

Player/Stage Xcode iPhone Project Setup
Paul Solt

PaulSolt@gmail.com
Release 1.0: 8-20-09

The goal of this project was to use the Player/Stage robotics code on the

iPhone to communicate and control robots. I discuss how to setup the Xcode
development environment. There are two example Xcode projects. The first one is
an Objective-C project that wraps around the C++ Player/Stage code. The second
project is a very primative C++ program running on the iPhone without any UI. Both
of these Xcode projects are fully documented and will serve as a starting point to
iPhone Player/Stage development.

Table of Contents

Player/Stage Xcode iPhone Project Setup ... 1

Requirements .. 2

Setup the Source Folders ... 2

Global Xcode Settings: ... 2

Project Settings .. 3

Create Multiple Build Targets .. 5

Setup Library Dependencies, Linking, and Header Search Paths 5

iPhone Developer Profile Settings .. 8

How to Run the App: .. 8

RobotSample .. 9

BasicRobotSample ... 10

References .. 11

mailto:PaulSolt@gmail.com

Requirements
1. Install Player/Stage 2.03 or 2.1

a. Use Macports: http://www.macports.org/
b. http://paulsolt.com/2009/04/playerstage-macports-and-iphone/

2. Install the Xcode iPhone 3.0 SDK
a. http://developer.apple.com/iphone/

3. Get a iPhone developers license if developing for the actual device.
Developing with the simulator is free.

Setup the Source Folders
1. Create a dev folder on your machine at /Users/USERNAME/dev/
2. Place the projects within the folder with the directory structure.

a. /Users/USERNAME/dev/xcode_build_output
b. /Users/USERNAME/dev/player_2_1
c. /Users/USERNAME/dev/player_2_0_3
d. /Users/USERNAME/dev/ROBOT_PROJECTS

Global Xcode Settings:
The iPhone projects use cross-project references to link against the iPhone

Player/Stage static libraries that are included. There is basic support for
Player/Stage versions: 2.1 and 2.03. The first step is to create a common build
location for your Xcode projects. Below are the steps to setup the Shared Build
Output, in addition to setting up Source Tree variables to use in the project
settings. These variables can be used within Xcode project settings like so:
$(VARIABLE)

1. Use a Shared Build Output directory
a. Xcode -> Preferences -> Building

i. Set Place Build Products in: to Customized location: and choose

the directory path
ii. Set Place Intermediate Build Files in: to With build products

http://www.macports.org/
http://paulsolt.com/2009/04/playerstage-macports-and-iphone/
http://developer.apple.com/iphone/

2. Add Source Tree variables for the reference project locations
a. Xcode -> Preferences -> Source Trees

i. Add new variables by pressing the “+” button and use the path

locations from Setup the Source Folders with the following
variables.

1. PLAYER_2_1_SRC
2. PLAYER_2_0_3_SRC
3. Note: Don’t use special characters, since Xcode has

issues with them.

Project Settings

1. Setup the Cross-Project Reference(s)
a. Add the existing Xcode projects. Look under Groups and Files and

right-click on the Project Name (RobotSample) -> Add -> Existing
Files…

b. Navigate to your Player/Stage Xcode projects and add both of the

Player_2_0_3.xcodeproj and player_2_1.xcodeproj Xcode projects.
c. Note: Do NOT check the Copy items into destination group’s folder

since we are using project references and not a physical copy.

d. Select the cross project references for both Player projects. Double-

click on the project reference and then select Get Info (press Cmd+i).
Change Path Type to be relative and use the Source Tree variables
we setup in the previous section.

Create Multiple Build Targets

Depending on what you need you may want either Player 2.03 or Player 2.1. In
these projects I added support to both libraries. The different robots I’ve worked
with use different versions of Player/Stage. To support these different versions we’ll
use Build Targets. A Build Target contains the settings to create the executable for
your application.

1. Duplicate the RobotSample Target and rename it Robot Sample 2.1
2. Rename the RobotSample Target to RobotSample 2.03

Setup Library Dependencies, Linking,

and Header Search Paths

The Build Targets are not linked to the Player/Stage static libraries. I will show
how to finish linking and referencing the static libraries.

1. On the left pane under Groups & Files, click on Targets and then double-click
on the RobotSample 2.1 target to access the Get Info view (Cmd+i). In the
Direct Dependencies pane press the “+” and add the Player_2_1_IPHONE
dependency from the project references.

2. Click on the Build tab and search for “Search”. Double-click next to Header
Search Path to edit the value. Set the path to the Source Tree variable
$(PLAYER_2_1_SRC) and select the checkbox for Recursive.

3. You should see the full path with “**” appended to the end, which indicates
the search path is recursive. For example:

/Users/paulsolt/dev/player_2_1/**

4. Repeat the previous steps for the RobotSample 2.03 target. It should use the
Player_2_03_IPHONE Direct Dependency and the $(PLAYER_2_0_3_SRC) Source
Tree variable with Recursive checked.

5. Select and drag the static libraries from the cross-project references to the
matching targets.

a. Drag libPlayer_2_1_IPHONE.a to Targets -> RobotSample 2.1 -> Link
Binary with Libraries

b. Repeat the process and drag libPlayer_2_03_IPHONE.a to Targets ->

Robot Sample 2.03 -> Link Binary with Libraries

iPhone Developer Profile Settings

1. Edit the Build Target Identifier. This value must match the format of your
Developer Profile’s App ID address if you are going to deploy to devices.

a. The value should be unique across your different applications. The
RobotSample 2.1 Target has the Identifier value:
com.paulsolt.RobotSample2.03 since my base address is
com.paulsolt.*

2. In the Build Target settings, sign the project with your Developer Profile.
3. *Note*: The code signing process can be buggy. I always seem to run into

difficulties trying to sign a project. Clean and rebuild the project after
changing these settings. As long as the targets Developer Profile is set, you
should be able to deploy to the device. There is a project wide Developer
Profile setting that isn’t always in sync with the Build Targets.

How to Run the App:
1. Open Terminal and start a Player/Stage server using the command:

$ player /usr/local/share/stage/worlds/simple.cfg
2. Run the RobotSample version target in the iPhone Simulator with the

127.0.0.1 local server address. (Cmd + Enter)
3. The RobotSample makes it easy to change the IP address on the

device/simulator using iPhone’s Settings App. On iPhone go to Settings ->
Robot Sample -> Server Address

4. You are ready to control real robots remotely! Just run the application on the

iPhone and change the server address to point to the correct IP addresses.

RobotSample

 The RobotSample demonstrates how to use C++ and Objective-C in an iPhone
application. The Robot class wraps the C++ Player/Stage code in a “run” method. It
provides a basic wrapper around the robot code using Objective-C. I demonstrate
several useful features:

1. Multi-threaded communication with iPhone UI – The Player/Stage code runs
in a separate thread from the User Interface.

2. Bundle Settings – Use the iPhone Settings App to control the server address.
3. Basic User Interface connections with Interface Builder
4. NSTimer for timer-based programming – Run logic code in an update

function at 60 frames per second.

How to Use C++ with Objective-C

To use C++ with Objective-C rename any .m file .mm if it will “touch” the C++
code. The extension will cause the compiler to compile both languages together.
More information is available in Apple’s guide on Using C++ with Objective-C

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Art
icles/ocCPlusPlus.html#//apple_ref/doc/uid/TP30001163-CH10-SW1

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Articles/ocCPlusPlus.html#//apple_ref/doc/uid/TP30001163-CH10-SW1
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Articles/ocCPlusPlus.html#//apple_ref/doc/uid/TP30001163-CH10-SW1

 to use both languages in the compiler. This is needed if you try and wrap up the
Player code with Objective-C like the RobotSample did.

BasicRobotSample

 The basic sample is just a C++ program running on the iphone without a user
interface. It’s an example starting point to run non-interactive algorithms on the
iPhone platform.

There are some settings you should be aware of when working with or
recreating this type of Xcode project:

1. Start with the iPhone OS: Window Based Application

2. Remove all iPhone related code, resources, and libraries This project will
only contain main.cpp, .plist files, and your project files.

3. Remove the precompiled header from the Target Build settings. Search

for .pch

References
Harris, Clint. Easy, Modular Code Sharing Across iPhone Apps: Static Libraries and
Cross-Project References. 2009. <http://www.clintharris.net/2009/iphone-app-
shared-libraries/>.

