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Hello there!

• Who am I?

• Authored PEP 371, now maintainer

• Why am I doing this?

• Email: jnoller@gmail.com

• Blog - http://www.jessenoller.com

• Pycon - http://jessenoller.com/category/
pycon-2009/
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What is multiprocessing?

A package which mimics the threading API but 
uses processes and interprocess communication 
underneath to provide true parallelism in a 
simple way.
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Threads

• Share memory and state with each other and 
the parent

• When discussed, most people are talking about 
posix-threads

• Threads are cheap (quick to spawn, low memory)
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Processes

• Processes are share-nothing

• Heavyweight (each is it’s own app instance)

• Must use interprocess communication to 
share information
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Threads in CPython

• Threads in Python are real Posix threads

• Have all the attributes of pthreads, low footprint, 
quick to spawn

• Hampered by the global interpreter lock
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The Global Interpreter Lock

• The GIL prevents true parallelism

• C Extensions side-step this effect

• It’s not entirely evil

• Makes the interpreter easier to maintain

• Makes C extensions easier to write
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Why multiprocessing?
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• Mimics the threading and queue APIs

• Additional APIs for network-data sharing

• Communication Pipes

• Pool (map, apply, imap) functions

• Abstracts the fork/IPC mechanism away from 
users.

• Acts as a “drop-in” replacement for threading

• Side-steps the GIL

It has an API!
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Faster than threads!*

• Speed depends on the problem being addressed

• Pure math? Faster. 

• Map-Reduce? Faster.

• Anywhere where you have pure Python code that 
can run in parallel and not contend over a single 
resource 

* lies, damned lies and benchmarks
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How much faster?

• Simple problem - calculate the sum of all primes 
between 1,000,000 and 5,000,000

• Executed on an 8 core Mac Pro, 8GB of RAM, 
completely idle except for this test

• Yes, this is contrived, and shared-nothing
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the functions
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single threaded
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multithreaded
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multiprocessing
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Changed import

Process() has same signature as Thread
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“Results”

• Single Threaded: 41 minutes

• Multithreaded (8 threads): 106 minutes

• Multiprocessing (8 procs): 6 minutes

wtf?
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Why (not) multiprocessing?
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Premature Optimization
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• Processes are expensive - in both memory 
footprint and time-to-spawn

• IPC requires that object be able to be serialized 
and sent back and forth (serialize, de-serialize)

• IPC is not cheap

• Some objects can not be shared

• For example, som GUI objects

There’s always a catch
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• Sketchy support on *BSD for example

• Requires named semaphore support as well as 
other OS-level libraries (fork!)

• Spawning a process on windows is slow(est)

• Bizarre bugs show up on different platforms

Operating systems screw you
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• Threads in general are useful

• Threads in Python are functional

• Threads work well for problems which need to 
share

• Threads are not impossible to “get right” - but 
easy to get wrong.

• Avoid unconstrained shared data!

Threads aren’t evil
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• Let’s see another one, this time - thread/Queue vs. 
processing passing objects via a queue

• Write 20,000 things to the queue

• dict.fromkeys(range(10), str(i) * 100)

• Everything is serialized for mp

Remember that benchmark?

Friday, March 27, 2009



“Results”

non_threaded (1 iters) 0.064284 seconds

threaded (1 threads) 0.793872 seconds

processes (1 procs) 1.094208 seconds

non_threaded (2 iters) 0.134313 seconds

threaded (2 threads) 1.339949 seconds

processes (2 procs) 1.544650 seconds

* fyi, unladen-swallow speeds this up, ~7%
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How does it work?

if sys.platform != 'win32':

Calls os.fork() in _bootstrap, passing it a process 
object

else:

    creates pipe to communicate to child

    calls custom _subprocess/Popen function

    pickles the current process (+state) and passes it 
to the child
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Usage
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Simple: Drop it in

• Using Christopher Arndt’s wonderful module

• http://www.chrisarndt.de/projects/threadpool/
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• Queues

• 2 Queue implementations - Queue and 
JoinableQueue 

• Queue is modeled after Queue.Queue but uses 
pipes underneath to transmit the data

• JoinableQueue is the same as Queue except it 
adds a .join() method and .task_done() ala 
Queue.Queue in python 2.5

Bits of the API
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• Communication

• multiprocessing.Pipe(), which returns a pair of 
Connection objects which represent the ends 
of the pipe

• The data sent on the connection must be 
pickle-able

• Locks

• Multiprocessing has clones of all of the threading 
modules lock/RLock, Event, Condition and 
semaphore objects

Bits of the API
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• Pool Objects

• Pool.apply() - this is a clone of builtin apply() 
function

• Pool.apply_async() - which can call a callback 
for you when the result is available

• Pool.map() - again, a parallel clone of the built in 
function

• Pool.map_async() method, which can also get 
a callback to ring up when the results are done

Bits of the API
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Managers

• Managers are a network and process-based way 
of sharing data between processes (and machines)

• The primary manager type is the BaseManager

• A proxy object is the type returned when 
accessing a shared object - this is a reference to 
the actual object being exported by the manager

Bits of the API
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Gotchas

I'd like not to have such a newbie trap lying around. -GvR
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• Adding parallelism to an application locked on a 
single resource means you just added contention

• $N processes reading files from disk

• $N processes accessing the same locked 
resource

• Are you spawning those processes up front?

• Sharing lots of data means lots of serialization 
cost

• The same rules for threaded apps apply here

“Why it not go faster?”
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• Nested functions, stick within the limitations of 
pickle for all objects being shared/transmitted

• Avoid passing lots of state in the constructor, stick 
to queues and pipes

• Calling .terminate() - you will corrupt something

• Globals bad; pass objects to be shared to the child

Avoid

(this way they don’t get gc’ed)
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• Spawn the processes as far in advance as possible

• Be mindful that having more processes than 
processors doesn’t make sense

• Use cancel_join_thread or drain the queue that 
processes write to prior to join

• Use pipes and queues to share data between 
processes

Do
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Summary

• Multiprocessing is complimentary to threads

• Multiprocessing has a simple API

• This lowers the barrier significantly

• Has the start of distributed/grid system tools

• Do realize: not on all platforms, and does have 
innate limitations
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Questions?
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Fin.
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