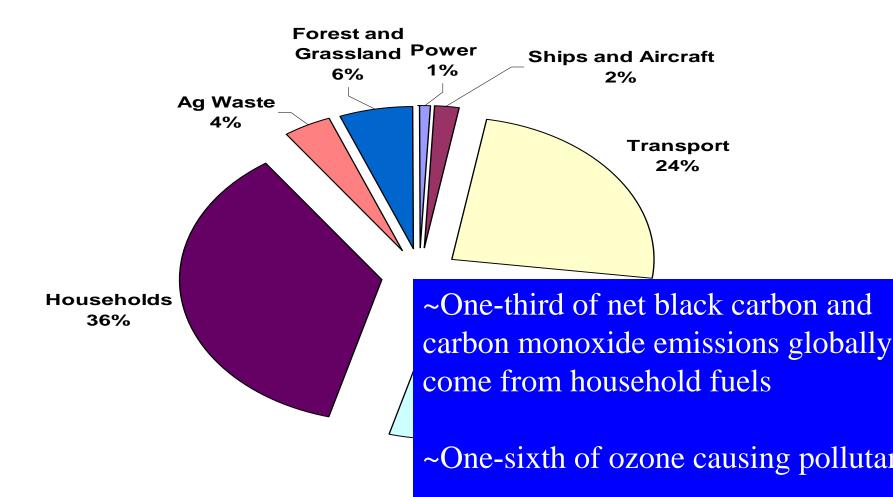
IHD risks from combustion particles Annual average PM2.5 in ug/m3



Generalized Exposure-Response: Outdoor Air, SHS, and HAP


Pneumonia from combustion particles Annual average PM2.5 in ug/m3

MD-diagnosed Acute Lower Respiratory Infection



NASA INTEX_B Database Percent PM_{2.5} emissions from households

Controllable Global Warming from Black Carbon Emissions

Net of OC, Forcings from IPCC, 2007: 0.25 W/m² Inventory from T Bond Database, V 7.1.1 Feb 2009

~One-twentieth of methane

Many thanks to collaborators and funders

- Ministry of Health, Centro de Estudios en Salud, Universidad del Valle, and others
- National Institute of Environmental Health Sciences, Centers for Disease Control, World Health Organization, and others
- Our highly skilled field staff and fieldworkers
- And the participating women and children of San Lorenzo and Comitancillo

Publications and presentations on website – easiest to just "google" Kirk R. Smith

Muchas Gracias