
Introduction to
Multiprocessing

... In Python.

Jesse Noller

Friday, March 27, 2009

30,000 Foot View

• Introduction

• Multiprocessing vs. Threads

• How it works

• Usage/API

• Gotchas

• Summary

• Questions

Friday, March 27, 2009

Hello there!

• Who am I?

• Authored PEP 371, now maintainer

• Why am I doing this?

• Email: jnoller@gmail.com

• Blog - http://www.jessenoller.com

• Pycon - http://jessenoller.com/category/
pycon-2009/

Friday, March 27, 2009

http://www.jessenoller.com
http://www.jessenoller.com
http://jessenoller.com/category/pycon-2009/
http://jessenoller.com/category/pycon-2009/
http://jessenoller.com/category/pycon-2009/
http://jessenoller.com/category/pycon-2009/

What is multiprocessing?

A package which mimics the threading API but
uses processes and interprocess communication
underneath to provide true parallelism in a
simple way.

Friday, March 27, 2009

Threads

• Share memory and state with each other and
the parent

• When discussed, most people are talking about
posix-threads

• Threads are cheap (quick to spawn, low memory)

Friday, March 27, 2009

Processes

• Processes are share-nothing

• Heavyweight (each is it’s own app instance)

• Must use interprocess communication to
share information

Friday, March 27, 2009

Threads in CPython

• Threads in Python are real Posix threads

• Have all the attributes of pthreads, low footprint,
quick to spawn

• Hampered by the global interpreter lock

Friday, March 27, 2009

The Global Interpreter Lock

• The GIL prevents true parallelism

• C Extensions side-step this effect

• It’s not entirely evil

• Makes the interpreter easier to maintain

• Makes C extensions easier to write

Friday, March 27, 2009

Why multiprocessing?

Friday, March 27, 2009

• Mimics the threading and queue APIs

• Additional APIs for network-data sharing

• Communication Pipes

• Pool (map, apply, imap) functions

• Abstracts the fork/IPC mechanism away from
users.

• Acts as a “drop-in” replacement for threading

• Side-steps the GIL

It has an API!

Friday, March 27, 2009

Faster than threads!*

• Speed depends on the problem being addressed

• Pure math? Faster.

• Map-Reduce? Faster.

• Anywhere where you have pure Python code that
can run in parallel and not contend over a single
resource

* lies, damned lies and benchmarks

Friday, March 27, 2009

How much faster?

• Simple problem - calculate the sum of all primes
between 1,000,000 and 5,000,000

• Executed on an 8 core Mac Pro, 8GB of RAM,
completely idle except for this test

• Yes, this is contrived, and shared-nothing

Friday, March 27, 2009

the functions

Friday, March 27, 2009

single threaded

Friday, March 27, 2009

multithreaded

Friday, March 27, 2009

multiprocessing

Friday, March 27, 2009

Changed import

Process() has same signature as Thread

Friday, March 27, 2009

“Results”

• Single Threaded: 41 minutes

• Multithreaded (8 threads): 106 minutes

• Multiprocessing (8 procs): 6 minutes

wtf?

Friday, March 27, 2009

Why (not) multiprocessing?

Friday, March 27, 2009

Premature Optimization

Friday, March 27, 2009

• Processes are expensive - in both memory
footprint and time-to-spawn

• IPC requires that object be able to be serialized
and sent back and forth (serialize, de-serialize)

• IPC is not cheap

• Some objects can not be shared

• For example, som GUI objects

There’s always a catch

Friday, March 27, 2009

• Sketchy support on *BSD for example

• Requires named semaphore support as well as
other OS-level libraries (fork!)

• Spawning a process on windows is slow(est)

• Bizarre bugs show up on different platforms

Operating systems screw you

Friday, March 27, 2009

• Threads in general are useful

• Threads in Python are functional

• Threads work well for problems which need to
share

• Threads are not impossible to “get right” - but
easy to get wrong.

• Avoid unconstrained shared data!

Threads aren’t evil

Friday, March 27, 2009

• Let’s see another one, this time - thread/Queue vs.
processing passing objects via a queue

• Write 20,000 things to the queue

• dict.fromkeys(range(10), str(i) * 100)

• Everything is serialized for mp

Remember that benchmark?

Friday, March 27, 2009

“Results”

non_threaded (1 iters) 0.064284 seconds

threaded (1 threads) 0.793872 seconds

processes (1 procs) 1.094208 seconds

non_threaded (2 iters) 0.134313 seconds

threaded (2 threads) 1.339949 seconds

processes (2 procs) 1.544650 seconds

* fyi, unladen-swallow speeds this up, ~7%

Friday, March 27, 2009

How does it work?

if sys.platform != 'win32':

Calls os.fork() in _bootstrap, passing it a process
object

else:

 creates pipe to communicate to child

 calls custom _subprocess/Popen function

 pickles the current process (+state) and passes it
to the child

Friday, March 27, 2009

Usage

Friday, March 27, 2009

Simple: Drop it in

• Using Christopher Arndt’s wonderful module

• http://www.chrisarndt.de/projects/threadpool/

Friday, March 27, 2009

http://www.chrisarndt.de/projects/threadpool/
http://www.chrisarndt.de/projects/threadpool/

• Queues

• 2 Queue implementations - Queue and
JoinableQueue

• Queue is modeled after Queue.Queue but uses
pipes underneath to transmit the data

• JoinableQueue is the same as Queue except it
adds a .join() method and .task_done() ala
Queue.Queue in python 2.5

Bits of the API

Friday, March 27, 2009

• Communication

• multiprocessing.Pipe(), which returns a pair of
Connection objects which represent the ends
of the pipe

• The data sent on the connection must be
pickle-able

• Locks

• Multiprocessing has clones of all of the threading
modules lock/RLock, Event, Condition and
semaphore objects

Bits of the API

Friday, March 27, 2009

• Pool Objects

• Pool.apply() - this is a clone of builtin apply()
function

• Pool.apply_async() - which can call a callback
for you when the result is available

• Pool.map() - again, a parallel clone of the built in
function

• Pool.map_async() method, which can also get
a callback to ring up when the results are done

Bits of the API

Friday, March 27, 2009

Managers

• Managers are a network and process-based way
of sharing data between processes (and machines)

• The primary manager type is the BaseManager

• A proxy object is the type returned when
accessing a shared object - this is a reference to
the actual object being exported by the manager

Bits of the API

Friday, March 27, 2009

Gotchas

I'd like not to have such a newbie trap lying around. -GvR

Friday, March 27, 2009

• Adding parallelism to an application locked on a
single resource means you just added contention

• $N processes reading files from disk

• $N processes accessing the same locked
resource

• Are you spawning those processes up front?

• Sharing lots of data means lots of serialization
cost

• The same rules for threaded apps apply here

“Why it not go faster?”

Friday, March 27, 2009

• Nested functions, stick within the limitations of
pickle for all objects being shared/transmitted

• Avoid passing lots of state in the constructor, stick
to queues and pipes

• Calling .terminate() - you will corrupt something

• Globals bad; pass objects to be shared to the child

Avoid

(this way they don’t get gc’ed)

Friday, March 27, 2009

• Spawn the processes as far in advance as possible

• Be mindful that having more processes than
processors doesn’t make sense

• Use cancel_join_thread or drain the queue that
processes write to prior to join

• Use pipes and queues to share data between
processes

Do

Friday, March 27, 2009

Summary

• Multiprocessing is complimentary to threads

• Multiprocessing has a simple API

• This lowers the barrier significantly

• Has the start of distributed/grid system tools

• Do realize: not on all platforms, and does have
innate limitations

Friday, March 27, 2009

Questions?

Friday, March 27, 2009

Fin.

Friday, March 27, 2009

