How Many Days of Measurement Adequately Predicts Long-Term Indoor Air Concentration Means? Line W. H. Alnes¹ Kirk R. Smith²

John McCracker Eduardo Canuz³

1 CICERO/University of Oslo, Norway 2 University of California Berkeley, CA 3 Universidad del Valle, Guatemala

International Society of Exposure Science, Baltimore, Oct 26th 2011

Senter for klimaforskning

Center for International Climate and Environmental Research – Oslo

Outline

- Unique dataset with long-term measurements
- Aims: Determine
 - How accurate are sampling durations of 1 or 2 days, when the goal is to estimate long-term concentration levels?
 - What if measurement duration is increased?
- Key message: There was high temporal variability, and a few days of measurements was not sufficient to capture long term concentration levels

Motivation

- Half the world exposed to smoke from combustion of solid fuels for cooking/heating.
 Major contributor to global ill-health
- Need accurate exposure measurements to quantify dose-response relationships
- Most studies of household air pollution sample each home for 24 - 48 hours
- Assumed representative estimate of long term concentration levels
- <u>Unknown</u> how much concentration levels vary from day to day

Methods

- Overall mean concentration in each home over the entire measurement duration was defined as the "target"
- Compared samples of different duration to see how often the results were close to the target

Senter for klimaforskning

Data by household

ID	Stove	Start	End	N	Mean	St.d.	Med.	Min	Max
#	type	date	date	days	$\mu g/m^3$				
1	Chimney	Feb-04	Mar-05	327	279	23 8	204	68	1550
2		Jul-04	Mar-05	215	233	220	156	65	2134
3		Feb-04	Mar-05	333	86	122	66	50	1784
4		Jul-04	Dec-04	154	228	189	183	62	1713
5	Open fire	Feb-04	Nov-04	215	2690	1498	2452	52	8927
6		Jul-04	Dec-04	134	1107	586	972	101	2874
7		Feb-04	Jul-04	120	914	489	854	192	3104
8		Jul-04	Dec-04	136	2233	1058	2055	522	5927

CICERO

Concentration by Date: Open Fire

Senter for klimaforskning

Concentration by Date : Chimney

Results: Open fire homes

Results: Open fire homes

Results: Chimney homes

Repeated measurements: Open fire

Center for International Climate and Environmental Research – Oslo www.cicero.uio.no

Attenuation Bias:

Random error in exposure estimate will underestimate true dose-response relationship

- Dose response:
 - $D = a^* + b^* \cdot X$ (true)
 - $D = a + b_{obs} \cdot Z$ (obs)
- Correction factor 1/λ:
- Regress
 - $X_{true} = a + \lambda \cdot Z_{obs}$
- Corrected doseresponse estimate:
 b* = b_{obs} · 1/λ

X= true exposure

Senter for klimaforskning Center for International Climate and Environmental Research – Oslo

Regression dilution: correction

Sampling duration					
in days	Correction factor: $1/\lambda$ (std.dev)				
1	1.52 (0.04)				
2	1.30 (0.03)				
3	1.24 (0.02)				
4	1.19 (0.02)				
7	1.13 (0.02)				
14	1.06 (0.01)				
21	1.03 (0.01)				
28	1.01 (0.01)				
2 *1	1.25 (0.02)				
3 *1	1.13 (0.02)				
4 *1	1.08 (0.01)				

Senter for klimaforskning

Discussion

- Individual households v.s. group level
- Long term mean meaningful target? Assuming outcomes are related to overall mean exposure (not median or peak events)
- Limitations: generalizability?
 - Only 8 households
 - Only in Guatemala
- Strengths: >1600(!) days
 - First study with long-term data

Summary

- High temporal variability
- Attenuation bias likely when using only 1 or 2 day measurements as surrogate for long term exposure
- Implications for interpretation of exposureresponse estimates, and for future measurement strategies
- More measurements are needed to verify results in other settings

Acknowledgements

- Guatemalan field team and the participants!
- EHS group at UC Berkeley

- Funding
 - NIEHS, RESPIRE Project
 - Fulbright Foundation for Educational Exchange

»Thank you!