
Getting started with
Concurrency

...using Multiprocessing and Threading

PyWorks, Atlanta 2008
Jesse Noller

Who am I?

• Just another guy.

• Wrote PEP 371- “Addition of the multiprocessing package”

• Did a lot of the integration, now the primary point of
contact.

• This means I talk a lot on the internet.

• Test Engineering is my focus - many of those are distributed
and/or concurrent.

• This stuff is not my full time job.

What is concurrency?

• Simultaneous execution

• Potentially interacting tasks

• Uses multi-core hardware

• Includes Parallelism.

What is a thread?

• Share the memory and state of the parent.

• Are “light weight”

• Each gets its own stack

• Do not use Inter-Process Communication or messaging.

• POSIX “Threads” - pthreads.

What are they good for?

• Adding throughput and reduce latency within most
applications.

• Throughput: adding threads allows you to process
more information faster.

• Latency: adding threads to make the application react
faster, such as GUI actions.

• Algorithms which rely on shared data/state

What is a process?

• An independent process-of-control.

• Processes are “share nothing”.

• Must use some form of Inter-Process
Communication to communicate/coordinate.

• Processes are “big”.

Uses for Processes.

• When you don’t need to share lots of state and want a large
amount of throughput.

• Shared-Nothing-or-Little is “safer” then shared-everything.

• Processes automatically run on multiple cores.

• Easier to turn into a distributed application.

The Difference

• Threads are implicitly “share everything” - this makes the
programmer have to protect (lock) anything which will be
shared between threads.

• Processes are “share nothing” - programmers must explicitly
share any data/state - this means that the programmer is
forced to think about what is being shared

• Explicit is better than Implicit

Python Threads

• Python has threads, they are real, OS/Kernel level POSIX (p)
threads.

• When you use threading.Thread, you get a pthread.

2.6 changes

• camelCase method names are now foo_bar() style, e.g.:
active_count, current_thread, is_alive, etc.

• Attributes of threads and processes have been turned into
properties.

• E.g.: daemon is now Thread.daemon = <bool>

• For threading: these changes are optional. The old methods
still exist.

...

Python does not use “green threads”. It has real threads. OS
Ones. Stop saying it doesn’t.

...

But: Python only allows a single thread to be executing within
the interpreter at once. This restriction is enforced by the
GIL.

The GIL

• GIL: “Global Interpreter Lock” - this is a lock which must be
acquired for a thread to enter the interpreter’s space.

• Only one thread may be executing within the Python
interpreter at once.

Yeah but...

• No, it is not a bug.

• It is an implementation detail of CPython interpreter

• Interpreter maintenance is easier.

• Creation of new C extension modules easier.

• (mostly) sidestepped if the app is I/O (file, socket) bound.

• A threaded app which makes heavy use of sockets, won’t see
a a huge GIL penalty: it is still there though.

• Not going away right now.

The other guys

• Jython: No GIL, allows “free” threading by using the
underlying Java threading system.

• IronPython: No GIL - uses the underlying CLR, threads all
run concurrently.

• Stackless: Has a GIL. But has micro threads.

• PyPy: Has a GIL... for now (dun dun dun)

Enter Multiprocessing

What is multiprocessing?

• Follows the threading API closely but uses Processes and
inter-process communication under the hood

• Also offers distributed-computing faculties as well.

• Allows the side-stepping of the GIL for CPU bound
applications.

• Allows for data/memory sharing.

• CPython only.

Why include it?

• Covered in PEP 371, we wanted to have something which was
fast and “freed” many users from the GIL restrictions.

• Wanted to add to the concurrency toolbox for Python as a
whole.

• It is not the “final” answer. Nor is it “feature complete”

• Oh, and it beats the threading module in speed.*
* lies, damned lies and benchmarks

How much faster?

• It depends on the problem.

• For example: number crunching, it’s significantly faster then
adding threads.

• Also faster in wide-finder/map-reduce situations

• Process creation can be sluggish: create the workers up front.

Example: Crunching Primes

• Yes, I picked something embarrassingly parallel.

• Sum all of the primes in a range of integers starting from
1,000,000 and going to 5,000,000.

• Run on an 8 Core Mac Pro with 8 GB of ram with Python 2.6,
completely idle, except for iTunes.

• The single threaded version took so long I needed music.

Single threaded version
import math

def isprime(n):
 """Returns True if n is prime and False otherwise"""
 if not isinstance(n, int):
 raise TypeError("argument passed to is_prime is not of 'int' type")
 if n < 2:
 return False
 if n == 2:
 return True
 max = int(math.ceil(math.sqrt(n)))
 i = 2
 while i <= max:
 if n % i == 0:
 return False
 i += 1
 return True

def sum_primes(n):
 """Calculates sum of all primes below given integer n"""
 return sum([x for x in xrange(2, n) if isprime(x)])

if __name__ == "__main__":
 for i in xrange(100000, 5000000, 100000):
 print sum_primes(i)

Multi Threaded version
from threading import Thread
from Queue import Queue, Empty
...
def do_work(q):
 while True:
 try:
 x = q.get(block=False)
 print sum_primes(x)
 except Empty:
 break

if __name__ == "__main__":
 work_queue = Queue()
 for i in xrange(100000, 5000000, 100000):
 work_queue.put(i)

 threads = [Thread(target=do_work, args=(work_queue,)) for i in range(8)]
 for t in threads:
 t.start()
 for t in threads:
 t.join()

Multiprocessing version
from multiprocessing import Process, Queue
from Queue import Empty
...

if __name__ == "__main__":
 work_queue = Queue()
 for i in xrange(100000, 5000000, 100000):
 work_queue.put(i)

 processes = [Process(target=do_work, args=(work_queue,)) for i in range(8)]
 for p in processes:
 p.start()
 for p in processes:
 p.join()

Results

• All results are in wall-clock time.

• Single Threaded: 41 minutes, 57 seconds

• Multi Threaded (8 threads): 106 minutes, 29 seconds

• MultiProcessing (8 Processes): 6 minutes, 22 seconds

• This is a trivial example. More benchmarks/data were
included in the PEP.

The catch.

• Objects that are shared between processes must be
serialize-able (pickle).

• 40921 object/sec versus 24989 objects a second.

• Processes are “heavy-weight”.

• Processes can be slow to start. (on windows)

• Supported on Linux, Solaris, Windows, OS/X - but not *BSD,
and possibly others.

• If you are creating and destroying lots of threads - processes
are a significant impact.

API Time

It starts with a Process

• Exactly like threading:

• Thread(target=func, args=(args,)).start()

• Process(target=func, args=(args,)).start()

• You can subclass multiprocessing.Process exactly as you
would with threading.Thread.

from threading import Thread
threads = [Thread(target=do_work, args=(q,)) for i in range(8)]

from multiprocessing import Process
processes = [Process(target=do_work, args=(q,)) for i in range(8)]

Multiprocessing version
from multiprocessing import Process

class MyProcess(Process):
 def __init__(self):
 Process.__init__(self)
 def run(self):
 a, b = 0, 1
 for i in range(100000):
 a, b = b, a + b

if __name__ == "__main__":
 p = MyProcess()
 p.start()
 print p.pid
 p.join()
 print p.exitcode

Threading version
from threading import Thread

class MyThread(Thread):
 def __init__(self):
 Thread.__init__(self)
 def run(self):
 a, b = 0, 1
 for i in range(100000):
 a, b = b, a + b

if __name__ == "__main__":
 t = MyThread()
 t.start()
 t.join()

Queues

• multiprocessing includes 2 Queue implementations - Queue
and JoinableQueue.

• Queue is modeled after Queue.Queue but uses pipes
underneath to transmit the data.

• JoinableQueue is the same as Queue except it adds a .join()
method and .task_done() ala Queue.Queue in python 2.5.

Queue.warning

• The first is that if you call .terminate or kill a process which is
currently accessing a queue: that queue may become corrupted.

• The second is that any Queue that a Process has put data on
must be drained prior to joining the processes which have put
data there: otherwise, you’ll get a deadlock.

• Avoid this by calling Queue.cancel_join_thread() in
the child process.

• Or just eat everything on the results pipe before calling
join (e.g. work_queue, results_queue).

Pipes and Locks

• Multiprocessing supports communication primitives.

• multiprocessing.Pipe(), which returns a pair of Connection
objects which represent the ends of the pipe.

• The data sent on the connection must be pickle-able.

• Multiprocessing has clones of all of the threading modules
lock/RLock, Event, Condition and semaphore objects.

• Most of these support timeout arguments, too!

Shared Memory

• Multiprocessing has a sharedctypes
module.

• This module allows you to create a
ctypes object in shared memory
and share it with other processes.

• The sharedctypes module offers
some safety through the use/
allocation of locks which prevent
simultaneous accessing/
modification of the shared objects.

from multiprocessing import Process
from multiprocessing.sharedctypes import Value
from ctypes import c_int

def modify(x):
 x.value += 1

x = Value(ctypes.c_int, 7)
p = Process(target=modify, args=(x))
p.start()
p.join()

print x.value

Pools

• One of the big “ugh” moments using threading is when you
have a simple problem you simply want to pass to a pool of
workers to hammer out.

• Fact: There’s more thread pool implementations out there
then stray cats in my neighborhood.

Process Pools!

• Multiprocessing has the Pool object. This supports the up-front
creation of a number of processes and a number of methods of
passing work to the workers.

• Pool.apply() - this is a clone of builtin apply() function.

• Pool.apply_async() - which can call a callback for you
when the result is available.

• Pool.map() - again, a parallel clone of the built in function.

• Pool.map_async() method, which can also get a callback to
ring up when the results are done.

• Fact: Functional programming people love this!

Pools raise insurance rates!

from multiprocessing import Pool

def f(x):
 return x*x

if __name__ == '__main__':
 pool = Pool(processes=2)
 result = pool.apply_async(f, (10,))
 print result.get()

The output is: 100, note that the result returned is a AsyncResult
type.

Managers

• Managers are a network and process-based way of sharing data
between processes (and machines).

• The primary manager type is the BaseManager - this is the
basic Manager object, and can easily be subclassed to share
data remotely

• A proxy object is the type returned when accessing a
shared object - this is a reference to the actual object being
exported by the manager.

Manager Server
from Queue import Empty
from multiprocessing import managers, Queue

_queue = Queue()
def get_queue():
 return _queue

class QueueManager(managers.BaseManager): pass

QueueManager.register('get_queue', callable=get_queue)

m = QueueManager(address=('127.0.0.1', 8081), authkey="lol")
_queue.put('What’s up remote process')

s = m.get_server()
s.serve_forever()

Sharing a queue (server)

Manager Client
from multiprocessing import managers

class QueueManager(managers.BaseManager): pass

QueueManager.register('get_queue')

m = QueueManager(address=('127.0.0.1', 8081), authkey="lol")
m.connect()
remote_queue = m.get_queue()
print remote_queue.get()

Sharing a queue (client)

Gotchas

• Processes which feed into a multiprocessing.Queue will block
waiting for all the objects it put there to be removed.

• Data must be pickle-able: this means some objects (for
instance, GUI ones) can not be shared.

• Arguments to Proxies (managers) methods must be pickle-able
as well.

• While it supports locking/semaphores: using those means
you’re sharing something you may not need to be sharing.

In Closing

• Multiple processes are not mutually exclusive with using
Threads

• Multiprocessing offers a simple and known API

• This lowers the barrier of entry significantly

• Side steps the GIL

• In addition to “just processes” multiprocessing offers the start
of grid-computing utilities

Questions?

