Smoke, health, and climate: updates with relation to Nepal

> Kirk R. Smith Professor of Global Environmental Health University of California, Berkeley

Centre for Rural Technology Kathmandu January 13, 2012

300-400 thousand years ago, hearths became a regular feature in human habitation

"On the earliest evidence for habitual use of fire" Roebroeks and Villa, PNAS, 2011

Households using biomass or coal to cook

% of HH Exposed to HAP

Comparative Risk Assessment (CRA) 2011- preliminary, Adair, et al.

World Population Using Solid Fuels

The three major solid fuels

Woodsmoke is natural – how can it hurt you?

Or, since wood is mainly just carbon, hydrogen, and oxygen, doesn't it just change to CO_2 and H_2O when it is combined with oxygen (burned)?

Reason: the combustion efficiency is far less than 100%

Energy flows in a well-operating traditional wood-fired Indian cooking stove

A Toxic Waste Factory!!

Typical biomass cookstoves convert 6-20% of the fuel carbon to toxic substances

PIC = products of incomplete combustion = CO, HC, C, etc.

Source: Smith, et al., 2000

Toxic Pollutants in Biomass Fuel Smoke from Simple (poor) Combustion

- Small particles, CO, NO₂
- Hydrocarbons
 - 25+ saturated hydrocarbons such as *n*-hexane
 - 40+ unsaturated hydrocarbons such as 1,3 butadiene
 - 28+ mono-aromatics such as benzene & styrene
 - 20+ polycyclic aromatics such as $benzo(\alpha)pyrene$
- Oxygenated organics
 - 20+ aldehydes including *formaldehyde* & *acrolein*
 - 25+ alcohols and acids such as *methanol*
 - 33+ phenols such as *catechol* & *cresol*
 - Many quinones such as *hydroquinone*
 - Semi-quinone-type and other radicals
- Source: Naeher et al, *J Inhal Tox*, 2007
- Chlorinated organics such as *methylene chloride* and *dioxin*

First person in human history to have her exposure measured doing the oldest task in human history

Emissions, yes, but what about exposures?

> Kheda District, Gujarat, 1981

Estimated PM2.5 indoors for <u>all</u> households

Estimated PM2.5 for <u>only</u> solid-fuel-using households

Bhaktapur, Nepal 24-h PM2.5 Kitchen Levels

Stove	N	(%)	Uncorrected UCB mass Mean (SD) μg/m3	Corrected UCB mass (SD) µg/m3
Mud – wood/crop	187	(20.73)	655 (910)	688 (956)
Husk	47	(5.21)	598 (973)	695 (1128)
Kerosene	212	(23.50)	245 (304)	211 (262)
LPG	256	(28.38)	167 (240)	50 (73)
Electric Hotplate	196	(21.73)	186 (419)	67 (151)
"Improved" Cookstove	9	(0.33)	957 (892)	1071 (863)

ALRI/ Pneumonia

Low birth weight

Diseases for which we have epidemiological studies - 2011 COPD

Lung cancer (coal)

Lung cancer (biomass)

Blindness (cataracts, opacity)

CV disease Blood pressure ST-segment

These additional diseases will be included in the 2011 Comparative Risk Assessment

In addition, using evidence from other exposure sources, heart disease will be included

Stillbirth

There is epi evidence for these other diseases, but considered insufficient to include in the 2011 Comparative Risk Assessment

Burns and the health/safety impacts of fuel gathering

Tuberculosis
ALRI

Other cancers (cervical, NP, upper airway)

Asthma?

Cognitive

Impairment

Birth defects

Summary risk estimates of lung cancer associated with in-home coal use for heating and cooking by geographic region

study	studyyear c	casenum	contnum			ES (95% CI)
Africa					!	
Sasco(2002)	1996-1998 1	118	235		<u> </u>	0.74 (0.17, 3.14)
Subtotal (I-squared	d = .%, p = .)					0.74 (0.17, 3.14)
Europe						
Lissowska(2005)	1998-2001 2	2861	3118	-		1.13 (0.93, 1.38)
Subtotal (I-squared	d = .%, p = .)			•		1.13 (0.93, 1.38)
North America						
Wu(1985)	1981-1982 2	220	220	•		2.30 (0.96, 5.50)
Subtotal (I-squared	d = .%, p = .)			•		2.30 (0.96, 5.50)
La alla						
India Cupto(2001)	1005 1007 0	DEE	505			1 52 (0 22 6 08)
Sepkete(2001)	1995-1997 2	200	525			1.52(0.33, 0.96)
Subtotal (Lequared	2001-2004 7	0 207)	710			3.70 (1.04, 0.03)
Subiolai (I-squarec	1 – 4.4 %, p – (0.307)				3.02 (1.42, 0.40)
Mainland China and	d Taiwan				i i	
Wu-Williams(1990)	1985-1987 9	965	959			1 30 (0 99 1 70)
Sun(1991)	1985-1987 4	418	398			2 26 (1 53 3 33)
Chengyu (1992)	1990-1991 1	135	135			1 59 (1 22 2 07)
Ger(1993)	1990-1991 1	131	524			1.44 (0.44, 4.69)
Li(1993)	1986-1992 1	161	161			2.08 (0.85, 5.08)
Lin(1996)	1985-1990 1	122	122			3.24 (1.05, 9.94)
Dai(1996)	1992-1993 1	120	120			→ 4.70 (1.29, 17,18)
Luo(1996)	1990-1991 1	102	306		· · · · · · · · · · · · · · · · · · ·	6.00 (5.07, 7.10)
Ko(1997)	1992-1993 1	117	117			1.30 (0.29, 5.80)
Hao(1998)	1981-1986 2	220	440		_	1.99 (1.16, 3.43)
Huang(1999)	1993-1996 1	122	244		_	1.92 (1.40, 2.62)
Wu(1999)	1997 2	258	258	-	•	1.58 (0.89, 2.80)
Lan(2000)	1995-1996 1	122	122		• • • • • • • • • • • • • • • • • • •	2.40 (1.31, 4.40)
Lee(2001)	1993-1999 5	527	805		• • • • • • • • • • • • • • • • • • •	2.10 (1.19, 3.70)
Kleinerman(2002)	1994-1998 8	332	1724			1.29 (1.03, 1.61)
Sun(2002)	1996-1999 2	206	618		• • •	2.20 (1.25, 3.86)
Lu(2003)	1998-2001 4	145	445			3.44 (1.38, 8.57)
Liang(2004)	2001-2002 1	152	152		• • • • • • • • • • • • • • • • • • •	2.02 (1.20, 3.39)
Galeone(2008)	1987-1990 2	218	436			2.19 (1.08, 4.46)
Lan(2008)	1985-1990 4	198	498		· · · · ·	- 7.40 (4.18, 13.10)
Subtotal (I-squared	d = 90.3%, p =	= 0.000)			$ \diamond$	2.28 (1.66, 3.13)
Overall (I-squared	= 90.4%, p =	0.000)				2.16 (1.62, 2.90)
				I		
				.8	1 1.5 2 2.53 5 10	
			0			

Odds ratio

Lung Cancer: Biomass vs. clean fuel

CRA, Imran et al. preliminary

Cataracts and Biomass Cooking Smoke*

Active Smoking Adjusted- Random Effects Model

CRA Preliminary, Adair et al.

* Adjusted for UV

Pooled birth weight difference (low minus high exposure): Adjusted estimates (Boy and Tielsch have GA)

All estimates: +96.6g (68.5, 124.7) Excluding self-reports +93.1g (64.6, 121.6)

CRA: Pope et al., 2010

				Study	Odds Ratio (random)	Weight	Odds Ratio (random)
Study design	N*	OR	95% CI	01 Intervention Studies	35% CI	76	D 5756
		1.00		Smith(2007)a		5.53	1.18 [0.88, 1.58]
Intervention	2	1.28	1.06, 1.54	Smith(2007)b	-	5.73	1.35 [1.05, 1.73]
				Test for heterogeneity: Chi ² = 0.4 Test for overall effect: Z = 2.54 (8, df = 1 (P = 0.49), ² = 0% P = 0.01)	11.26	1.28 [1.06, 1.54]
Cohort	7	2.12	1.06, 4.25	02 Cohort Studies			
				Armstrong(1991)a		2.80	0.50 [0.20, 1.22]
				Armstrong(1991)b		3.65	1.90 [0.96, 3.75]
				Cambell(1989)		3.25	2.80 [1.29, 6.08]
				-lip(1993)		5.69	2.33 (1.23, 4.40)
				Pandev(1989)a		4 34	2 45 (1 43 4 19)
				Pandey(1989)b		1.52	40.65 [9.79, 168.75]
				Subtotal (95% CI)		25.11	2.12 [1.05, 4.25]
				T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 W 0.45 0.00000 12 = 88.9%		
O a a a a start a l	4 -	Pne	eumonia -	- the biggest	single		
Case-control	15					2 97	1 20 10 65 2 211
		Car	ise of chil	d death in th	e world	4 49	2 51 11 51 4 171
		Cat				4.85	2.16 [1.40, 3.33]
				De Francisco(1993)		-> 2.15	5.23 [1.72, 15.91]
				Fonsecca(1996)		4.68	1.14 [0.71, 1.82]
				Johnson(1992)a		3.15	0.80 [0.36, 1.78]
				Kossove(1982)		→ 1.96	4.77 [1.44, 15.74]
				Kumar(2004)		-> 2.45	3.87 [1.42, 10.57]
				Mahalanabas(2002)		- 3.63	3.97 [2.00, 7.88]
				Morris(1990)		-+ 2.41	4.85 [1.75, 13.40]
				Dempsey(1996)		2.59	2.55 [0.98, 6.64]
				Victora(1994)a		4.09	1 10 10 61 1 981
				Wayse(2004)		2 90	1 39 10 58 3 301
				Wesley(1996)	1	1.87	1.35 [0.39, 4.63]
				Subtotal (95% CI)	-	48.15	1.97 [1.47, 2.64]
				Test for heterogeneity: Chi ² = 32.	72, df = 14 (P = 0.003), P = 57.2%		
0	0	4.40	4 04 4 05	Test for overall effect: Z = 4.53 (P < 0.00001)		
Cross-	3	1.49	<u>1.21, 1.85</u>	04 Cross-sectional Studies	1		
				Mishra(2003)		3 83	2 20 11 16 4 181
sectional				Mishra(2005)		5.87	1.58 [1.28, 1.95]
				Wichmann(2006)		5.79	1.29 [1.02, 1.63]
				Subtotal (95% CI)	•	15.48	1.49 [1.21, 1.85]
				Test for heterogeneity: Chi2 = 3.1	9, df = 2 (P = 0.20), 2 = 37.3%		and all sectors and a second of
				Test for overall effect: Z = 3.74 (P = 0.0002)		
All	26	1.78	1.45, 2.18	Total (95% CI)	•	100.00	1.78 [1.45, 2.18]
				Test for heterogeneity. Chi2 = 101	1.74, df = 26 (P < 0.00001), I ² = 74.4%		
				Test for overall effect: Z = 5.61 (P < 0.00001)		
Dherani et a	Bul		(2008)		1 02 05 1 2 5	10	
				0.	Increased risk Decreased risk	19	

Contents lists available at SciVerse ScienceDirect

NeuroToxicology

Neurodevelopmental performance among school age children in rural Guatemala is associated with prenatal and postnatal exposure to carbon monoxide, a marker for exposure to woodsmoke

u Linda Dix-Cooper^a, Brenda Eskenazi^b, Carolina Romero^c, John Balmes^{a,d}, Kirk R. Smith^{a,*}

* Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA

^b Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA

Centro de Estudios en Salud Universidad Del Valle, Guatemala

^d Division of Occupational and Environmental Medicine, Department of Medicine, University of California, San Francisco, CA, USA

Story of Two Conferences

- Air pollution conference

 High exposures to large vulnerable population
 No more health effects work needed
- International health conference
 - Need to know exact benefit to be expected
 - Still some doubt about causality
- Where are your randomized controlled trials?

History of an RCT

- ~1980: Case reports of health effects in South Asia
- 1981: First measurements of pollution levels in India
- 1984: International meeting to decide on needed research
 - Chose randomized controlled trial (RCT) of ALRI
- 1986-89: Unfunded proposals to do RCT in Nepal
- 1990: WHO establishes committee to find best sites
- 1990-1992: Criteria established and site visits made
- 1992: Highland Guatemala chosen
- 1991-1999: Pilot studies to establish data needed for proposal does stove work and do people use it?
- 1996-1999: Unfunded proposals
- 2001: NIEHS funding secured
- 2002-2006: Fieldwork completed
- 2011: Main results published
- 25+ years from deciding to conduct RCT to results!

THELANCET-D-09-06268R3 S0140-6736(11)60921-5 Embargo: [add date when known]

Effect of reduction in household air pollution on childhood pneumonia in Guatemala (RESPIRE): a randomised controlled trial

Kirk R Smith, John P McCracken, Martin W Weber, Alan Hubbard, Alisa Jenny, Lisa M Thompson, John Balmes, Anaite Diaz, Byron Arana, Nigel Bruce

Published Nov 2011

RESPIRE – Randomized trial (n=518) Impact on pneumonia up to 18 months of age

Traditional open 3-stone fire: kitchen 48-hour PM_{2.5} levels of 600 - 1200 µg/m³

Chimney wood stove, locally made and popular with households

Overview of RESPIRE study design

CO monitor

CO monitor

Im

MD-diagnosed Acute Lower Respiratory Infection

Adjustments for Exposure-Response Model

Adjusted for child's age (quadratic), sex, birth interval less than 2 yr (yes/no), mother's age (quadratic), maternal education and paternal education (none/primary/ secondary), secondhand tobacco smoke exposure (yes/no), latrine (yes/no), piped water (yes/no), electricity (yes/no), kerosene lamp (yes/no), wood-fired sauna (yes/no), bedroom in kitchen (yes/no), roof type (metal sheet/tiles/straw), earth floor (yes/no), asset index (linear over range 0 to 6), animal ownership index (linear over range 0 to 4), crowding index (people per room), altitude (5 categories), occupation (farm other land/farm own land/other), and season (cold dry, warm wet, warm dry).

RESPIRE - Guatemala

RESPIRE: Pneumonia Reductions with Exposure Reduction **Preliminary Results**

Exposure	Overall MD-	Severe (hypoxic)	CXR	Severe (hypoxic)
reduction	pneumonia	MD-pneumonia	pneumonia	CXR pneumonia
25%	0.92 (0.86, 0.99)	0.88 (0.80, 0.97)	0.84 (0.74, 0.96)	0.79 (0.69, 0.95)
50%	0.82 (0.70, 0.98)	0.73 (0.59, 0.92)	0.66 (0.49, 0.91)	0.56 (0.40, 0.88)
75%	0.67 (0.50, 0.96)	0.53 (0.35, 0.84)	0.44 (0.24, 0.83)	0.31 (0.16, 0.78)
90%	0.51 (0.31, 0.93)	0.35 (0.17, 0.76)	0.26 (0.09, 0.74)	0.15 (0.05, 0.67)

-

RESPIRE - Guatemala

Chimney stove did not protect all babies

McCracken et al. 2009

Guatemala RCT: Kitchen Concentrations

2010

Infant Exposures

RESPIRE Summary

- Results ITT
 - Chimney stove did not reduce all MD pneumonia,
 - But did reduce severe MD pneumonia and
 - RSV-negative (bacterial pneumonia)
 - Even though well operating, chimney was not capable of sufficient exposure reduction by itself
- Results Exposure-response
 - All major outcome showed significant results (still not RSV pneumonia)
 - Partial exposure reduction brings some benefit, but ER curve highly non-linear
 - Large reductions needed for substantial health benefits
 levels not possible with chimneys

Kitchens down by 10x, but children exposure down by only 2x, because

- --Time-activity: the kids do not spend their entire day in the kitchen
- --Household (or "neighborhood") pollution: a chimney does not reduce smoke, but just shifts it outside into the household environment, where the difference between intervention and control households was less
 --No significant difference in bedrooms

45

MODIS

Large areas of rural India and China have high ambient air pollution – much from household fuel

NASA INTEX_B Database Percent PM_{2.5} emissions from households

Mean $PM_{2.5}$ in 2005

Brauer et al. EST 2011

Sources of Primary PM_{2.5}: India and China

IIASA, 2010

Climate Warming in 2020 Under Present Trends

Combustion Particles

The Generalized Exposure Response (GER)

Heart Disease and Combustion Particle Doses

Table 2. Adjusted relative risk estimates^a for various increments of exposure from cigarette smoking (versus never smokers), second hand cigarette smoke, and ambient air pollution from the present analysis and selected comparison studies.

	Increments of	Adjusted RR (95% CI)				Estimated Daily
Source of risk estimate	Exposure	Lung Cancer	IHD	CVD	CPD	Dose PM2.5 (mg) ^b
ACS- present analysis	≤ 3 (1.5) cigs/day	10.44 (7.30-14.94)	1.61 (1.27-2.03)	1.58 (1.32-1.89)	1.72 (1.46-2.03)	18
ACS- present analysis	4-7 (5.5) cigs/day	8.03 (5.89-10.96)	1.64 (1.37-1.96)	1.73 (1.51-1.97)	1.84 (1.63-2.08)	66
ACS- present analysis	8-12 (10) cigs/day	11.63 (9.51-14.24)	2.07 (1.84-2.31)	2.01 (1.84-2.19)	2.10 (1.94-2.28)	120
ACS- present analysis	13-17 (15) cigs/day	13.93 (11.04-17.58)	2.18 (1.89-2.52)	1.99 (1.77-2.23)	2.08 (1.87-2.32)	180
ACS- present analysis	18-22 (20) cigs/day	19.88 (17.14-23.06)	2.36 (2.19-2.55)	2.42 (2.28-2.56)	2.52 (2.39-2.66)	240
ACS- present analysis	23-27 (25) cigs/day	23.82 (18.80-30.18)	2.29 (1.91-2.75)	2.33 (2.02-2.69)	2.33 (2.03-2.67)	300
ACS- present analysis	28-32 (30) cigs/day	26.82 (22.54-31.91)	2.22 (1.97-2.49)	2.17 (1.98-2.38)	2.39 (2.19-2.60)	360
ACS- present analysis	33-37 (35) cigs/day	26.72 (18.58-38.44)	2.58 (1.91-3.47)	2.52 (1.98-3.19)	2.83 (2.28-3.52)	420
ACS- present analysis	38-42 (40) cigs/day	30.63 (25.79-36.38)	2.30 (2.05-2.59)	2.37 (2.16-2.59)	2.61 (2.40-2.84)	480
ACS- present analysis	43+ (45) cigs/day	39.16 (31.13-49.26)	2.00 (1.62-2.48)	2.17 (1.84-2.56)	2.37 (2.04-2.76)	540
ACS-air pol. original	24.5 µg/m ³ ambient PM2.5			0	1.31(1.17-1.46)	0.44
ACS-air pol. extend.	10 µg/m ³ ambient PM _{2.1}	1.14(1.04-1.23)	1.18(1.14-1.23)	1.12(1.08-1.15)	1.09(1.03-1.16)	0.18
HSC-air pol. original	18.6 µg/m ³ ambient PM25				1.37(1.11-1.68)	0.33
HSC-air pol. extend.	10 ug/m ³ ambient PM ₂	1.21(0.92-1.69)		1.28(1.13-1.44)		0.18
WHI-air pol.	10 µg/m ³ ambient PM _{2.5}	C. Transaction		1.24(1.09-1.41) ^c	0.000	0.18
SGR-SHS	Low- moderate SHS exp.			1.16(1.03-1.32)		0.36
SGR-SHS	Moderate-high SHS exp			1.26(1.12-1.42)		0.90
SGR-SHS	Live with smoking spouse	1.21(1.13-1.30)				0.54
SGR-SHS	Work with SHS exposure	1.22(1.13-1.33)			()	0.72
INTERHEART	1-7 hrs/wk SHS exp.		1.24(1.17-1.32) ^d			0.36
INTERHEART	Live with smoking spouse		1.28(1.12-1.47) ^d			0.54

Pope et al. Environmental Health Perspectives 2011, in press

Heart Disease

Lung

Cancer

Pope et al. Environmental Health Perspectives 2011, in press

Generalized Exposure-Response: Outdoor Air, SHS, and Smoking

Chimney Stove Intervention to Reduce Long-term Woodsmoke Exposure Lowers Blood Pressure among Guatemalan Women

> John P. McCracken, Kirk R. Smith, Murray A. Mittleman, Anaité Díaz, Joel Schwartz

(Published in Environmental Health Perspectives, July 2007)

Between-Groups Results

	Number of subj	ects (measures)	Adjusted mean difference*			
	Control group	Intervention group	Estimate	95% CI	p-value	
SBP	71 (111)	49 (115)	-3.7	-8.1, 0.6	0.10	
DBP	71 (111)	49 (115)	-3.0	-5.7, -0.4	0.02	

* Adjusted for age, body mass index, daily temperature, season, day of the week, time of day, use of wood-fired sauna, household electricity, an asset index, ever smoking, and secondhand tobacco smoke exposure

Before-and-After Results

	Number of sub	jects (measures)	Adjusted mean difference*			
	Trial period	Echo-intervention	Estimate	95% CI	p-value	
SBP	55 (88)	55 (65)	-3.1	-5.3, -0.8	0.01	
DBP	55 (88)	55 (65)	-1.9	-3.5, -0.4	0.01	

* Adjusted for age, body mass index, daily temperature, season, day of the week, time of day, use of wood-fired sauna, household electricity, an asset index, ever smoking, and secondhand tobacco smoke exposure

Intervention to Lower Household Wood Smoke Exposure in Guatemala Reduces ST-Segment Depression on Electrocardiograms

John McCracken,^{1,2} Kirk R. Smith,² Peter Stone,³ Anaité Díaz,⁴ Byron Arana,⁴ and Joel Schwartz¹

¹Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA; ²Environmental Sciences Division, University of California, Berkeley, California, USA; ³Brigham and Women's Hospital, Boston, Massachusetts, USA; ⁴Center for Health Studies, Universidad del Valle, Guatemala City, Guatemala

EHP Nov, 2011

Table 3. Odds ratios (ORs) for nonspecific ST-segment depression (30-min average ≤ -1 mm, regardless of slope) associated with chimney-stove intervention compared with open fire from two study designs: between-groups and before-and-after analyses.

	Crude		Adjusted		
Comparison	OR (95% CI)	<i>p</i> -Value	OR (95% CI)	<i>p</i> -Value	
Between-groups	0.34 (0.15, 0.81)	0.015	0.26 (0.08, 0.90)*	0.033	
Before-and-after (only control group)	0.41 (0.24, 0.70)	0.001	0.28 (0.12, 0.63) ^b	0.002	

*Adjusted for age (quadratic), BMI (quadratic), asset index category, ever smoking, SHS, owning a wood-fired sauna, recent use of wood-fired sauna, and time of day (natural spline with 5 degrees of freedom). *Adjusted for age (quadratic), day of week, season (wet/dry), daily average temperature and relative humidity, daily rainfall, interactions of weather variables with season, recent use of wood-fired sauna, and time of day (natural spline with 5 degrees of freedom).

Household Air Pollution and Blood Pressure

In Yunnan

Baumgartner et al. Environmental Health Perspectives 2011, Oct

MD-diagnosed Acute Lower Respiratory Infection

Generalized Exposure-Response: Outdoor Air, SHS, and HAP

Pneumonia from combustion particles Annual average PM2.5 in ug/m3

Bhaktapur Cooking Fuels

- Electricity--196 (21.4%)
- Gas 261--(28.5%)
- Kerosene--221 (24.1%)
- Biomass--239 (26.1%)

Bhaktapur Preliminary Results

PM _{2.5} (μg/m ³) quartiles				
<55			1.00	
55 to <91			1.49	0.98-2.26
91 to <215			2.31	1.52-3.52
<u>></u> 215			2.97	1.91-4.61
Main stove				
Electricity	1.00			
Gas	1.29	0.84-1.99		
Kerosene	1.65	1.04-2.61		
Biomass	1.58	1.05-2.39		

Tuberculosis and Indoor Biomass and Kerosene Use in Nepal: A Case-Control Study

Amod K. Pokhrel,¹ Michael N. Bates,¹ Sharat C. Verma,^{2,3} Hari S. Joshi,^{3*} Chandrashekhar T. Sreeramareddy,^{3**} and Kirk R. Smith¹

¹School of Public Health, University of California–Berkeley, Berkeley, California, USA; ²Regional Tuberculosis Center, Ram Ghat, Pokhara, Nepal; ³Department of Community Medicine, Manipal Teaching Hospital, Manipal College of Medical Sciences, Pokhara, Nepal

VOLUME 118 | NUMBER 4 | April 2010 · Environmental Health Perspectives

Risks from fuel use for TB in women in Pokhara

<u>Cookstove</u>
Gas
Biomass
Kerosene

1.00 1.21 (0.48–3.05) 3.36 (1.01–11.22)

Heating fuel	
No heating fuel use or electricity	1.00
Biomass	3.45 (1.44–8.27)

<u>Main light source in th</u>	<u>e house</u>	
Electricity	1.00	
Kerosene lamp	9.43	(1.45–61.32)

Pokhrel et al., 2010

New Pokhara TB Case-Control Study

- Funded by US National Institutes of Health, fieldwork starting 2012
- UC Berkeley, UC San Francisco, National TB Control Center of Nepal, ISER-Nepal (Chitwan)
- 650 cases, 1300 controls
- Powered to detect differences across all fuel and stove/lamp types
- Will be able to detect separate risk factors for TB infection and TB disease
- Innovative community control selection
- Innovative household air pollution monitoring

Summary

- Worst thing to do is stick burning stuff in your mouth – 5+ million premature deaths
- Next worse is burning in your house 2 million deaths
- Next worse is having someone else nearby sticking in their mouth – 400k deaths
- Even bad to have on your planet 2+ million deaths
- Chimneys do not help enough need to stop producing the pollution at all.

New Generation of Interventions to Get to Low Smoke Exposures

- Advanced biomass stoves that do not produce pollution
- Promotion of processed biomass pellets
- Promotion of biogas
- Promotion of LPG
- Promotion of electric and solar cooking for selected tasks where highly efficient, e.g. rice cookers
- Integration with lighting solutions, such as TEG stoves and rechargeable lamps
- Discourage both open biomass fires and kerosene

Many thanks

Publications and presentations on website – easiest to just "google" Kirk R. Smith

