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Arctic Oscillation (AO)

If ENSO markets reach sustainable liquidity, then there is a host of

similar climate anomalies that could follow it onto traded markets.

The climate professional I interviewed, believe that the Arctic Oscilla-

tion (AO) will lead that second wave of teleconnections markets. Like

ENSO, AO is closely watched by energy firms today.

This epilogue introduces AO and its promise as a traded index,

including:

• a description of the AO as a climate phenomenon;

• a review of what current climate science tells us about its impacts;

• a discussion about how the underlying index is calculated; and,

• statistical analysis of the correspondence between the ENSO index

and disaster impacts around the world.

Introduction to the Arctic Oscillation (AO)

The Arctic Oscillation (AO) (often called the Northern Annular Mode

(NAM)) refers to changes in a wall of atmospheric pressure and wind

that normally holds cold Arctic air in the polar region. During the

northern hemisphere winters, when the index measuring AO is pos-

itive, the wall is particularly strong - a ring of air currents, blowing

west to east (also called the Westerlies) keeps cold Arctic air trapped

in the low pressure zone of the Arctic. This results in relatively warm

wet winters in much of the United States east of the Rockies and

Northern Eurasia, with an increase in European wind storms1. Posi- 1 J.W. Hurrell, Y. Kushnir, G. Ot-
tersen, and M. Visbeck. An overview
of the North Atlantic Oscillation.
Geophysical Monograph Series, 134:
1–36, 2003

tive anomalies are also associated with lower than average precipita-

tion in the American west and Spain2 3.

2 S.A. McAfee and J.L. Russell.
Northern Annular Mode impact on
spring climate in the western United
States. Geophysical Research Letters,
35(L17701):10–1029, 2008
3 C.C. Raible, U. Luksch, and
K. Fraedrich. Precipitation and
Northern Hemisphere regimes. Atmo-
spheric Science Letters, 5(1-4):43–55,
2004

In contrast, when the index is negative, the barrier holding cold air

in the Arctic is weak and the atmospheric pressure at the North Pole

is high. During negative AO anomalies, cold Arctic air penetrates into

the middle latitudes - the region around 45 degrees North, which runs
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roughly through Montreal Canada, Bordeaux, France, the Northern tip

of Sapporo Island, Japan and Portland, Oregon.

Negative anomalies in the AO are associated with winter storms.

In February 2010 NOAA registered the largest negative anomaly in

the Arctic Oscillation (a value of 4.266) in the agency’s basic times

series (beginning in 1950). That month there were three historic win-

ter storms in the mid-Atlantic United States. The first two storms,

arriving within days of one another, shut down Washington, DC and

produced monthly snowfall records roughly 25 percent above previous

historic highs for Baltimore and Washington DC. Klein et al. [2011]

Oceanic and Administration [2010] and Seager et al. [2010] suggest

that these extreme snowfalls, as well as higher than normal snowfall

in northwestern Europe during 2009-2010, were indeed driven by the

negative phase of the AO. Cohen et al. [2010] comes to similar conclu-

sions. This coupling of extreme index values and high profile natural

catastrophes with large economic impacts may be important for at-

tracting hedgers to an AO market. Vivid examples of a hazard appear

critical to prospective hedgers’ perceptions of risk, especially in the

context of extreme weather, where individuals may have difficulty

estimating expected losses4 5 6 7 8 9. 4 M.J. Browne and R.E. Hoyt. The
demand for flood insurance: Empir-
ical evidence. Journal of Risk and
Uncertainty, 20(3):291–306, 2000
5 E.J. Johnson and A. Tversky. Affect,
generalization, and the perception
of risk. Journal of Personality and
Social Psychology, 45(1):20, 1983
6 H. Kunreuther, R. Ginsberg,
L. Miller, P. Sagi, P. Slovic,
B. Borkan, and N. Katz. Disaster
Insurance Protection: Public Policy
Lessons. Wiley New York, 1978
7 H. Kunreuther and P. Slovic. Eco-
nomics, psychology, and protective
behavior. The American Economic
Review, 68(2):64–69, 1978
8 V. Denes-Raj and S. Epstein. Con-
flict between intuitive and rational
processing: When people behave
against their better judgment. Journal
of Personality and Social Psychology,
66(5):819, 1994
9 V. Denes-Raj and S. Epstein. Con-
flict between intuitive and rational
processing: When people behave
against their better judgment. Journal
of Personality and Social Psychology,
66(5):819, 1994

Viewed in isolation, the index appears to be a random walk, flip-

ping signs every few weeks. (Given this random-walk behavior, the

AO is not a true oscillation, which explains why many scientists have

switched from the more popular name, the Arctic Oscillation.) How-

ever, recent work including Baldwin et al. [2003], climate scientists

have shown some mid-range predictive skill for the AO index, hints

that the anomaly may show longer-term trends. This could be im-

portant for attracting speculators to an AO market, as it offers the

possibility of profitably trading on private forecasts.

Over the past few decades the AO has tended towards higher index

values. This tendency remains subtle. Winter index values reject non-

stationarity with 95 percent confidence when subjected to the Aug-

mented Dickey-Fuller test for the presence of a unit root. Nevertheless,

climate experts have found this upward bias in repeated studies and

believe that it likely reflects climate change associated with green-

house gas emissions or changes in ozone layer 10. This connection to

10 N.P. Gillett, M.R. Allen, R.E. Mc-
Donald, C.A. Senior, D.T. Shindell,
and G.A. Schmidt. How linear is the
Arctic Oscillation response to green-
house gases? Journal of Geophysical
Research, 107(10.1029):233–248, 2002;
and D.T. Shindell, R.L. Miller, G.A.
Schmidt, and L. Pandolfo. Simulation
of recent northern winter climate
trends by greenhouse-gas forcing.
Nature, 399(6735):452–455, 1999

global climate change means that a derivatives markets based on AO

will provide an important leading indicator for global climate change,

perhaps even better than ENSO, which has shown a similar upward

bias. Whereas prices on existing climate markets (such as those for

carbon dioxide emissions) are contingent on government regulation in

response to climate change, prices on an AO market will respond to

global climate change itself, insofar as it impacts the index.

AO is often associated to two other important climate indexes.
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First the Antarctic Oscillation (AAO) (or Southern Annular Mode

(SAM)) is a similar anomaly affecting the Southern Hemisphere. Only

a handful of the world’s southernmost countries peak into the zone

impacted by AAO, so it has understandably received less research

attention than its northern twin11. Second, some climate scientists 11 H.A. Bridgman and J.E. Oliver.
The Global Climate System: Patterns,
Processes, and Teleconnections.
Cambridge University Press, 2006

consider the AO the parent of the North Atlantic Oscillation (NAO)12.

12 John M Wallace. North Atlantic
Oscillation/Annular Mode: Two
paradigms—one phenomenon. Quar-
terly Journal of the Royal Meteo-
rological Society, 126(564):791–805,
2000

I discuss neither the AAO nor the NAO in depth here.

Index construction

NOAA’s index tracking the AO is derived from atmospheric pressure

patterns in the northern hemisphere measured between 20 degrees lat-

itude (landmark cities roughly at this latitude include Mumbai, India

and Mexico City, Mexico) and 90 degrees latitude (the North Pole).

NOAA uses satellites to measure the height above the sea surface level

(adjusted for the differing effects of gravity at difference places on

earth) that gives an atmospheric pressure of 1000 hectopascals (hPa).

The actual index is a statistical abstraction (the leading Empirical Or-

thogonal Function (EOF)) of the daily and monthly mean anomalies of

those pressure measurements.

Empirical Orthogonal Function (EOF): reducing the multi-dimensional

data into one number

It is difficult to synthesize a matrix of values taken at different times

across many locations, even when the resulting matrix is projected

onto a series of maps. Imagine looking at a matrix of daily temper-

atures for major cities across the globe. How can you say from that

matrix that the earth, as a whole, is cold or hot? Even if know some-

thing about the spatial array of those cities, you can assign virtually

any weight each city’s contribution to the global temperature.

Climate scientists routinely face that problem. In the case of AO,

they distill a single tractable index covering the atmospheric pressure

across the AO zone using a statistical transformation called an Em-

pirical Orthogonal Function (EOF). That transformation involves 13: 13 H. Bjornsson and SA Venegas. A
manual for EOF and SVD analyses
of climatic data. Technical Report 1,
McGill University, 1997

1. Constructing a matrix of pressure measurements where each col-

umn represents a time series for a particular location and each row

represents a series of point measures (a map) for a given time.

2. Adjusting the matrix values to reflect that they are coming from a

rounded surface

3. Subtracting from those values the seasonally adjusted mean for
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each location and scaling their values to produce a standard devia-

tion of one for measurements between 1979 and 2000.

4. Finding the set of eigenvalues associated with the resulting matrix’s

covariance matrix

5. Identifying the largest eigenvalue in that set

This procedure obscures intuitive interpretations for non-experts,

but it results in a single index that explains much of the variance in

wind and pressure patterns in middle latitudes of the northern hemi-

sphere and can be applied consistently over a relatively long geospatial

time series. As I mentioned various times in this dissertation, the

Case-Shiller home price index, which condenses repeat home sales

data into a single value for a given geographic reason, provides a good

precedent for trading based off of an index measure, developed in

academia with the purpose of condensing an otherwise intractable

panel dataset into a single value 14. 14 K.E. Case Jr, R.J. Shiller, and

A.N. Weiss. Index-based futures and

options markets in real estate. The
Journal of Portfolio Management, 19
(2):83–92, 1993

Statistical analysis of EM-DAT disasters

Relative to ENSO, AO is characterized by:

• a short lag time between high index values and subsequent catas-

trophic weather

• a relatively circumscribe group of countries with the most direct

exposure to AO risk (those with territory above 45◦N)

• a clear seasonal window in which the index is most influential on

weather (Northern Hemisphere winter)

For these reasons I chose to benchmark NOAA’s monthly AO in-

dex’s15 impacts on weather disaster losses by looking at monthly 15 As of June 2013, NOAA’s monthly

AO index is available at http://

www.cpc.ncep.noaa.gov/products/

precip/CWlink/daily_ao_index/

monthly.ao.index.b50.current.

ascii.table.

damages from my enhance EM-DAT database (see chapter 1) be-

tween December to March due to extreme temperatures and storms

aggregated across the countries with territory above 45◦N. This gave a

sample of 526 individual disasters spread across 204 months. I divided

each month’s aggregate damage by its monthly median from 1960 to

2010 (see table 10.1). Figure 10.1 shows damages for the AO region for

all disaster types.

month median damage for all countries above 45◦N
Dec 181.108

Jan 674.379

Feb 165.211

Mar 202.054

Table 10.1: Median damage (USD

m) for countries with territory above

45◦N between 1960 and 2010

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii.table
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii.table
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii.table
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii.table
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii.table


arctic oscillation (ao) 267

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

Drought
Epidem

ic
Extrem

e tem
perature

Flood
Insect infestation

M
ass m

ovem
ent dry

M
ass m

ovem
ent wet

Storm
W

ildfire

1960 1970 1980 1990 2000 2010
date

O
bs

An
dP

re
dD

am
ag

es
US

Dm

−4

−2

0

2

AO
index

1960 1970 1980 1990 2000 2010
date

in
de

xv
al

ue

Figure 10.1: Disaster damage esti-

mates by disaster type for countries

with territory above 45 ◦N compared

to AO index



268 direct climate markets

I performed the Augmented Dickey-Fuller Test and the Phillips-

Perron Unit Root Test on both the index time series and the damage

as a percentage of monthly median time series. Both tests favored the

alternative hypothesis of stationarity with greater than 95 percent

confidence.

The damages series showed no significant autocorrelation using a

standard autocorrelation function, indicating that there is only weak

interaction between the damage values of one month and the next.

However, the AO index showed significant autocorrelation up to two

lags. I plan to control for this dynamic explicitly in further analysis.

I defined an anomaly in the AO index as a value outside the range

of -1 to 1, and ran three separate regressions - one for a high anomaly,

one for a low anomaly, and one for normal conditions. In this case,

the climate literature suggests that AO’s high and low anomalies may

cause regression lines of damages to have opposing signs (negative for

low anomalies, positive for high anomalies).

The equations for those regressions are in 10.1. I selected diffuse

priors for all coefficients, although I centered the priors of each slope

coefficient with a slight bias toward my expectation for the sign of the

coefficient. I choose diffuse priors for my AO regressions because there

is relatively little published economic work on the impacts of AO to

inform my inference. However, I believe these priors can be materially

improved by the addition of information from the climate literature,

along the lines of chapter 2.

logmonthly damage/mediant ∼ N (ŷi, σ2
y )

ŷt = aAO phase
+bAO phase∗
monthly damage/median

alow ∼ N (1, 1000)
anormal ∼ N (1, 1000)
ahigh ∼ N (1, 1000)
blow ∼ N (−1, 1000)
bnormal ∼ N (0, 1000)
bhigh ∼ N (1, 1000)
σ2

y ∼ U (0, 100)

(10.1)

The output from those regressions in table 10.2, indicate that, with

95 percent probability, the slope on the low anomaly regression is

negative. That means that more extreme AO index values in the neg-

ative range are indeed associated with increased disaster damages. 0
is within the 95 percent probability interval for the slopes for positive

anomaly and normal seasons. That suggests a weak or non-existent

relationship between disaster damages and AO index values outside
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positive anomaly Observed winter months 39

mean sd 2.50% 25.00% 50.00% 75.00% 97.50% R̂ n.eff

b[1] 24.114 18.839 -12.796 11.524 24.082 36.406 61.261 1.0016 2800

b[2] 5.239 8.690 -11.766 -0.521 5.218 10.978 22.332 1.0016 2900

sigma.y 38.441 4.659 30.786 35.125 37.963 41.265 48.909 1.0009 11000

neutral AO Observed winter months 102

mean sd 2.50% 25.00% 50.00% 75.00% 97.50% R̂ n.eff

b[1] 6.783 2.116 2.672 5.355 6.760 8.194 10.955 1.0015 3100

b[2] 2.833 3.770 -4.449 0.278 2.785 5.329 10.314 1.0013 4500

sigma.y 21.388 1.542 18.640 20.320 21.298 22.364 24.650 1.0009 11000

negative anomaly Observed winter months 63

mean sd 2.50% 25.00% 50.00% 75.00% 97.50% R̂ n.eff

b[1] -6.854 3.375 -13.644 -9.099 -6.826 -4.620 -0.249 1.0012 6600

b[2] -5.579 1.596 -8.730 -6.628 -5.570 -4.537 -2.403 1.0012 5800

sigma.y 8.982 0.843 7.531 8.382 8.924 9.509 10.839 1.0011 10000

Table 10.2: Diagnostics for Bayesian

regression of economic damages, as a

percent of the monthly median, from

storms and extreme temperatures in

countries with territory above 45◦N
from December to March on monthly

AO index

the low anomaly range. While the 50 percent probability interval of

the low anomaly is distinct from those of the other regressions, the

95 percent probability intervals of the slope coefficients on all three

regressions have some overlap. So while low AO anomalies produce

higher damages with high probability, the impacts of low anomalies

are only distinct from those associated with normal conditions with 89

probability.

Pr(anomaly ≥ magnitude) magnitude DEC JAN FEB MAR

13% -2 779.49 2902.53 711.07 869.64

7% -2.5 1284.69 4783.71 1171.93 1433.27

3.5% -3 1789.89 6664.89 1632.78 1996.90

1% -3.5 2295.09 8546.06 2093.64 2560.52

Table 10.3: Damage estimates from

AO anomalies of various magnitudes

and months in USD m

To simulate the expected losses associated with extreme low anoma-

lies in the AO index across four months studied, I drew 10,000 sim-

ulated simulated parameter value sets from the output of the low

anomaly regression and applied each to the historical record of AO

index, aggregating damage estimates across each season (December

of year t to March of year t + 1). Across the 10,000 simulated replays

of the historical record, the mean damage due to low AO values was

USD 1.6 billion in any given season. Restricting the sample to the 19

seasons (out of 51 total) with monthly index values of -2 or below,

the mean damage was USD 4.6 billion. Table 10.3 shows the inferred

damage estimate when I applied the low anomaly mean parameters

to anomalies of various sizes and months. The table also includes the

probability of seeing an anomaly of each magnitude or greater in any

given month (from the empirical CDF in 10.3 and 10.4). As you can

see from that estimate, individual monthly anomalies can cause dam-

ages many time greater than the annual average.
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AO as a traded market

Based on those estimates, I believe that the expected hedging interest

for exchange traded market on AO index risk is very large. It may

in fact be larger than that for a comparable market in ENSO risk

(estimated in chapter 2). Independent of specific AO conditions, the

average estimated loss associated with AO is USD 1.6 billion, but the

losses from a single month’s anomaly can be many times that. Given

the autocorrelation within the index, it is possible that over the course

of an AO season, the hedging interest may growth rapidly as daily AO

values climb.

Even with this clear potential hedging interest, In my opinion a few

challenges set AO behind ENSO as a candidate for trading:

• The index itself remains highly unpredictable and markets generally

favor semi-predictable risks. That link between modest predictabil-

ity and liquidity was noticed as early as Working [1953]. Some

degree of predictability offers hedgers and speculators alike, the

possibility of profiting from predictive skill.

• The basis risk on AO remains high. While my regressions suggest

that AO is a strong predictor of winter disaster damage aggregated

across all countries with territory above 45◦N, few hedgers worry

about risks spread over such a large geographic area. Before AO

can be linked to the losses of specific hedgers, it will need to be

decomposed or augmented to reflect the experience across smaller

regions.

• Most AO risk tends to concentrate on the low side of the index.

This may complicate the search for hedgers to balance the market.

Unlike ENSO, AO does not create offsetting pools of risk across the

globe. While many industries undoubtedly benefit from negative

AO anomalies (such as ski resorts) and there may be some large

groups of hedgers who actively benefit from positive AO anomalies,

it may be difficult to identify enough hedging interest to roughly

balance out the positions of firms and institutions looking to protect

themselves from low anomalies.

These factors favor reinsurance markets as a destination for AO.




