IERs and the WHO IAQGs: How Clean is Clean Enough?

Symposium on the WHO Indoor Air Quality Guidelines

Kirk R. Smith

Member WHO Indoor AQG Expert Group

UC Berkeley

ISEE/ISES/ISIAQ Conference, Basel, Aug 2013

Integrated Exposure-Response (IER) Functions

- Linking exposures and risks across four sources of combustion particles
 - Ambient air pollution (AAP)
 - Secondhand tobacco smoke (SHS)
 - Household air pollution (HAP)
 - Active tobacco smoking (ATS)
- 3+ orders of magnitude range of exposure

Integrated Exposure-Response Functions

- Why do it?
- What does it reveal?
- What's good about it?
- What's not so good
- What does it mean for the IAQGs?

Why do it?

- In the recent AAP Comparative Risk Assessment, it was found that much of the world's population is exposed to PM2.5 levels well above where good epi studies have been done
- Long-term cohort studies in North America and Europe not more than 35 ug/m3, but
- Parts of India and China well above this
- What is their risk?

Extrapolation?

- Much of toxicology and epidemiology has focused on extrapolating from high to low exposures
- Has distinct advantage of at least one anchor point available – zero exposure and zero risk
- Even then, often problematic to understand shape of curve at low levels

Extrapolation upwards?

- Many shapes possible, i.e., different models fit data ok at lower exposures but are wildly different at high levels.
- Many also do not pass the smoking laugh test, i.e. reach relative risks for AAP well above what smokers experience for several important diseases
- Need to anchor the upper end of the exposure range with smoking levels to derive exposure curve.

Thus the first IER curves

- Impacts from AAP, smoking, and secondhand smoke need to be put on same exposure axis
- Use inhaled dose in mg PM2.5/day (applied since 1980s to compare air pollution with smoking)
- Not actual dose deposition not known
- Exposure concentration converted to inhaled dose by population breathing rates
- Two papers led by Arden Pope in 2009/11

Risk of IHD (light grey), Cardiovascular Disease (incl. stroke) (dark grey) and Cardio-pulmonary disease (black). Pope et al 2009

Opportunity Presents itself for HAP

- HAP exposure tend to lie between those for AAP/SHS and active smoking
- Risks must lie between as well, even for diseases for which little HAP data are yet available, like cardiovascular disease
- Thus, IERs could be used for interpolation as well as extrapolation.

Heart Disease and Combustion Particle Doses

GBD Comparative Risk Assessments

- More sophisticated modeling, systematic estimation of uncertainty bounds, and inclusion of more studies was done for IERs (Burnett, Cohen, Lim, and others)
- In addition, for some outcomes, results of household air pollution studies also included
- These IERs were adopted for use in the AAP and HAP CRAs with a common counterfactual ~7 ug/m3 annual average

In the GBD Project

- IERs used in the HAP CRAs for 4 major outcomes
 - Ischemic Heart Disease (IHD)
 - Stroke
 - Lung cancer
 - ALRI in children no ATS evidence
- For COPD and cataracts relied on systematic reviews and meta analyses

Argument from consistency across combustion particle exposure settings

- Assumes fine combustion particles are best measure of risk in each setting and have similar effects per unit mass across the four source types
 - Three are mainly biomass
 - AAP contains significant biomass particles
 - Probably difference by outcome, however e.g.,
 LBW and lung cancer may be related to other components as well
- Remarkable consistency across 3 orders of magnitude of dose measured in mg/day of PM_{2.5}
- Where HAP has no direct epi data, seems reasonable to interpolate for outcomes where there are well established effects at both lower and higher doses.

Relative Risks by Exposure-

Annual ug/m3 PM2.5

Exposure – response relationship

Upper end of ALRI-IER from RESPIRE studies In Guatemala

Actual personal exposure

Smith et al, 2011

Good things about the IERs

- Allow extrapolation for AAP impacts with smoking used to anchor the upper end
- Allow interpolation for HAP with diseases for which there are few direct data
- Allows use of common low counterfactual, which is not possible with standard meta-analytic results.
- Link combustion particle exposures from many sources – adds plausibility

Worrisome things about the IERs

- Ignore differences in particle composition
- Ignore differences in associated pollutants
- Ignore difference in exposure patterns
- Ignore differences in populations studied
- Ignore differences in exposure misclassification among exposure types
- And more

Two striking aspects of IERs - #1

- Varying degree of flatness within the exposure ranges typical in HAP
 - Most flat: Stroke and IHD
 - Intermediate: ALRI
 - Least flat (most linear): Lung cancer
- Need to bring exposure to low levels to achieve anything like full health benefits
 - Achievable with gas or electricity, but only if used 100%
 - Not yet achievable with available biomass and coal stoves

Two striking aspects of IERs - #2

- Although better exposure assessment is needed for every study, if we believe the flatness of the curves,
 - Imprecise exposure assessment at high levels need not worry us as much
 - As imprecision/bias at levels below 100 ug/m3, where the curves are steepest

Methodological issues

- AAP studies, upon which the low end of the IERs are based, do not measure personal exposure.
- This is ok for the epi, which is comparison of changes in exposure vs changes in health
- But perhaps not for interpretations, such as risk assessments, that derive absolute risks from absolute exposures
- Reasonable concern that differential exposure misclassification may occur in the implied relation between ambient monitors and actual personal exposure, particularly at low levels.

Methodological issues, cont.

- The standard practice of transferring RR from epi studies as the vertical axis may not be appropriate for risk assessments
- Actual populations have a wide range of exposures from all four sources plus others (occupational, streetside, etc), often partly correlated
- Background disease rates also vary by exposure
- May need to switch to total exposure estimates for the x-axis and absolute risk for the y-axis.
- Certainly needs to be tried before applying IERs to outdoor air pollution policy

Implications for IAQGs - ALRI

- The IER for ALRI is based primarily on personal monitoring in children.
- Thus, it does not rely on anchoring by smoking
- Or suffer the problems of exposure misclassification in AAP studies
- It is, however, based on only one study and thus needs to be bolstered by others, which
- Fortunately are in progress in Africa and Asia.

Implications for IAQGs - adult

- Although there remain uncertainties about the shape of the IERs at the low end,
- Because of the upper end anchoring by smoking for adult outcomes, there must be considerable flattening in the intermediate levels.
- More work is needed to pin down exactly where this flattening ends, but
- We are confident presently to say that PM2.5
 levels must reach down at least to WHO IT-AQGs (<35 ug/m3) to be acceptable for health, ie
- Very clean cooking is needed.

Thank you