Automotive Core TOOS

Ken Coll 248-209-4455 kencoll@ameritech.net **Advanced Product Quality Planning** (APQP)

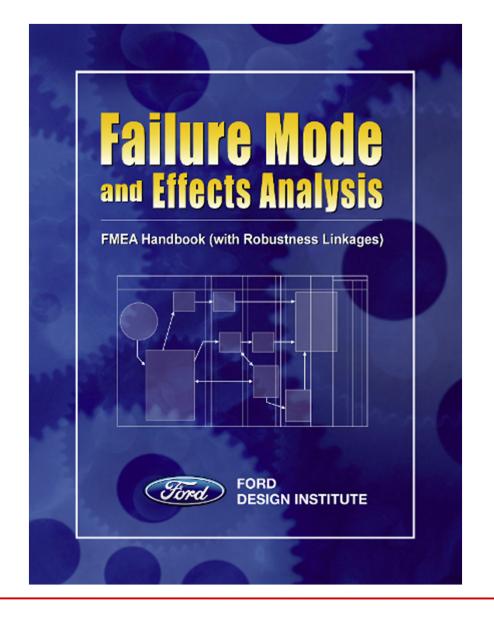
Failure Mode and Effects Analysis (FMEA)

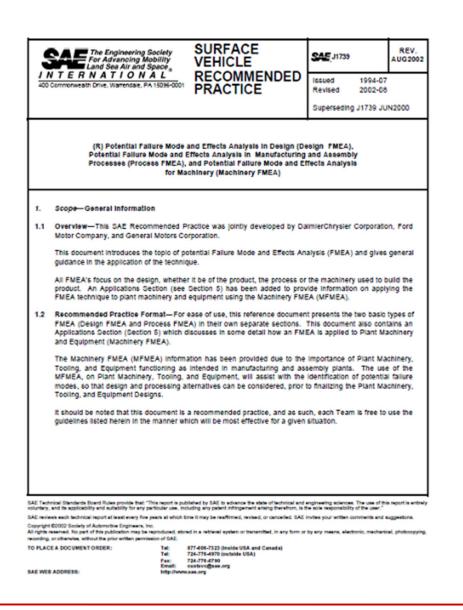
Control Plan

Production Part Approval Process (PPAP)

Statistical Process Control (SPC)

Measurement System Analysis (MSA)


Examples: AIAG "Blue Book" Manuals



ASQ Automotive Division

Automotive Core Tools

Examples: Other Manuals

ASQ Automotive Division

Webinar Series

Core Tools in ISO/TS 16949:2009

```
APQP: 7.1 (Note)
```

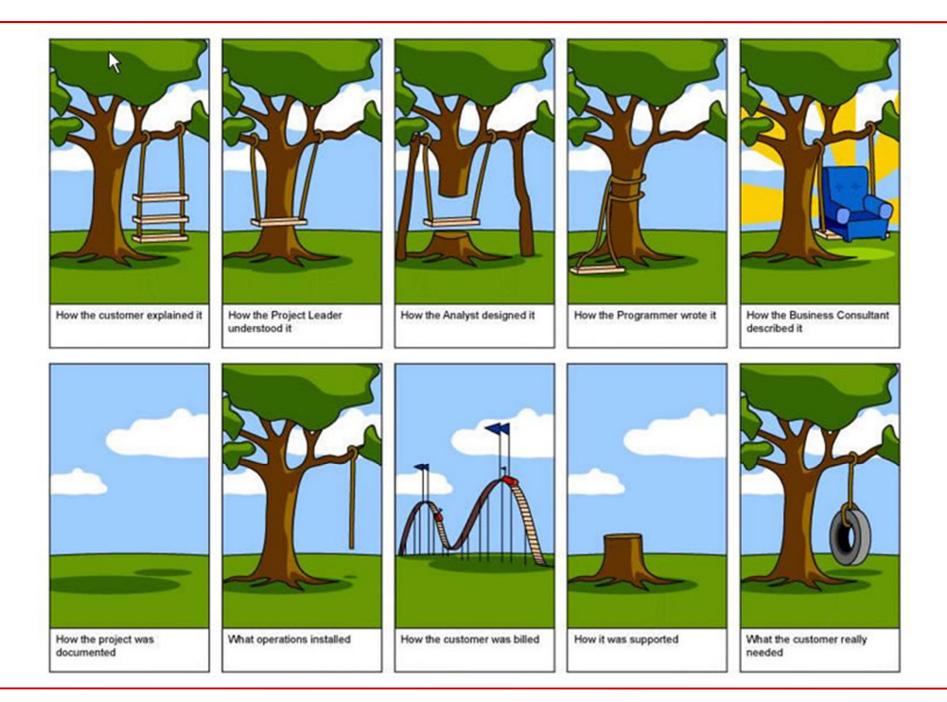
```
FMEA: 7.3.3.1, 7.3.3.2
```

Control Plan: 7.5.1.1, Annex A

Product Approval Process (PPAP): 7.3.6.3

SPC: 8.1.2, 8.5.1.2

MSA: 7.6.1



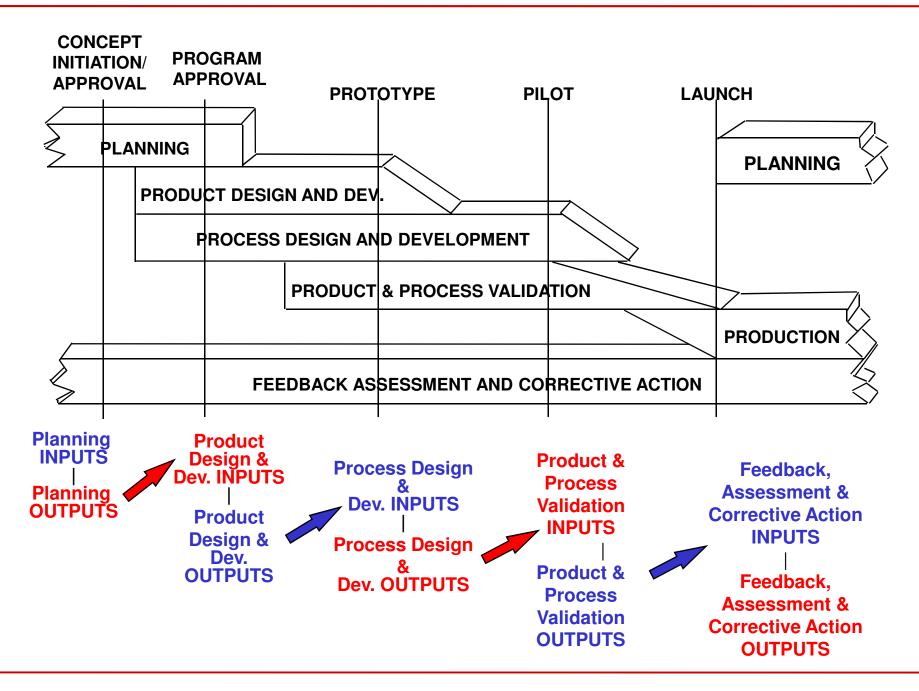
ASQ Automotive Division

Webinar Series

ASQ Automotive Division

Webinar Series

APQP


What is it?

Management of product development

Why do we use it?

To understand what our customer wants and fulfill those wants

Advanced Product Quality Planning

ASQ Automotive Division

Concept Initiation/Approval

Inputs:

- Voice of the Customer
 - Market Research (Including OEM Vehicle Timing and Volume Expectations
 - Historical Warranty and Quality Information
 - Team Experience
- Business Plan/Marketing Strategy
- Product/Process Benchmark Data
- Product/Process Assumptions
- Product Reliability Studies
- Customer Inputs

Concept Initiation/Approval

- Design Goals
- Reliability and Quality Goals
- Preliminary Bill of Materials
- Preliminary Process Flow Chart
- Preliminary Listing of Special Product and Process Characteristics
- Product Assurance Plan
- Management Support

Program Approval

Design Outputs:

- Design Failure Mode and Effects Analysis (DFMEA)
- Design for Manufacturability and Assembly
- Design Verification
- Design Reviews
- Prototype Build -- Control Plan
- Engineering Drawings (Including Math Data)
- Engineering Specifications
- Material Specifications
- Drawing and Specification Changes

APQP Outputs:

- New Equipment, Tooling and Facilities Requirements
- Special Product and Process Characteristics
- Gages / Testing Equipment Requirements
- Team Feasibility Commitment
 & Management Support

ASQ Automotive Division

APQP Process Design and Development Phase

Prototype

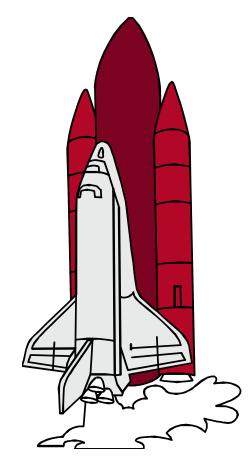
- Packaging Standards and Specifications
- Product/Process Quality System Review
- Process Flow Chart
- Floor Plan Layout
- Process Failure Mode and Effects Analysis (PFMEA)
- Characteristics Matrix
- Pre-Launch Control Plan
- Process Instructions
- Measurement System Analysis Plan
- Management Support
- Preliminary Process Capability Study Plan

APQP Product and Process Validation Phase

Pilot

- Significant Production Run
- Measurement Systems Evaluation
- Preliminary Process Capability Study
- Production Part Approval
- Production Validation Testing
- Packaging Evaluation
- Production Control Plan
- Quality Planning Sign-Off and Management Support

Launch


- Reduced Variation
- Improved Customer Satisfaction
- Improved Delivery and Service
- Effective Use of Lessons Learned/Best Practice

Pitfalls

- APQP treated as a "Quality Department Responsibility"
- APQP a separate process, not integrated into product development
- Key stakeholders brought in late (quality, production, suppliers)
- Milestones and deliverables ignored
- No top management involvement/support

FMEA Failure Mode and Effects Analysis

ASQ Automotive Division

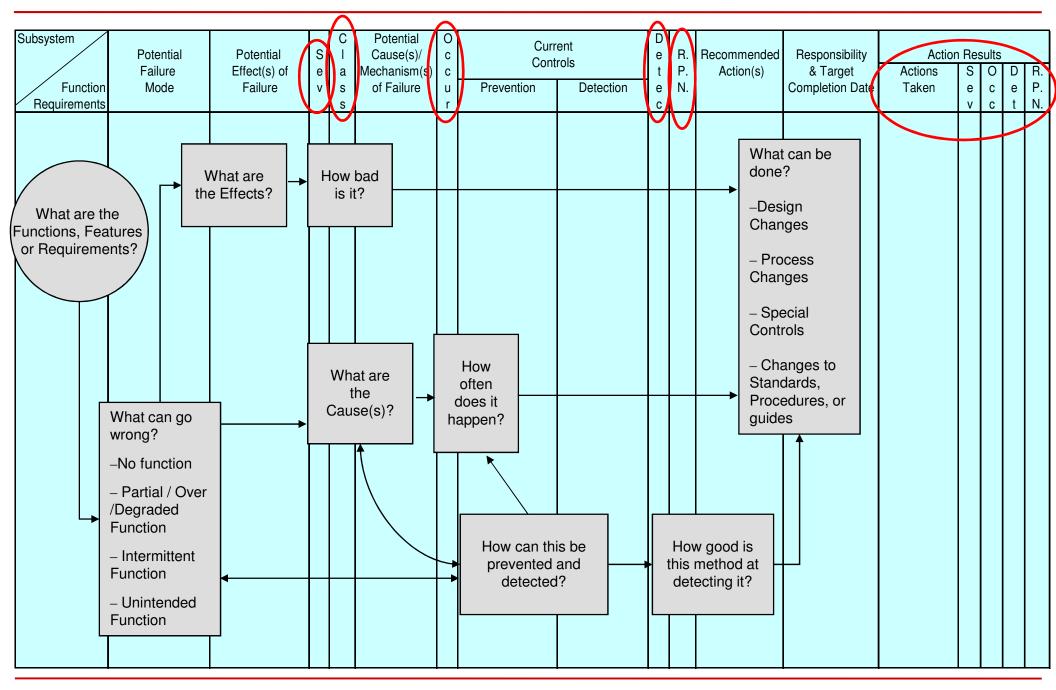
FMEA

What is it? A risk analysis of a part or process

Why do we use it?

To find and fix a problem before something breaks or someone gets hurt

Design FMEA Process FMEA


Types of FMEAs

Others:

- **System FMEA**
- **Concept FMEA**
- **Environmental FMEA**
- **Machinery FMEA**
- **Software FMEA**

FMEA Process

ASQ Automotive Division

Webinar Series

1st Priority is <u>Severity</u>. Severity has a direct impact on the customer.

2nd Priority is <u>Criticality</u> (Severity times Occurrence: S x O). Criticality evaluates the risk that an event with a high impact on the customer will occur.

3rd Priority is <u>RPN</u>. RPN evaluates the ability to detect and contain poor quality.

Failure Mode and Effects Analysis

Pitfalls

- FMEA started late in the development process (just in time for PPAP!)
- FMEA never updated after release
- FMEA not updated from nonconformity corrective actions
- Right side (action area) is blank
- RPN thresholds
- FMEA written by one person
- FMEA treated as a "Quality Department Responsibility"

ASQ Automotive Division

Webinar Series

Control Plan

What is it?

A summary of controls used to make sure my customer gets good product

Why do we use it?

To make sure controls are used and stay in place

Prototype	aunch		TROL P	PLAN						
Control Plan Number	Key Contact/Phone					Date (Orig.	.)	Date (Rev.)		
Part Number/Latest Change Le	Core Team					Customer Engineering Approval/Date (If Req'd.)				
Part Name/Description	Supplier/Plant Approval/Date					Customer Quality Approval/Date (If Req'd.)				
Supplier/Plant	Other Approval/Date (If Req'd.)					Other Approval/Date (If Req'd.)				
PART/ PROCESS NUMBER DESCRIPTION	MACHINE, DEVICE, JIG,TOOLS, FOR MFG. NO.	CHARACTER	ISTICS	SPECIAL CHAR. CLASS	RODUCT/PROCES SPECIFICATION/ TOLERANCE		SAMI	PLE FREQ.	CONTROL METHOD	REACTION PLAN

Control Plan Elements

TS 16949 Annex A

A.2 Elements of the control plan

The organization shall develop a control plan that includes, as a minimum, the following contents.

a) General data

- control plan number,
- issue date and revision date, if any,
- customer information (see customer requirements),
- organization's name/site designation,
- part number(s),
- part name/description,
- engineering change level,
- phase covered (prototype, pre-launch, production),
- key contact,
- part/process step number,
- process name/operation description.

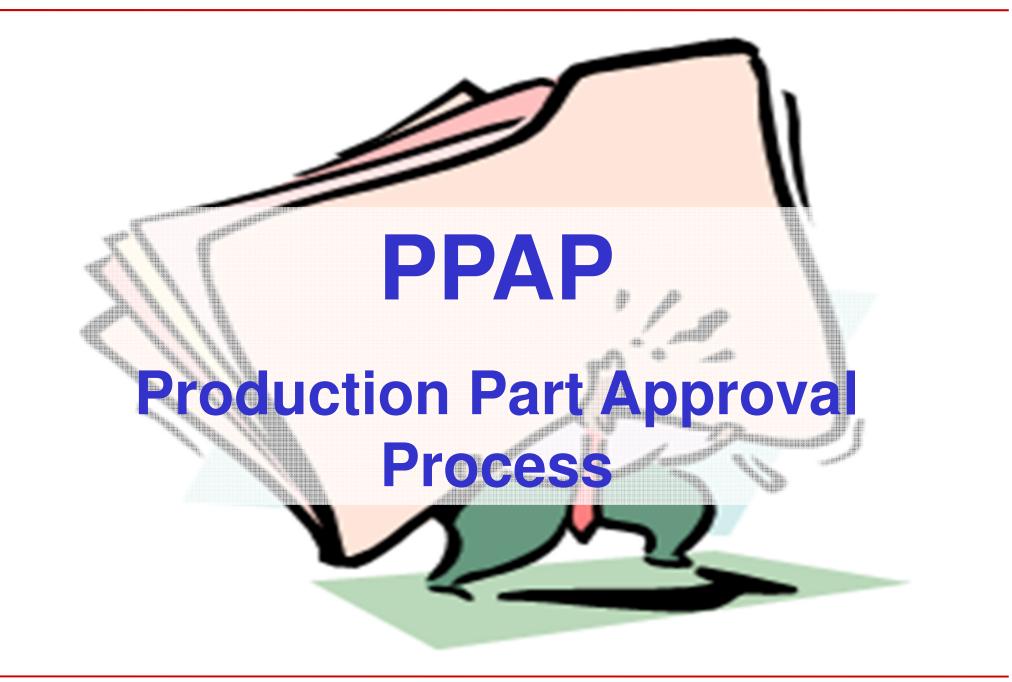
b) Product control

- product-related special characteristics,
- other characteristics for control (number, product or process),
- specification/tolerance.

c) Process control

- process parameters,
- process-related special characteristics,
- machines, jigs, fixtures, tools for manufacturing.

d) Methods


- evaluation measurement technique,
- error-proofing,
- sample size and frequency,
- control method.
- e) Reaction plan and corrective actions
- reaction plan (include or reference),
- corrective action.

Control Plan

Pitfalls

- Control plan and PFMEA not aligned
- Control plan and operator instructions not aligned
- Control plan out of date
- Control plan not updated from nonconformity corrective actions

PPAP

What is it?

Requirements for approval of production parts.

Why do we use it?

To make sure that I understand all my customer requirements, and that I can meet them under actual production conditions.

PPAP

- **1 Design Records**
- 2 Authorized Engineering Change Documents
- **3 Customer Engineering Approval**
- 4 Design FMEA
- 5 Process Flow Diagrams
- 6 Process FMEA
- 7 Control Plan
- 8 Measurement System Analysis Studies
- 9 Dimensional Results
- 10 Material / Performance Test Results

- 11 Initial Process Study
- **12 Qualified Laboratory Documentation**
- **13 Appearance Approval Report**
- **14 Sample Production Parts**
- **15 Master Samples**
- 16 Checking Aids
- 17 Customer-Specific Requirements (Records)
- **18 Part Submission Warrant**
 - **Bulk Material Requirements Checklist**

Retention/Submission Requirements Table 4.2

(Normative)

[NOTE: Table 4.2 lists submission and retention requirements. Mandatory and applicable requirements for a **PPAP** record are defined in the **PPAP** manual and by the customer.]

Submission Level

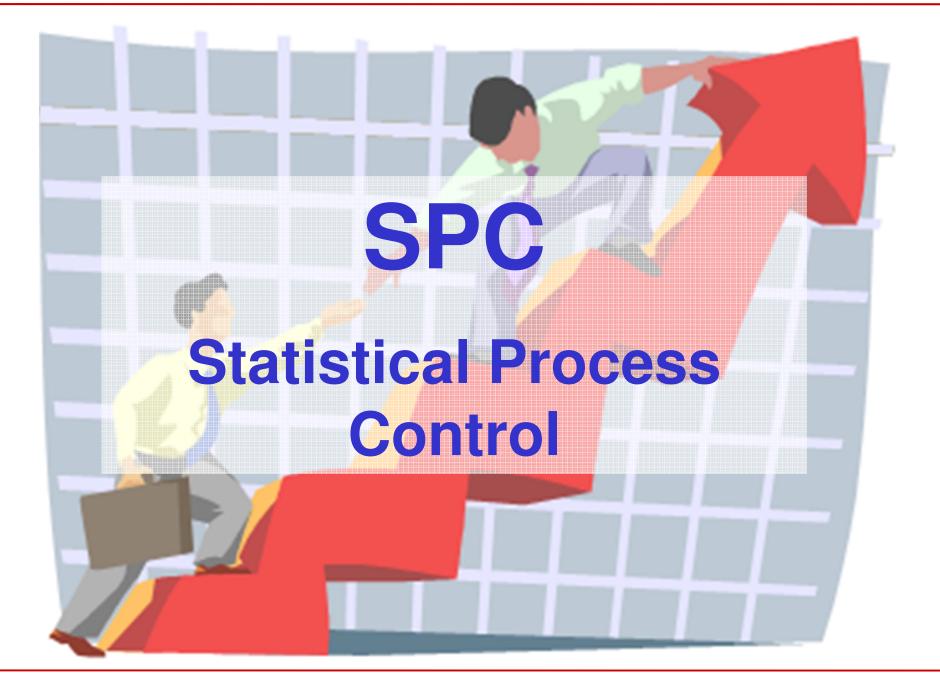
<u>Requirement</u>		Level 1	Level 2	<u>Level 3</u>	<u>Level 4</u>	Level 5
1.	Design Record	R	S	S	*	R
	- for proprietary components/details	R	R	R	*	R
	- for all other components/details	R	S	S	*	R
2.	Engineering Change Documents, if any	R	S	S	*	R
3.	Customer Engineering approval, if required	R	R	S	*	R
4.	Design FMEA	R	R	S	*	R
5.	Process Flow Diagrams	R	R	S	*	R
6.	Process FMEA	R	R	S	*	R
7.	Control Plan	R	R	S	*	R
8.	Measurement System Analysis Studies	R	R	S	*	R
9.	Dimensional Results	R	S	S	*	R
10.	Material, Performance Test Results	R	S	S	*	R
11.	Initial Process Studies	R	R	S	*	R
12.	Qualified Laboratory Documentation	R	S	S	*	R
13.	Appearance Approval Report (AAR),	S	S	S	*	R
	if applicable					
14.	Sample Product	R	S	S	*	R
15.	Master Sample	R	R	R	*	R
16.	Checking Aids	R	R	R	*	R
17.	Records of Compliance	R	R	S	*	R
	With Customer-Specific Requirements					
18.	Part Submission Warrant (PSW)	S	S	S	S	R
	Bulk Material Checklist (see 4.1 above)	S	S	S	S	R

S = The organization shall submit to the customer and retain a copy of records or documentation items at appropriate locations.

R = The organization shall retain at appropriate locations and make available to the customer upon request.

* = The organization shall retain at appropriate locations and submit to the customer upon request.

DaimlerChrysler	PART SUBMISSION WARRANT					
Part Name	Cust. Part Number					
Shown on Drawing No.	Org. Part Number					
Engineering Drawing Change Level	Dated					
Additional Engineering Changes	Dated					
Safety and/or Government Regulation Yes No Purchase Order N	0 Weight (kg)					
Checking Aid NoChecking Aid Engineering Change Level	Dated					
SUBMISSION RESULTS						
The results for dimensional measurements material and functional tests appearance criteria statistical process package						
These results meet all design record requirements: Yes NO (If "NO" - Explanation Required)						
Mold / Cavity / Production Process						
DECLARATION I affirm that the samples represented by this warrant are representative of our parts which were made by a process that meets all Production Part Approval Process Manual 4th Edition Requirements. I further affirm that these samples were produced at the production rate of Ahours. I also certify that documented evidence of such compliance is on file and available for review. I have noted any deviations from this declaration below.						
EXPLANATION/COMMENTS:						
Is each Customer Tool properly tagged and numbered? Yes No	n/a					
Organization Authorized Signature	Date					
Print Name Phone No.	FAX No					
Title E-mail						


ASQ Automotive Division

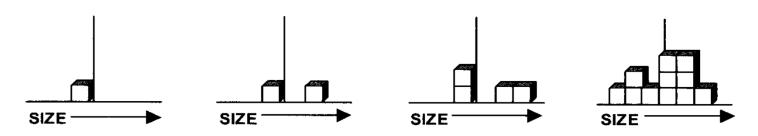
Webinar Series

Pitfalls

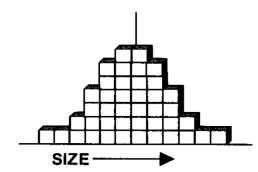
- PPAP is treated as a separate process, rather than integrated into product development
- Incomplete PPAP
- Assuming that submission levels are what's required, rather than what's submitted

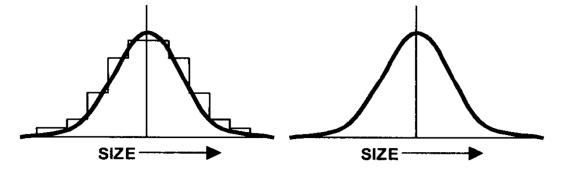
SPC

What is it?

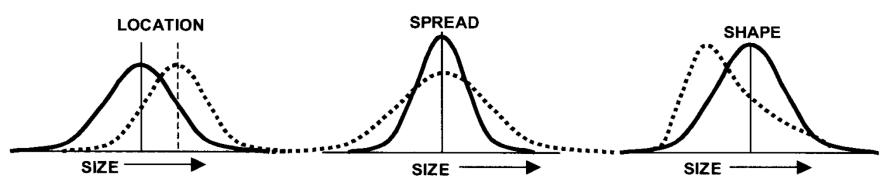

A collection of statistical methods, especially control charts, used to analyze and control a process

Why do we use it?


To know when processes change and respond accordingly


Variation

PIECES VARY FROM EACH OTHER



BUT THEY FORM A PATTERN THAT, IF STABLE, CAN BE DESCRIBED AS A DISTRIBUTION

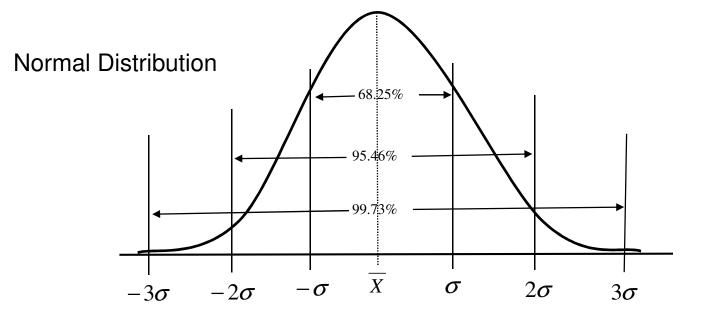
DISTRIBUTION CAN DIFFER IN:

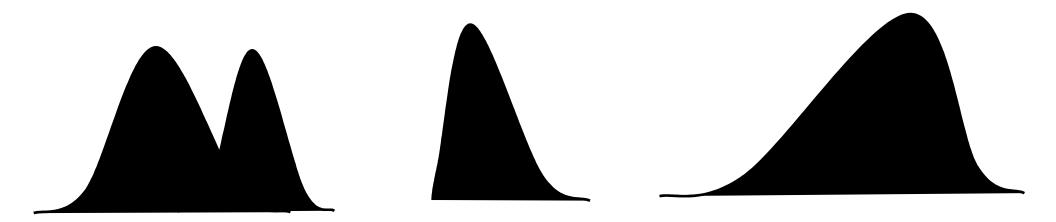
Location (Center): 3 key measures

Mean = Average or X

Median = Middle (by count)

Mode = Most often


Spread: 3 key measures

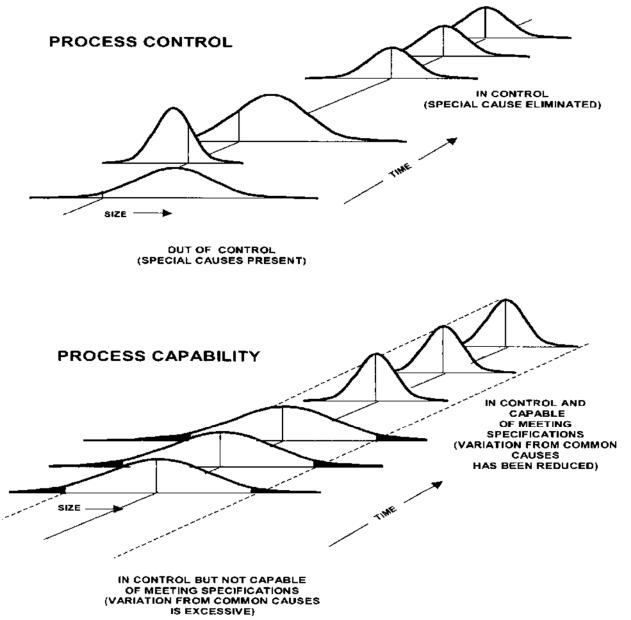

Range = R

Standard Deviation = σ or S

Variance =
$$\sigma^2$$

Distributions can vary in Shape

ASQ Automotive Division

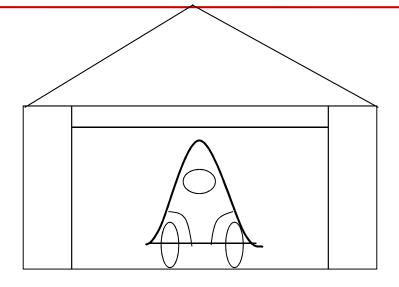

Webinar Series

Control vs. Capability

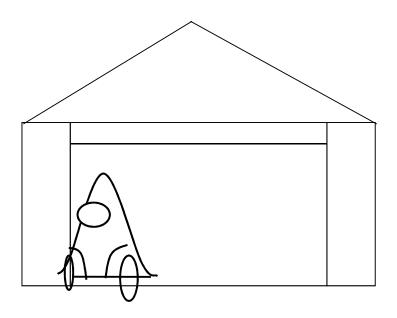
Common and Special Causes

If only common causes of variation are present, the output of a process forms a distribution that is stable over time and is predictable

If special causes of variation are present, the process output is not stable over time

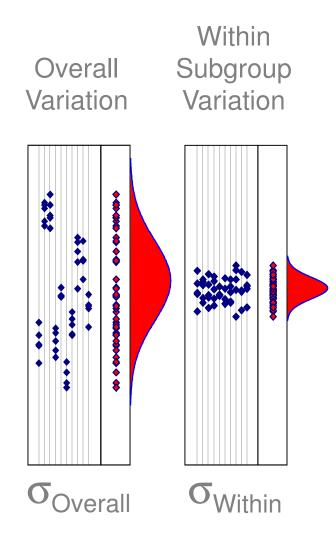

Control vs. Capability

Statistical Control


		In- Control (Common Cause)	Out-of-Control (Special Cause)
Variation	Acceptable	Case 1	Case 3
(Capability)	Unacceptable	Case 2	Case 4

Cp, Cpk, Pp & Ppk

Cp / Pp: <u>can</u> the car fit into the garage?


Cpk / Ppk: <u>does</u> the car fit into the garage?

Measures of Process Capability

(Capability Index)

	Overall Variation	Within Subgroup Variation if stable
Performance	Ppk	Cpk
Capability If centered	Рр	Ср

Kenneth J Kortge

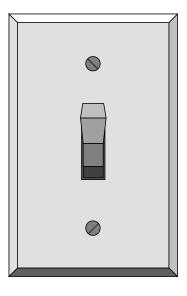
ASQ Automotive Division

Webinar Series

Capability Metrics – Acceptance Criteria

Typical:

Index > 1.67 Acceptable


- **1.33 ≤ Index ≤ 1.67 May Be Acceptable** May require an improvement plan
- Index < 1.33 Not Acceptable

2 Types of Data

Variable

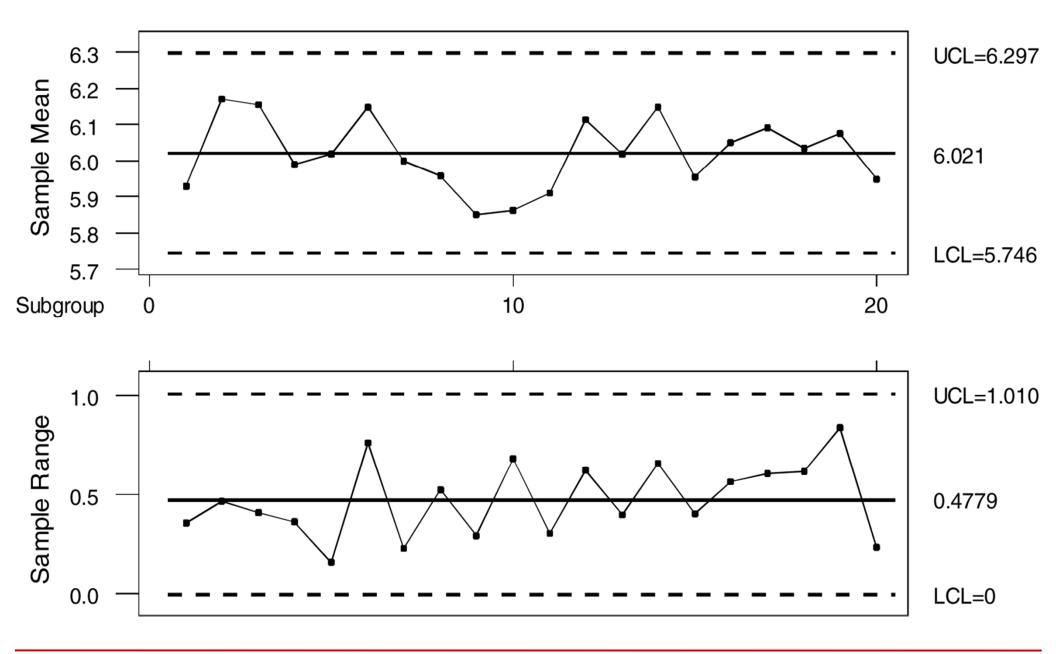
Attribute

ASQ Automotive Division

Webinar Series

Variables Charts

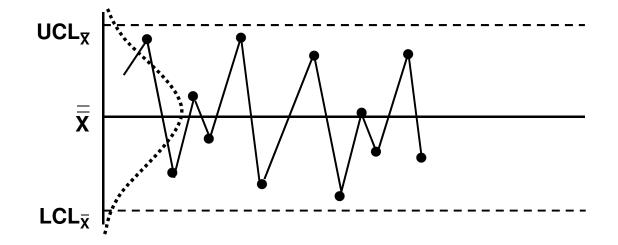
Typical:


Chart Type	X-Bar & R	Median	Individual & Moving Range (MR)
Primary Usage	Routine monitoring of manufacturing processes	Usually used as a monitoring tool for product or processes	Used when only one sample is possible
What Is ChartedPlots the average size and the range of the part sizes		Plots the individual sizes of the parts and the median of the part sizes	Plots the sample size and the moving range of the sample size
Sample Subgroup Size	Usually 3 to 6	Should be an odd number: 3, 5, 7, etc.	One

Attribute Charts

Typical:

Chart Type	P Chart	nP Chart	C Chart	U Chart
Primary Usage	Used for analyzing proportion or percent nonconforming or defective parts	Used for analyzing the number nonconforming or defective parts	Used for analyzing nonconformities or defects	Used for analyzing nonconformities per unit
What is Charted	Plots the proportion or percent of the nonconforming units	Plots the number of nonconforming items	Plots the count of all nonconformities found in the sample	Plots the average number of nonconformities in each sample
Sample Subgroup Size	Variable	Fixed	Fixed	Variable

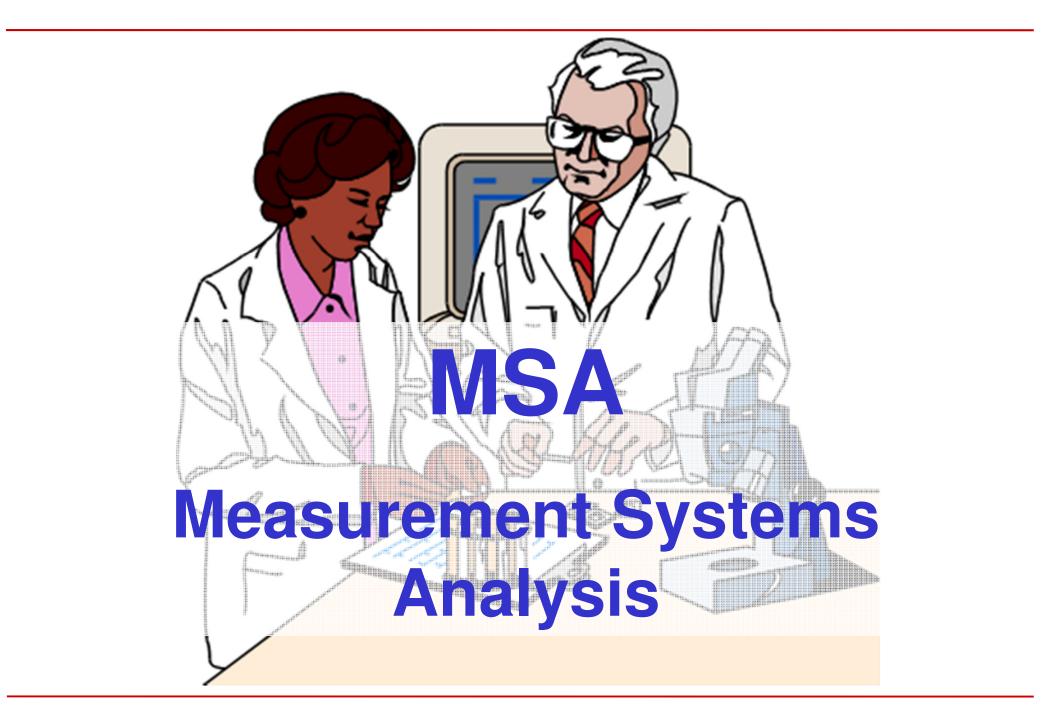

\overline{X} & R Chart

ASQ Automotive Division

Webinar Series

How Control Charts Work

Special Cause Criteria

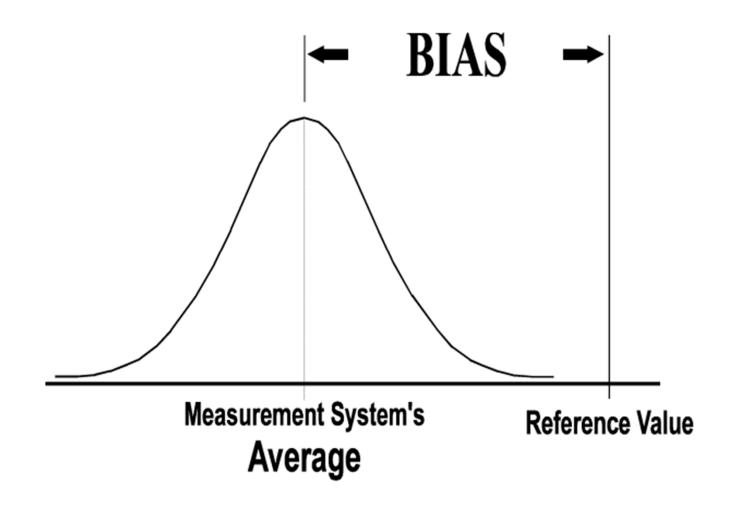

	Summary of Typical Special Cause Criteria
1	1 point more than 3 standard deviations ²¹ from centerline
2	7 points in a row on same side of centerline
3	6 points in a row, all increasing or all decreasing
4	14 points in a row, alternating up and down
5	2 out of 3 points > 2 standard deviations from centerline (same side)
6	4 out of 5 points > 1 standard deviation from centerline (same side)
7	15 points in a row within 1 standard deviation of centerline (either side)
8	8 points in a row > 1 standard deviation from centerline (either side)

- 1. Most measurements cluster around the center (average) line
- 2. A few measurements approach the edges (control limits)
- 3. No measurements outside the control limits
- 4. Same number of measurements on both sides of the center (mirror image)
- 5. Random (no patterns)

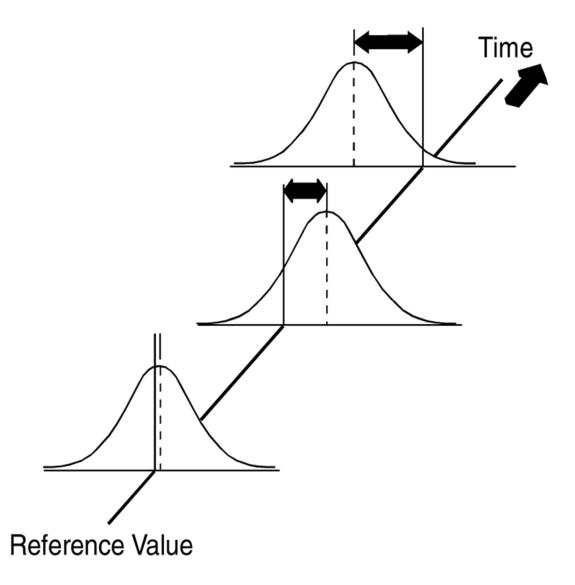
Pitfalls

- Ignoring out of control conditions
- Comparing control limits to spec limits
- Making process adjustments without understanding the source of the special cause variation
- Putting SPC charts on everything

MSA

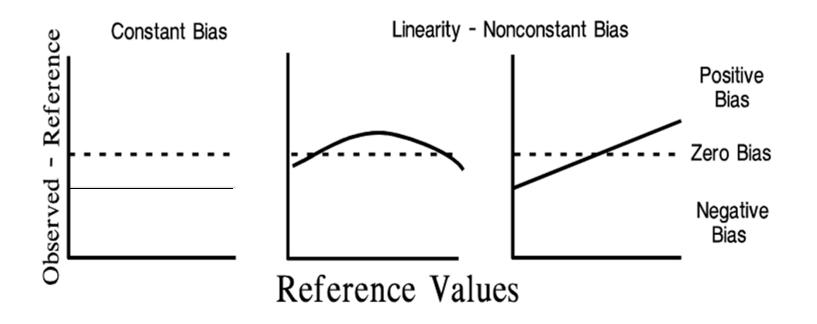

What is it?

A collection of statistical methods used to assess how much I can trust the information from a gauge


Why do we use it?

Since all my information about a part/process comes from gauges, I need to know when the gauge information is dependable, and do something when it's not

Bias: difference between the measurement and the "true" value



Stability: change in bias over time

Linearity: change in bias across expected <u>range</u> of measurements

Note that unacceptable linearity can happen in a variety of ways. Do not assume a constant bias.

Gage Repeatability and Reproducibility = GRR = R&R

Variable, replicable measurements

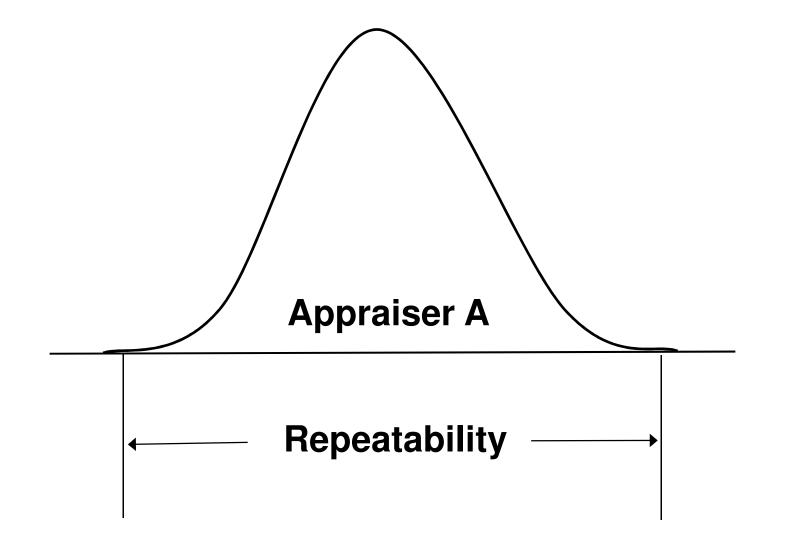
Typical:

10 Parts

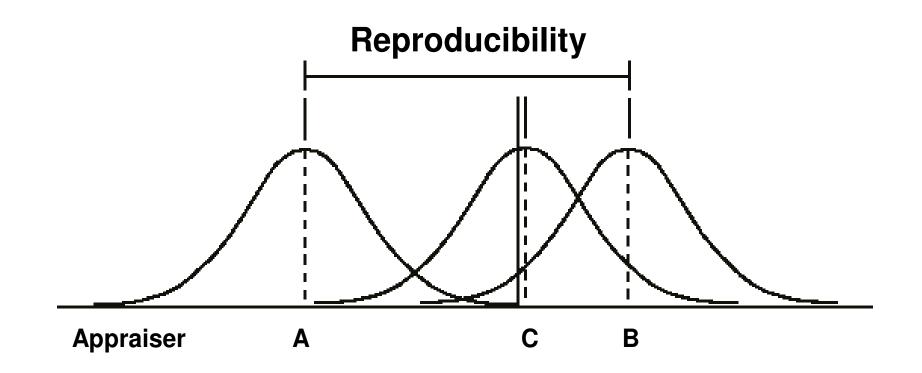
3 Appraisers

3 Trials

 $\sigma^2_{GRR} =$

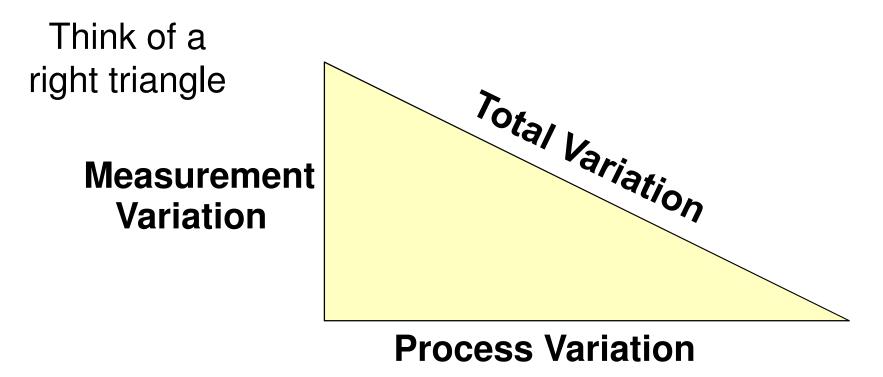


$$+ \sigma^2_{\text{Repeatability}}$$


% Total Variation vs. % Tolerance

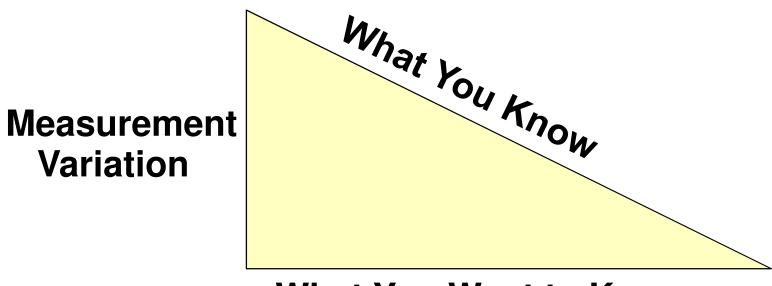
Number of Distinct Categories (NDC)

Repeatability: gage-induced variation


Reproducibility: <u>operator</u>-induced variation

The Effect of Measurement Error

"Observed" "Actual" Total Variation = Process Variation + Measurement Variation


$$\sigma^2_{\text{Total}} = \sigma^2_{\text{Process}} + \sigma^2_{\text{Measurement}}$$

Kenneth J Kortge

Total Variation = Process Variation + Measurement Variation

$$\sigma^2_{\text{Total}} = \sigma^2_{\text{Process}} + \sigma^2_{\text{Measurement}}$$

What You Want to Know

Kenneth J Kortge

Gage R&R Acceptance Criteria (Typical)

<u>% R&R</u>

Under 10% error – Acceptable

10% - 30% error – May be acceptable based upon importance of application, cost of measurement device, cost of repair, etc.

Over 30% error – Not Acceptable. Every effort should be made to improve the measurement system

Number of Distinct Categories (NDC):

Greater than or equal to 5 – Acceptable Less than 5 – Generally Not Acceptable

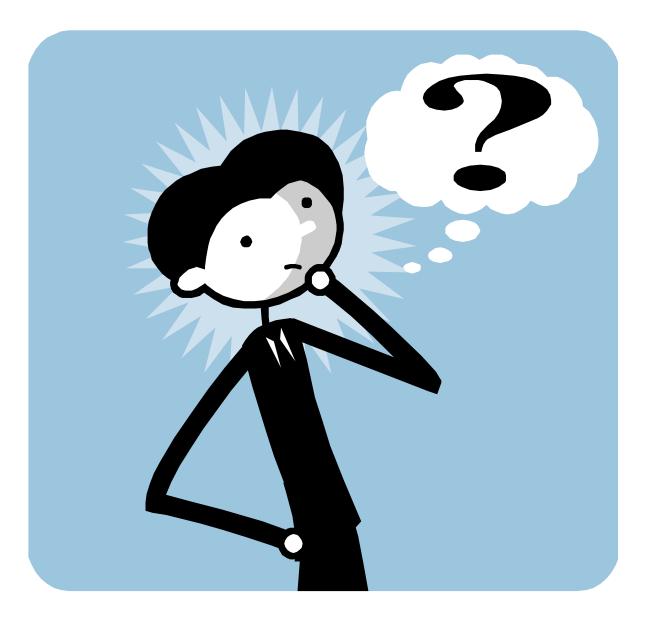
Pitfalls

- Using MSA to obtain a number, rather than to understand gage variation
- Not documenting a conclusion and any actions needed, as part of the study
- Not conducting MSA for all gages on the control plan (TS 16949 requirement)
- Not validating Software (TS 16949 requirement)
- Using wrong analysis method (non-replicable, attribute, etc.)

Automotive Core Tools

Advanced Product Quality Planning (APQP)

Failure Mode and Effects Analysis (FMEA)


Control Plan

Production Part Approval Process (PPAP)

Statistical Process Control (SPC)

Measurement System Analysis (MSA)

QUESTIONS

