Getting started with
Concurrency

...using Multiprocessing and Threading

PyWorks, Atlanta 2008
Jesse Noller




Who am |?

Just another guy.
Wrote PEP 371-“Addition of the multiprocessing package”

Did a lot of the integration, now the primary point of
contact.

e This means | talk a lot on the internet.

Test Engineering is my focus - many of those are distributed
and/or concurrent.

* This stuff is not my full time job.




What is concurrency!?

Simultaneous execution
Potentially interacting tasks
Uses multi=-core hardware

Includes Parallelism.




What is a thread?

Share the memory and state of the parent.
Are “light weight”
Each gets its own stack

Do not use Inter-Process Communication or messaging.

POSIX “Threads” - pthreads.




What are they good for?

* Adding throughput and reduce latency within most
applications.

 Throughput: adding threads allows you to process
more information faster.

 Latency: adding threads to make the application react
faster, such as GUI actions.

* Algorithms which rely on shared data/state




What is a process!

An independent process-of-control.
Processes are “share nothing”.

Must use some form of Inter-Process
Communication to communicate/coordinate.

Processes are “big”.




Uses for Processes.

When you don’t need to share lots of state and want a large
amount of throughput.

Shared-Nothing-or-Little is “safer” then shared-everything.
Processes automatically run on multiple cores.

Easier to turn into a distributed application.




The Difference

Threads are implicitly “share everything” - this makes the

programmer have to protect (lock) anything which will be
shared between threads.

Processes are “share nothing” - programmers must explicitly
share any data/state - this means that the programmer is
forced to think about what is being shared

Explicit is better than Implicit



Python Threads

* Python has threads, they are real, OS/Kernel level POSIX (p)
threads.

*  When you use threading.Thread, you get a pthread.




2.6 changes

camelCase method names are now foo_bar() style, e.g.:
active_count, current_thread, is_alive, etc.

Attributes of threads and processes have been turned into
properties.

 E.g.:.daemon is now Thread.daemon = <bool>

* For threading: these changes are optional. The old methods
still exist.




Python does not use “green threads”. It has real threads. OS
Ones. Stop saying it doesn’t.




But: Python only allows a single thread to be executing within

the interpreter at once. This restriction is enforced by the
GIL.




GIL:“Global Interpreter Lock™ - this is a lock which must be
acquired for a thread to enter the interpreter’s space.

Only one thread may be executing within the Python
Interpreter at once.




Yeah but...

No, it is not a bug.

It is an implementation detail of CPython interpreter
Interpreter maintenance is easier.

Creation of new C extension modules easier.

(mostly) sidestepped if the app is I/O (file, socket) bound.

A threaded app which makes heavy use of sockets, won’t see
a a huge GIL penalty: it is still there though.

Not going away right now.




The other guys

Jython: No GIL, allows “free” threading by using the
underlying Java threading system.

lIronPython: No GIL - uses the underlying CLR, threads all
run concurrently.

Stackless: Has a GIL. But has micro threads.

PyPy: Has a GIL... for now (dun dun dun)




Enter Multiprocessing




What is multiprocessing!?

Follows the threading API closely but uses Processes and
inter-process communication under the hood

Also offers distributed-computing faculties as well.

Allows the side-stepping of the GIL for CPU bound
applications.

Allows for data/memory sharing.

CPython only.




Why include it?

Covered in PEP 371, we wanted to have something which was
fast and “freed” many users from the GIL restrictions.

Wanted to add to the concurrency toolbox for Python as a
whole.

* Itis not the “final” answer. Nor is it “feature complete”

Oh, and it beats the threading module in speed.*

* lies, damned lies and benchmarks




How much faster?

It depends on the problem.

For example: number crunching, it’s significantly faster then
adding threads.

Also faster in wide-finder/map-reduce situations

Process creation can be sluggish: create the workers up front.




Example: Crunching Primes

Yes, | picked something embarrassingly parallel.

Sum all of the primes in a range of integers starting from
1,000,000 and going to 5,000,000.

Run on an 8 Core Mac Pro with 8 GB of ram with Python 2.6,
completely idle, except for iTunes.

* The single threaded version took so long | needed music.




# Single threaded version
import math

def isprime(n):

"""Returns True 1f n 1s prime and False otherwise
1f not 1isinstance(n, 1int):

raise TypeError("argument passed to is_prime is not of 'int' type")
if n < 2:

return False
1f n ==

return True
max = int(math.ceil(math.sqrt(n)))
1 =2
while 1 <= max:

if n %1 == 0:

return False

1 +=1

return True

sum_primes(n):
"""Calculates sum of all primes below given integer n
return sum([x for x in xrange(2, n) if isprime(x)])

1f __name__ == "__main__":
for 1 1n xrange(100000, 5000000, 100000) :
print sum_primes(i)




# Multi Threaded version

from threading import Thread
from Queue import Queue, Empty

def do_work(q):
while True:
try:
x = g.get(block=False)
print sum_primes(x)
except Empty:
break

1f __name__ == "__main__":
work_queue = Queue()
for 1 1n xrange(100000, 5000000, 100000) :
work_queue.put(i)

threads = [Thread(target=do_work, args=(work_queue,)) for 1 in range(8)]
for t in threads:

t.start()
for t in threads:

t.jo0inQ)




# Multiprocessing version

from multiprocessing import Process, Queue
from Queue import Empty

1f __name__ == "__main__":
work_queue = Queue()

for 1 1n xrange(100000, 5000000, 100000) :
work_queue.put(i)

processes = [Process(target=do_work, args=(work_queue,)) for 1 in range(8)]
for p in processes:
p.start()

for p in processes:
p.join()




Results

All results are in wall-clock time.

Single Threaded: 41 minutes, 57 seconds

Multi Threaded (8 threads): 106 minutes, 29 seconds
MultiProcessing (8 Processes): 6 minutes, 22 seconds

This is a trivial example. More benchmarks/data were
included in the PEP.




The catch.

Objects that are shared between processes must be
serialize-able (pickle).

* 40921 object/sec versus 24989 objects a second.

Processes are “heavy-weight”.
Processes can be slow to start. (on windows)

Supported on Linux, Solaris,Windows, OS/X - but not *BSD,
and possibly others.

If you are creating and destroying lots of threads - processes
are a significant impact.




APl Time

“Now! Thar should clear up
a few things around here!”




It starts with a Process

* Exactly like threading:
« Thread(target=func, args=(args,)).start()
 Process(target=func, args=(args,)).start()

* You can subclass multiprocessing.Process exactly as you
would with threading. Thread.




from threading import Thread
threads = [Thread(target=do_work, args=(q,)) for 1 in range(8)]

from multiprocessing import Process
processes = [Process(target=do_work, args=(q,)) for 1 in range(8)]




# Multiprocessing version
from multiprocessing import Process

class MyProcess(Process):
def __init__(self):

Process.__init__(self)
def run(self):

a, b =0, 1

for 1 1n range(100000) :

a, b =b, a+b

1f __name__ == "__main__":
p = MyProcess()
p.start()
print p.pid
p.join(Q)
print p.exitcode

# Threading version
from threading import Thread

class MyThread(Thread):
def __init__(self):
Thread.__init__(self)
def run(self):
a, b =0, 1
for 1 1n range(100000):
a, b =b, a+b

1f __name__ == "__main__":
t = MyThread()
t.start(Q)
t.join()




Queues

multiprocessing includes 2 Queue implementations - Queue
and JoinableQueue.

Queue is modeled after Queue.Queue but uses pipes
underneath to transmit the data.

* JoinableQueue is the same as Queue except it adds a .join()
method and .task _done() ala Queue.Queue in python 2.5.




Queue.warning

The first is that if you call .terminate or kill a process which is
currently accessing a queue: that queue may become corrupted.

The second is that any Queue that a Process has put data on
must be drained prior to joining the processes which have put
data there: otherwise, you'll get a deadlock.

* Avoid this by calling Queue.cancel_join_thread|() in
the child process.

Or just eat everything on the results pipe before calling
join (e.g. work queue, results _queue).




Pipes and Locks

* Multiprocessing supports communication primitives.

* multiprocessing.Pipe(), which returns a pair of Connection
objects which represent the ends of the pipe.

* The data sent on the connection must be pickle-able.

* Multiprocessing has clones of all of the threading modules
lock/RLock, Event, Condition and semaphore objects.

* Most of these support timeout arguments, too!




Shared Memory

Multiprocessing has a sharedctypes
module.

This module allows you to create a . o
from multiprocessing import Process

Ctypes ObjeCt in shared memory from multiprocessing.sharedctypes import Value
and share it with other processes. from ctypes import c_int

def modify(x):

The sharedctypes module offers « value 4= 1

some safety through the use/

. . = Value(ctypes.c_int, 7)
a!locatlon of locks V\{hICh prevent _ Process(targetamodify, args=CoO)
simultaneous accessing/ .startQ)
modification of the shared objects. p-3oinO

print x.value




One of the big “ugh” moments using threading is when you
have a simple problem you simply want to pass to a pool of

workers to hammer out.

Fact: There’s more thread pool implementations out there
then stray cats in my neighborhood.




Process Pools!

Multiprocessing has the Pool object. This supports the up-front
creation of a number of processes and a number of methods of
passing work to the workers.

Pool.apply() - this is a clone of builtin apply() function.

* Pool.apply async() - which can call a callback for you
when the result is available.

Pool.map() - again, a parallel clone of the built in function.

* Pool.map_async() method, which can also get a callback to
ring up when the results are done.

Fact: Functional programming people love this!




Pools raise insurance rates!

from multiprocessing import Pool

def f(x):
return x*x

1f __name__ == '__main__":
pool = Pool(processes=2)
result = pool.apply_async(f, (10,))
print result.get()

The output is: 100, note that the result returned is a AsyncResult
type.




Managers

* Managers are a network and process-based way of sharing data
between processes (and machines).

* The primary manager type is the BaseManager - this is the
basic Manager object, and can easily be subclassed to share
data remotely

A proxy object is the type returned when accessing a
shared object - this is a reference to the actual object being
exported by the manager.




Sharing a queue (server)

# Manager Server

from Queue import Empty
from multiprocessing import managers, Queue

_queue = Queue()
def get_queue():
return _queue
class QueueManager(managers.BaseManager): pass

QueueManager.register('get_queue', callable=get_queue)

m = QueueManager(address=('127.0.0.1", 8081), authkey="1ol")
_queue.put('What’s up remote process')

s = m.get_server()
s.serve_forever()




Sharing a queue (client)

# Manager Client
from multiprocessing import managers

class QueueManager(managers.BaseManager): pass
QueueManager.register('get_queue')

m = QueueManager(address=('127.0.0.1", 8081), authkey="1o0l")
m.connect()

remote_queue = m.get_queue()
print remote_queue.get()




Gotchas

Processes which feed into a multiprocessing. Queue will block
waiting for all the objects it put there to be removed.

Data must be pickle-able: this means some objects (for
instance, GUI ones) can not be shared.

Arguments to Proxies (managers) methods must be pickle-able
as well.

While it supports locking/semaphores: using those means
you're sharing something you may not need to be sharing.




In Closing

Multiple processes are not mutually exclusive with using
Threads

Multiprocessing offers a simple and known API
* This lowers the barrier of entry significantly
* Side steps the GIL

In addition to “just processes” multiprocessing offers the start
of grid-computing utilities




Questions!



