
Concurrency and 
Distributed systems

... With Python today.

Jesse Noller

Saturday, March 28, 2009



30,000 Foot View

• Introduction

• Concurrency/Parallelism

• Distributed Systems

• Where Python is today

• Ecosystem

• Where can we go?

• Questions

Saturday, March 28, 2009



Hello there!

• Who am I?

• Why am I doing this?

• Email: jnoller@gmail.com

• Blog - http://www.jessenoller.com

• Pycon - http://jessenoller.com/category/
pycon-2009/

Saturday, March 28, 2009

http://www.jessenoller.com
http://www.jessenoller.com
http://jessenoller.com/category/pycon-2009/
http://jessenoller.com/category/pycon-2009/
http://jessenoller.com/category/pycon-2009/
http://jessenoller.com/category/pycon-2009/


Most of all, it’s fun!

Saturday, March 28, 2009



No Code, Why?

Saturday, March 28, 2009



Bike sheds

Saturday, March 28, 2009



Concurrency

• What is it?

• Doing many things “at once”

• Typically local to the machine running the app.

• Implementation Options:

• threads / multiple processes

• cooperative multitasking 

• coroutines

• asynchronous programming

Saturday, March 28, 2009



... vs Parallelism

• What is it?

• Doing many things simultaneously

• Implementation options:

• threads

• multiple processes

• distributed systems

Saturday, March 28, 2009



... vs Distributed Systems

• What is it?

• Doing many things, across multiple machines, 
simultaneously

• Many cores, on many machines

• There are many designs

• There are eight fallacies...

Saturday, March 28, 2009



8 fallacies of distributed 
systems

Saturday, March 28, 2009



The network is reliable

Saturday, March 28, 2009



Latency is zero

Saturday, March 28, 2009



Bandwidth is infinite

Saturday, March 28, 2009



The network is secure

Saturday, March 28, 2009



Topology doesn’t change

Saturday, March 28, 2009



There is only one 
administrator

Saturday, March 28, 2009



Transport cost is zero

Saturday, March 28, 2009



The network is 
homogenous

Saturday, March 28, 2009



Summary
• All 3 are related to one another, the fundamental 

goals of which are to:

• Decrease latency

• Increase throughput

• Applications start simple, progress to concurrent 
systems and evolve into parallel, distributed 
systems

• As the system evolves, the fallacies become more 
pertinent, you have to account for them early

Saturday, March 28, 2009



Saturday, March 28, 2009



• We have threads. Shiny, real OS ones

• Except for the Global Interpreter Lock

• The GIL makes the interpreter easier to maintain

• ...And it simplifies extension module code

Where is (C)Python?

Saturday, March 28, 2009



• Yes. Sorta. Maybe. It depends.

• I/O Bound / C extensions release it!

• Most applications are I/O bound

• The GIL still has non-zero overhead

• The GIL is not going away*

• You can build concurrent applications 
regardless of the GIL

Is the GIL a problem?

* ... more on this in a moment, dun dun dun.

Saturday, March 28, 2009



Multiprocessing!

• Added in the 2.6/3.0 timeline, PEP 371

• Processes and IPC (via pipes) to allow parallelism

• Same(ish) API as threading and queue

• Includes Pool, remote Managers for data sharing 
over a network, etc

• Multiprocessing “outperforms” threading

• IPC requires pickle-ability. Incurs overhead

Saturday, March 28, 2009



Summary

• We have the Global Interpreter Lock

• We also have multiprocessing (no GIL)

• Threads (as an approach) are good for some 
problems

• They’re not impossible to use correctly

• While hampered, python threads are still useful

• Python still allows you to leverage other 
approaches to concurrency

Saturday, March 28, 2009



(remember that asterisk?)*

Saturday, March 28, 2009



• Python on the JVM (in Java)

• 2.5-Compatible

• Frank and the others are awesome for 
resurrecting this project

• May allow python in the Java door

• Pros:

• Unrestricted threading

• Hooray java.util.concurrent!

• Cons:

• No C extensions

Saturday, March 28, 2009



IronPython

• Python on the .NET CLR

• 2.5.2 Compatible

• Matured rapidly, highly usable

• Great for windows environments

• Pros:

• Unrestricted threading

• Some C extensions via 
ironclad

• Cons:

• Mostly windows only, 
barring mono

Saturday, March 28, 2009



Stackless

• Modified CPython interpreter

• Offers Coroutines, Channels - “lightweight 
threads”

• Cooperative multitasking (single thread executes)

• (mostly) Still alive courtesy of CCP Games

• Still has a GIL

• “Stackless is dead, long live PyPy”

Saturday, March 28, 2009



• Python written in (R)Python

• Getting close to 2.5-Compatibility

• Complete “rethink” of the interpreter

• Focusing on JIT/interpreter speed right now

• Still has the GIL

• Some Stackless features (e.g. coroutines, channels)

• Not mature

Saturday, March 28, 2009



The Ecosystem

Saturday, March 28, 2009



That’s a lot of nuts!

• When I started, I had around 40 libraries on my 
list

• Coroutines, messaging, frameworks, etc

• Python has a huge ecosystem of “stuff”

• Unfortunately, much of is long in the tooth, or of 
beta quality

• New libraries/frameworks/approaches are coming 
out every week

Saturday, March 28, 2009



Concurrency
Frameworks

Saturday, March 28, 2009



Twisted

• “OK, who hasn’t tried twisted?”

• Asynchronous, Event Driven multitasking

• Vast networking library, large ecosystem

• Supports thread usage, but twisted code may not 
be thread safe

• Supports using processes (not mprocessing).

• Can be mind-bending

Saturday, March 28, 2009



Kamaelia

• Came out of BBC Research

• Uses an easy to understand “components talking 
via mailboxes” approach

• Cooperative multitasking via generators by default.

• Honkin’ library of cool things

• Supports thread-based components as well

• Very easy to get up and running

• Abstracts IPC, Process, Threads, etc “away”

Saturday, March 28, 2009



Frameworks

• Both kamaelia and twisted have nice 
networking support

• Both use schedulers which allow scheduled items 
to schedule other items

• Two different approaches to thinking about the 
problem

• Both can be used to build distributed apps

• Like all frameworks, you adopt the methodology

Saturday, March 28, 2009



New: Concurrence

• New on the scene (’09) version 0.3

• Lightweight tasks-with-message passing

• Has a main scheduler/dispatcher

• Built on top of stackless/greenlets/libevent

• Network-oriented (HTTP, WSGI servers)

• Still raw (more docs please)

• Very promising (minus compilation problems)

Saturday, March 28, 2009



Coroutines

• Coroutines are essentially light-weight threads of 
control, Think micro/green threads

• Typically use explicit task switching (cooperative)

• Most implementations have a scheduler, and some 
communications method (e.g. pipes)

• Not parallel unless used in a distributed fashion

• Both Kamaelia and Twisted “fit” here

• Enhanced generators make these easy to build

Saturday, March 28, 2009



Coroutine libraries

• Fibra: microthreads, tubes, scheduler

• Greenlet: C based, microthreads, no scheduler

• Eventlet: Network “framework” layer on top 
of greenlet. Has an Actor implementation \o/

• Circuits: Event-based, components/microthreads

• Cogen: network oriented, scheduler, microthreads

• Multitask: microthreads, no channels (it’s dead 
jim)

Saturday, March 28, 2009



Actors

• Isolated, self reliant components

• Can spawn other Actors

• Communicate via message passing only (by value)

• Operate in parallel

• Communication is asynchronous

• A good model to overcome the fallacies

• See also: Erlang, Scala

Saturday, March 28, 2009



Actor Libraries
• Dramatis (alpha quality)

• Great start, excellent base to start working with 
them

• Parley (alpha quality)

• Another excellent start, supports actors in 
threads, greenlets or stackless tasklets

• Candygram (2004)

• Old, implements erlang primitives, spawns in 
threads

• Kamaelia components can fit here(ish)

Saturday, March 28, 2009



(local) Parallelism
• Multiprocessing

• Processes and IPC via the threading API, in 
Python-Core as of 2.6

• Parallel Python

• Allows local parallelism, but also distributed 
parallelism in a “full” package

• pprocess

• Another easy to use fork/process based package

• Has IPC mechanisms

Saturday, March 28, 2009



Distributed Systems

• Lots of various technologies to help build something

• communications libraries

• socket/networking libraries

• message queues

• some shared memory implementations

• No “full stack” approach

• Most users end up rolling their own, using some 
combinations of libraries and tools

Saturday, March 28, 2009



Distributed Processing

• Frameworks:

• Parallel Python is the closest for a processing 
cluster

• The Disco Project is an erlang-based (with 
python bindings) map-reduce framework

Saturday, March 28, 2009



RPC/Messaging

• RPC:

• Pyro

• rPyc

• Thrift

• Messaging:

• pySage

• python-spread

• XMPP

• Protocol Buffers

Saturday, March 28, 2009



Shared Memory/Message Qs

• Shared Memory

• Posh (dead)

• Memcached

• posix_ipc

• Message Queues

• Apache ActiveMQ

• RabbitMQ

• Stomp

• MemcacheQ

• Beanstalkd

Saturday, March 28, 2009



So...

• Where the hell do we point new users?

• While good, Twisted and Kamaelia have a 
documentation problem

• The rest is a mish-mash of technologies

• Concurrency is hard let’s go shopping!

Saturday, March 28, 2009



Where does this leave us?

• The GIL is here for the foreseeable future

• Not entirely a bad thing (extensions!)

• Python-Core is not the right place for much of 
this, but can provide some basics

• Actor implementation

• Java.util.concurrent-like abstractions

• Anything going in must make this work safe

Saturday, March 28, 2009



Where does this leave us?

• Lots of great community work

• Continued room for growth, adoption of other 
language’s technologies

• If we can build a stack of reusable, swappable 
components for all three areas: everyone wins

• Anyone for a “distributed Django”?

• “loose coupling and tight cohesion”

• Must take the fallacies into account

Saturday, March 28, 2009



Django?

• The point of a framework is to make the 
easy things easy, and the hard things 
easier

• The abstractions must be leaky

• Go see abstractions as 
leverage!

• It must be safe

• It can not ignore the fallacies

• I shall call it Mustaine (Megadeth)

Saturday, March 28, 2009



Questions?

Saturday, March 28, 2009



Fin.

Saturday, March 28, 2009


