
Concurrency and 
Distributed systems

... With Python today.

Jesse Noller

Saturday, March 28, 2009



30,000 Foot View

• Introduction
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Hello there!

• Who am I?

• Why am I doing this?

• Email: jnoller@gmail.com

• Blog - http://www.jessenoller.com

• Pycon - http://jessenoller.com/category/
pycon-2009/
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Most of all, it’s fun!
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No Code, Why?
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Bike sheds
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Concurrency

• What is it?

• Doing many things “at once”

• Typically local to the machine running the app.

• Implementation Options:

• threads / multiple processes

• cooperative multitasking 

• coroutines

• asynchronous programming
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... vs Parallelism

• What is it?

• Doing many things simultaneously

• Implementation options:

• threads

• multiple processes

• distributed systems
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... vs Distributed Systems

• What is it?

• Doing many things, across multiple machines, 
simultaneously

• Many cores, on many machines

• There are many designs

• There are eight fallacies...
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8 fallacies of distributed 
systems

Saturday, March 28, 2009



The network is reliable
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Latency is zero
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Bandwidth is infinite
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The network is secure
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Topology doesn’t change
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There is only one 
administrator
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Transport cost is zero
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The network is 
homogenous
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Summary
• All 3 are related to one another, the fundamental 

goals of which are to:

• Decrease latency

• Increase throughput

• Applications start simple, progress to concurrent 
systems and evolve into parallel, distributed 
systems

• As the system evolves, the fallacies become more 
pertinent, you have to account for them early
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• We have threads. Shiny, real OS ones

• Except for the Global Interpreter Lock

• The GIL makes the interpreter easier to maintain

• ...And it simplifies extension module code

Where is (C)Python?
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• Yes. Sorta. Maybe. It depends.

• I/O Bound / C extensions release it!

• Most applications are I/O bound

• The GIL still has non-zero overhead

• The GIL is not going away*

• You can build concurrent applications 
regardless of the GIL

Is the GIL a problem?

* ... more on this in a moment, dun dun dun.
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Multiprocessing!

• Added in the 2.6/3.0 timeline, PEP 371

• Processes and IPC (via pipes) to allow parallelism

• Same(ish) API as threading and queue

• Includes Pool, remote Managers for data sharing 
over a network, etc

• Multiprocessing “outperforms” threading

• IPC requires pickle-ability. Incurs overhead

Saturday, March 28, 2009



Summary

• We have the Global Interpreter Lock

• We also have multiprocessing (no GIL)

• Threads (as an approach) are good for some 
problems

• They’re not impossible to use correctly

• While hampered, python threads are still useful

• Python still allows you to leverage other 
approaches to concurrency
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(remember that asterisk?)*
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• Python on the JVM (in Java)

• 2.5-Compatible

• Frank and the others are awesome for 
resurrecting this project

• May allow python in the Java door

• Pros:

• Unrestricted threading

• Hooray java.util.concurrent!

• Cons:

• No C extensions
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IronPython

• Python on the .NET CLR

• 2.5.2 Compatible

• Matured rapidly, highly usable

• Great for windows environments

• Pros:

• Unrestricted threading

• Some C extensions via 
ironclad

• Cons:

• Mostly windows only, 
barring mono
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Stackless

• Modified CPython interpreter

• Offers Coroutines, Channels - “lightweight 
threads”

• Cooperative multitasking (single thread executes)

• (mostly) Still alive courtesy of CCP Games

• Still has a GIL

• “Stackless is dead, long live PyPy”
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• Python written in (R)Python

• Getting close to 2.5-Compatibility

• Complete “rethink” of the interpreter

• Focusing on JIT/interpreter speed right now

• Still has the GIL

• Some Stackless features (e.g. coroutines, channels)

• Not mature
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The Ecosystem
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That’s a lot of nuts!

• When I started, I had around 40 libraries on my 
list

• Coroutines, messaging, frameworks, etc

• Python has a huge ecosystem of “stuff”

• Unfortunately, much of is long in the tooth, or of 
beta quality

• New libraries/frameworks/approaches are coming 
out every week
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Concurrency
Frameworks
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Twisted

• “OK, who hasn’t tried twisted?”

• Asynchronous, Event Driven multitasking

• Vast networking library, large ecosystem

• Supports thread usage, but twisted code may not 
be thread safe

• Supports using processes (not mprocessing).

• Can be mind-bending
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Kamaelia

• Came out of BBC Research

• Uses an easy to understand “components talking 
via mailboxes” approach

• Cooperative multitasking via generators by default.

• Honkin’ library of cool things

• Supports thread-based components as well

• Very easy to get up and running

• Abstracts IPC, Process, Threads, etc “away”
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Frameworks

• Both kamaelia and twisted have nice 
networking support

• Both use schedulers which allow scheduled items 
to schedule other items

• Two different approaches to thinking about the 
problem

• Both can be used to build distributed apps

• Like all frameworks, you adopt the methodology
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New: Concurrence

• New on the scene (’09) version 0.3

• Lightweight tasks-with-message passing

• Has a main scheduler/dispatcher

• Built on top of stackless/greenlets/libevent

• Network-oriented (HTTP, WSGI servers)

• Still raw (more docs please)

• Very promising (minus compilation problems)
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Coroutines

• Coroutines are essentially light-weight threads of 
control, Think micro/green threads

• Typically use explicit task switching (cooperative)

• Most implementations have a scheduler, and some 
communications method (e.g. pipes)

• Not parallel unless used in a distributed fashion

• Both Kamaelia and Twisted “fit” here

• Enhanced generators make these easy to build
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Coroutine libraries

• Fibra: microthreads, tubes, scheduler

• Greenlet: C based, microthreads, no scheduler

• Eventlet: Network “framework” layer on top 
of greenlet. Has an Actor implementation \o/

• Circuits: Event-based, components/microthreads

• Cogen: network oriented, scheduler, microthreads

• Multitask: microthreads, no channels (it’s dead 
jim)
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Actors

• Isolated, self reliant components

• Can spawn other Actors

• Communicate via message passing only (by value)

• Operate in parallel

• Communication is asynchronous

• A good model to overcome the fallacies

• See also: Erlang, Scala
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Actor Libraries
• Dramatis (alpha quality)

• Great start, excellent base to start working with 
them

• Parley (alpha quality)

• Another excellent start, supports actors in 
threads, greenlets or stackless tasklets

• Candygram (2004)

• Old, implements erlang primitives, spawns in 
threads

• Kamaelia components can fit here(ish)

Saturday, March 28, 2009



(local) Parallelism
• Multiprocessing

• Processes and IPC via the threading API, in 
Python-Core as of 2.6

• Parallel Python

• Allows local parallelism, but also distributed 
parallelism in a “full” package

• pprocess

• Another easy to use fork/process based package

• Has IPC mechanisms
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Distributed Systems

• Lots of various technologies to help build something

• communications libraries

• socket/networking libraries

• message queues

• some shared memory implementations

• No “full stack” approach

• Most users end up rolling their own, using some 
combinations of libraries and tools
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Distributed Processing

• Frameworks:

• Parallel Python is the closest for a processing 
cluster

• The Disco Project is an erlang-based (with 
python bindings) map-reduce framework
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RPC/Messaging

• RPC:

• Pyro

• rPyc

• Thrift

• Messaging:

• pySage

• python-spread

• XMPP

• Protocol Buffers
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Shared Memory/Message Qs

• Shared Memory

• Posh (dead)

• Memcached

• posix_ipc

• Message Queues

• Apache ActiveMQ

• RabbitMQ

• Stomp

• MemcacheQ

• Beanstalkd
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So...

• Where the hell do we point new users?

• While good, Twisted and Kamaelia have a 
documentation problem

• The rest is a mish-mash of technologies

• Concurrency is hard let’s go shopping!
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Where does this leave us?

• The GIL is here for the foreseeable future

• Not entirely a bad thing (extensions!)

• Python-Core is not the right place for much of 
this, but can provide some basics

• Actor implementation

• Java.util.concurrent-like abstractions

• Anything going in must make this work safe
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Where does this leave us?

• Lots of great community work

• Continued room for growth, adoption of other 
language’s technologies

• If we can build a stack of reusable, swappable 
components for all three areas: everyone wins

• Anyone for a “distributed Django”?

• “loose coupling and tight cohesion”

• Must take the fallacies into account
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Django?

• The point of a framework is to make the 
easy things easy, and the hard things 
easier

• The abstractions must be leaky

• Go see abstractions as 
leverage!

• It must be safe

• It can not ignore the fallacies

• I shall call it Mustaine (Megadeth)
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Questions?
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Fin.
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