
3

Pricing ENSO Derivatives

In chapter 2 I showed that ENSO is associated with the volume and

patterns of economic damage that may justify active trading. This

chapter estimates how much ENSO risk protection costs. As part of

that estimate, this chapter includes:

• an introduction to data quality issues surrounding ENSO;

• month-by-month analysis of the long-term average index values that

could be used to price insurance against catastrophic El Niño/La

Niña;

• modeling and analysis that links emerging ENSO forecasts to index

values;

• futures and options prices conditional on ENSO forecasts (see the

Pricing Appendix in part IV for full conditional prices by month);

and,

• suggestions about how those theoretical prices will be modified for

actual trading.

All the pricing routines presented in this chapter are based on the

data available1 at: 1 . . . as of May 2013

• http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.Ni~no.

mth.81-10.ascii

• http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices

The forecasts used for conditional pricing in this chapter come from

Colombia University’s International Research Institute for Climate and

Society (IRI). The archive of those forecasts is available2 at: 2 . . . also as of May 2013

• http://iri.columbia.edu/climate/ENSO/currentinfo/archive/

http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.Ni~no.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.Ni~no.mth.81-10.ascii
http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices
http://iri.columbia.edu/climate/ENSO/currentinfo/archive/
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Understanding NOAA’s SST indexes

NOAA publishes two primary sea surface temperate indexes. By and

large, those indexes tell the same story about El Niño/La Niña. How-

ever, they are compiled with different methodologies, over different

horizons. Understanding those distinctions is an important first step

in pricing El Niño/La Niña risk protection, especially insofar as it

suggests challenges to reliable contract settlement.

NOAA’s Extended Reconstructed Sea Surface Temperature Index

(ERSST) dataset provides a longer record, while NOAA’s Optimum

Interpolation Sea Surface Temperature Index (OISST) offers finer

resolution. As I discuss below, my analysis in this chapter is focused

on ERSST data, because OISST’s limited horizon (the index begins

in the early 1980s) may unfairly bias derivative and insurance prices

upward.

NOAA’s Extended Reconstructed Sea Surface Temperature Index (ERSST)

Most of the pricing in this chapter uses the latest iteration of NOAA’s

older ENSO-related SST index, ERSST version 3b. The key factor dis-

tinguishing ERSST from OISST is the use of in-situ and satellite data.

With the exception of version 33, all the ERSST iterations (1,2, and 3 ERRST version 3 included infrared

satellite data starting in 1985. NOAA

determined that this addition intro-

duced some biases into the index -

it tended to suggest temperatures

that were too cold by a factor of .01

deg C. NOAA consequently removed

satellite data (although it retains in

situ data collected via satellite) from

the calculation of ERSST version 3b,

the current standard.

3b, the iteration used here) use in-situ measurement exclusively4,5,6.

4 Thomas M Smith and Richard W

Reynolds. Improved extended recon-

struction of SST (1854-1997). Journal
of Climate, 17(12):2466–2477, 2004
5
Thomas M Smith and Richard W

Reynolds. Extended reconstruction of

global sea surface temperatures based

on COADS data (1854-1997). Journal
of Climate, 16(10):1495–1510, 2003
6 Thomas M Smith, Richard W

Reynolds, Thomas C Peterson, and

Jay Lawrimore. Improvements to

NOAA’s historical merged land-ocean

surface temperature analysis (1880-

2006). Journal of Climate, 21(10):
2283–2296, 2008

The full methodology for ERSST version 3b is described in detail in

Smith et al. [2008]7.

7 Note that this citation is actually for

version 3

Monthly anomalies in the ERSST version 3b index are measured

relative to a 1971-2000 base period8. NOAA releases monthly ERSST

8 Yan Xue, Thomas M Smith, and

Richard W Reynolds. Interdecadal

changes of 30-yr SST normals during

1871-2000. Journal of Climate, 16
(10):1601–1612, 2003

estimates with a resolution of two degrees across the four ENSO re-

gions. While the primary index record that NOAA posts to its web-

sites goes back to 1950, monthly ERSST data are available from 1854

on.

Historically, all in-situ measurements came from passing ships.

Smith and Reynolds [2004] suggests that ship-based measurements

pose challenges to researchers:

. . . the historic distribution of in situ SST data from ships has var-

ied with time due to a variety of economic and political changes (the

opening of new canals, world wars, improved communication, etc.).

In addition, biases in the ship in situ data have occurred as observa-

tional techniques have changed, and those biases must be corrected

[statistically] . . .

The last decades’ in-situ records have relied more heavily on dedi-

cated buoys, as Reynolds et al. [2002] describes:

SST observations from drifting and moored buoys were first used in

the late 1970s. Buoy observations became more plentiful following the
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start of the Tropical Ocean Global Atmosphere (TOGA) program in

1985 9.[AUTHOR’S NOTE: This program began as a response to the 9 Michael J McPhaden, Antonio J
Busalacchi, Robert Cheney, Jean-René
Donguy, Kenneth S Gage, David
Halpern, Ming Ji, Paul Julian, Gary
Meyers, Gary T Mitchum, et al.
The Tropical Ocean-Global Atmo-
sphere observing system: A decade
of progress. Journal of Geophysical

Research: Oceans (1978–2012), 103
(C7):14169–14240, 1998

1982/1983 El Niño event.] These observations are typically made by

thermistor or hull contact sensor and usually relayed in real time by

satellites. Although the accuracy of the buoy SST observations varies,

the random error is usually smaller than 0.5 ◦C and, thus, is better

than ship error. In addition, typical depths of the measurements are

roughly 0.5 m rather than the 1 m and deeper measurements from

ships. . . . [The] deployment of the buoys has been designed to fill in

some regions with few ship observations. This process had the most

impact in the tropical Pacific Ocean and the Southern Hemisphere.

Given the improvements to the SST record over time, someone

pricing risk management contracts using ERSST might want to give

different weights to different eras in the historical record. However,

the period since 1970 has had a much greater incidence of extreme El

Niño/La Niña events than any other in the historical record. So, prices

that rely more heavily on recent data will almost certainly be more

expensive.

NOAA’s Optimum Interpolation Sea Surface Temperature Index (OISST)

By the early 1980s, in-situ measurements were complemented by direct

satellite measurements. Again, Reynolds et al. [2002] explains:

In late 1981, Advanced Very High Resolution Radiometer (AVHRR)

satellite retrievals improved the data coverage over that of in situ

observations alone. The satellite retrievals allowed better resolution of

small-scale features such as Gulf Stream eddies. Because the AVHRR

cannot see the surface in cloud-covered regions, the biggest challenge

in retrieving SST is to eliminate cloud contamination

This satellite data became the basis of NOAA’s alternative to

ERSST, the Optimum Interpolation Sea Surface Temperature In-

dex (OISST). NOAA releases OISST data weekly on a one-degree grid

across the key ENSO regions. So it is available more often, and on a

finer scale, than ERSST.

OISST, currently at version 2, combines in situ SST measurements,

daytime and nighttime satellite data readings, and data from sea

ice cover simulations. The satellite data is adjusted statistically for

natural sources of bias, like cloud cover and atmospheric water vapor10 10 Richard W Reynolds, Nick A
Rayner, Thomas M Smith, Diane C
Stokes, and Wanqiu Wang. An
improved in situ and satellite SST
analysis for climate. Journal of

Climate, 15(13):1609–1625, 2002

11 12 13.

11 Richard W Reynolds and
Thomas M Smith. Improved global
sea surface temperature analyses using
optimum interpolation. Journal of

Climate, 7(6):929–948, 1994
12 Richard W Reynolds and Diane C
Marsico. An improved real-time global
sea surface temperature analysis.
Journal of Climate, 6(1):114–119,
1993
13 Richard W Reynolds. A real-
time global sea surface temperature
analysis. Journal of Climate, 1(1):
75–86, 1988

Additional dataset considerations

After picking a dataset for pricing, you must also decide on the region

to price, whether to use absolute SST measurements (◦C) or anoma-

lies, and any other data cleaning routines, like adjusting the standard
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deviation to match recent decades. In this section I walk through

those considerations and settle on a baseline for pricing of:

• Niño 3.4;

• measured in absolute degrees Celsius;

• without any standard deviation adjustments.

Niño region

As discussed in chapter 2, the Niño 3.4 region (figure 2.4) is the de

facto benchmark for identifying El Niño/La Niña events world wide. It

is consequently the basis of the pricing below.

In chapter 2, I also discussed the relative merits of Niño 1.2, the

region with the tightest connection to Peruvian flooding, which Glob-

alAgRisk used for its El Niño insurance. The main disadvantages of

that index are:

• Niño 1.2 anomalies arise later in the year, so the index has a

smaller window for advanced payments; and

• Niño 1.2 may do poor job of representing El Niño/La Niña events

with the same geographic signature as the 1972/1973 El Niño -

where warming was focused on the central Pacific.

If Niño 1.2 is the best proxy for Peru, does that mean that Niño

4, on the other side of the Pacific, is the best proxy for Australia.

Andrew Watkins of the Australian Bureau of Meteorology (ABM)

suggests no. Both indexes represent Australian risk quite well. So, un-

like Niño 1.2, Niño 4 is unlikely to find a niche of devoted specialized

hedgers.

Anomalies vs. absolute SST measurements

NOAA releases each of its datasets as departures from monthly av-

erages (anomalies) and absolute degrees Celsius. Its not immediately

clear which format is better for financial contracts.

Presenting contracts in terms of anomalies facilitates interpretation

of actual El Niño/La Niña events, since most major meteorological or-

ganizations define those events in terms of persistent monthly anoma-

lies. Indeed, many forecasts of SSTs (like those from the ABM and

IRI) are only provided in terms of anomalies.

The primary disadvantage of anomalies is that they have been, and

will continue to be, subject to revision as underlying SSTs drift over

time. In chapter 2 I briefly discussed the possible link between cli-

mate change and higher Pacific SSTs. To the extent that such trends

continue, the index may revise its baseline and the interpretation
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of anomalies may become less clear. The ONI index, which NOAA

uses to define El Niño/La Niña already uses a rolling window for its

monthly base periods.

The weather traders I interviewed for chapter 7 suggested that the

temperature derivatives are currently subject to annual revision. The

practice has not been a problem for traders. Nevertheless, there may

be advantages to using absolute SSTs. Absolute measurements will

directly incorporate any underlying shifts in the index, allowing, for

example, traders to simply express theories about the long-term trends

in the index. Those theories and, by proxy, the market’s judgment

of long-term climate change might be obscured in an anomaly-based

contract.

Miscellaneous data preparation

As mentioned above, many of the strongest El Niño/La Niña events

on record have happened since 1970. If you believe that the more

recent record is indicative of a regime change and is likely to be a

better guide to the future than all the other decades on record, then

there is no problem pricing risk based on that subset of the data.

However, if you believe that the clustering of anomalies in last 30

years was primarily a function of random chance, then you can use the

full ERSST dataset.

If you are uncertain, then some statistical adjustment of the data

may provide a middle ground. For example, you can increase the

volatility in the earlier part of the ERSST record to match that from

the more recent record.

Comparing and choosing a dataset to price

Figure 3.1 provides the baseline monthly values that NOAA uses to

calibrate anomalies in OISST and ERSST. Note OISSTs tendency

toward colder SSTs. The cold bias in satellite data is a great concern

in the climate literature and is noted in all the index construction

papers on ERSST and OISST cited above.

Figure 3.1 also shows that the winter months (in the Northern

Hemisphere) are the coldest in both indexes. This is interesting, given

that the ENSO phenomenon takes place in the tropics and its most

dramatic human impacts are in the southern hemisphere.

Finally, February/March and June/July are inflection periods, mov-

ing both indexes from cold to warm phases (the former months) and

back (the latter months). The baseline SST fluctuations over these two

windows is dramatic. I suspect that those months will consequently

host very active trading, if traded ENSO markets launch. Those are
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27.0

27.5
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Figure 3.1: Comparing OISST and

ERSST monthly baselines
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also likely to be the months where climate expertise and proprietary

data will provide the largest edge to traders. The possibility of infor-

mation asymmetries in those months may undermine the volume boost

that traded markets might otherwise get from increased volatility.
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Figure 3.2: Comparing SST dataset
options: March through August

Figures 3.2 and 3.3 show monthly time series for ERSST, ERSST

with a standard deviation adjusted upward for pre-1979 data, and

OISST. Looking at these graphs we can see a few trends that may be

important in pricing risk coverage.

First and foremost, we need to look for systemic divergences be-

tween any of the indexes in the tails of their distributions, since that

hedgers and speculators will be most interested in those extreme SST

measurements that trigger payments. At first glance, there does ap-

pear to be a trend in tail behavior. On the La Niña side (when the

indexes are in La Niña anomaly territory according to NOAA’s ONI

index discussed in chapter 2), OISST appears to show lower numbers

than ERSST in any given month. On the El Niño anomaly side, the

link is less clear. This raises the possibility that the OISST measure-
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Figure 3.3: Comparing SST dataset
options: September through February
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ment has higher volatility on the cold side than on the warm side.
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Figure 3.4: Comparing absolute value

of the difference between OISST and

ERSST (y-axis) and ERSST (x-axis)Figure 3.4 is a scatter plot showing the difference between the

OISST time series and the ERSST time series on the y-axis and the

corresponding anomaly in the ERSST data on the x-axis. Are there

patterns that suggest index choice matters a great deal in the tails of

the anomaly distribution? Do the indexes agree least when we need

reliable index measurements most - in a disaster?

Negative anomalies in the ERSST dataset are loosely associated

with larger discrepancies between OISST and ERSST - indicated by

a clump of points in the upper left-hand quadrant of figure 3.4. This

is exactly what we saw in the raw time series comparison above. The

implication of this trend for pricing is that simulations used for pricing

OISST-based risk cover should explicitly model this downside volatility

clustering.

Turning to the adjusted ERSST dataset, we see that its deviations

from the basic ERSST dataset are smaller than those of OISST. Con-

sequently, the choice between OISST vs ERSST seems more important

for the ultimate pricing decision than the choice of whether or not

to adjust the standard deviation of the earlier piece of the ERSST



106 direct climate markets

dataset.

Figure 3.5 shows the relationship between those differences and

extreme values in the underlying ERSST dataset. The figure shows the

distinct pattern, that the adjustment itself was intended to produce

- the adjusted dataset produces its largest discrepancies when the

underlying index is high. The anomalies for any given month clump in

straight line patterns.

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!!

!

!!

!

!

!

!

!

!
!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!
!

!

!

!
!

!
!

!

!
!

!
!

!
! !

!

!

!
!

!!

!

!

!

!

!
!

!
!

!! !

!

!!

! !!

!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!
!

! !! !! ! ! !!! !! ! !! !!! ! !! ! !! !! ! !!
!

!

!
!

!

!

!
!

!!!
! !

!!

!

!!
!

!
!!

!
!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!
!

!

!
!

!!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

0.00

0.05

0.10

0.15

−2 −1 0 1 2
ERSSTAnom

D
iff
er
en
ce

Figure 3.5: Comparing absolute value
of the difference between ERSST with
standard deviation adjustments and
ERSST (y-axis) and ERSST (x-axis)Arbitrage vs. expectations pricing

In a market such as corn or equities, derivatives prices come from

arbitrage, buying and selling in two or more closely related markets

to take advantage of a price differences across those markets. If, for

example, call options on corn appear too expensive relative to today’s

price on spot markets, a trader can:

• sell calls (collecting a premium);

• borrow cash;

• use the cash to buy physical corn on the spot market in proportion

to those calls; and
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• store that physical corn.

In this case, the calls sold represent an obligation to deliver corn.

But as long as the trader has corn in storage (potentially over the

full term of the call option) in equal proportion to that obligation,

then she can deliver on those calls (i.e. provide all the corn implied)

at a moments’ notice. This means that subsequent moves in the spot

price of corn will not cause the trader to incur any additional profits

or losses. All that matters to the trader is whether the premium she

collected by selling her calls is greater than the cost of borrowing and

storing the corn.

In an efficient market, traders specializing in arbitrage, make similar

trades across all clearly linked markets. By buying corn, they nudge

up the price in the physical market and by selling calls they nudge

down the implied price of corn in options markets. Over time, price

discrepancies between markets fall until the margins on these risk-

less14 trades disappear. 14 Risk-less in this context refers to
the fact that these arbitrage trades
attempt to profit from markets with-
out taking on the price risk associated
with the underlying good in the
market. They are not free from risk.

Black, Scholes, and Merton’s Nobel-Prize-winning work on options

pricing demonstrated that, given ideal conditions, the simple existence

of these arbitrage strategies suggests rational option prices that do not

include traders’ expectations for the price of the underlying good15 16. 15 Fischer Black and Myron Scholes.
The pricing of options and corporate
liabilities. The Journal of Political
Economy, pages 637–654, 1973
16 Robert C Merton. Theory of ratio-
nal option pricing. The Bell Journal
of Economics and Management Sci-
ence, pages 141–183, 1973

In other words, you can rationally price an option that would pay if

corn goes to USD 8 per bushel without guessing about the probability

of corn actually going to USD 8 per bushel.

By contrast, SSTs cannot be arbitraged directly. There is no oppor-

tunity to take a chunk of the Pacific Ocean today and deliver it in the

future at a pre-arranged temperature. I’ll discuss later how it may be

possible to piece together rough arbitrage strategies by looking at the

prices of related markets, such as a basket of more localized weather

derivatives. But even with those opportunities, arbitrage is not going

to provide theoretically definitive ENSO derivatives prices. Instead,

those prices will have to come from reasonable guesses about traders’

expectations for future SST.

Pricing outside the predictive window

In this section, I walk through the process of pricing El Niño/La Niña

derivatives/insurance outside the predictive window. That window,

before which predictions of El Niño/La Niña for the upcoming year

are little better than long term averages, is marked by what climate

scientists call the “spring predictive barrier”. As recently as 2010,

many climate scientists placed that barrier in March. However, it may

already have moved into February or January as El Niño/La Niña

prediction has steadily improved17. 17 In fact, even if February predictions
are not valuable, they may still pro-
duce herding behavior - with hedgers
buying based on the assumption that
they are valuable. Indeed, in 2010 a
large potential buyer of GlobalAgRisk
Extreme El Niño insurance decided
against signing a reinsurance agree-
ment after they saw early forecasts
of La Niña/neutral conditions in
2010. While it is difficult to know how
strongly those early forecasts influ-
enced their decision, it was enough to
convince GlobalAgRisk and its rein-
surance provider, PartnerRe, to push
the sales closing date into January in
subsequent seasons.
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Outside the yearly predictive window, SST expectations are rela-

tively straightforward. Traders should generally expect that SSTs in

any given month in the future will look like SSTs in the past18. When 18 I discuss non-stationarity in the
following section.

historical averages are the only basis for pricing, options are function-

ally equivalent to index-based insurance. One of the key theoretical

factors that distinguishes insurance from derivatives is the fact that

insurance risk is limited to situations where neither party has private

information relative to the settlement of the contract. By extension,

that means that historical averages are the only basis for pricing in

insurance. As SST predictions improve over time, insurers will need

to push back the sales closing date on their coverage to make certain

that they and their clients are making purchasing decisions exclusively

based on historical information.

Modeling the index

I begin pricing with basic exploratory data analysis, graphing the

historical record of monthly SST in various ways that might suggest

statistical properties of the underlying phenomenon.

Figures 3.6, 3.7, and 3.8 are a histogram, an empirical cumulative

distribution function (ECDF), and a kernel density estimate respec-

tively, for absolute SSTs in October19 from ERSST.3b’s Niño 3.4, 19 According to Dr. Andrew Watkins
of the Australian Bureau of Meteo-
rology (ABM), October is the single
most decisive month for El Niño/La
Niña worldwide. It is consequently
the month I use for most of the exam-
ples in this chapter.

running from 1950 to the present. In particular, I’m interested to see

if these graphs suggest skewness, a bi-modal distribution, or other

features that will be important for simulation and modeling in later

sections.
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Count

Figure 3.6: Histogram of October SST
for Niño 3.4 ERSST.3b
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The histogram of October SSTs suggests two important characteris-

tics:

• A barrier at roughly 27.5◦C - values running up to that level were

progressively more frequent while values above that levels were

relatively infrequent.

• Two distinct peaks of frequency - the biggest is at roughly 27.5◦C
and a second smaller peak at roughly 26.3◦C.

The ECDF tells a similar story as the histogram. Its S-shape breaks

between 27.5◦C and 26.3◦C. Alone, the ECDF and the histogram

might indicate that October SSTs should be fit using a mixture model,

combining draws from two distributions.
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F

Figure 3.7: ECDF of October SST for

Niño 3.4 ERSST.3b

However, these features are less prominent in the kernel density

smoothed estimate in figure 3.8. The distribution is not clearly asym-

metric. While there are two peaks, those peaks are relatively close

together and of similar magnitude.

Satisfied by figure 116 that SSTs do not require a mixture model,

I chose four parametric distributions to fit to the data: normal, log-

normal, gamma, and Weibull. I fit both the normal and log-normal

distributions using closed-form minimum least squares routines. I fit

the gamma and Weibull distributions using direct optimization of the

log-likelihoods 20. I then generated one million random samples from 20
Brian D Ripley. Modern applied

statistics with S. Springer, 2002each of the resulting distributions. QQ plots are shown in figure 3.9.

They compare the quantiles of the ECDFs of the randomly generated

samples to those from the actual historical SSTs for October.
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Figure 3.8: Kernel density estimate of

October SST for Niño 3.4 ERSST.3b

The Weibull, a member of the family of extreme value distributions,

is the only distribution that distinguishes itself in figure 3.9. It shows

a poor fit to the data, generating too many extreme draws at both

ends of the distribution.

Figure 3.9, suggests that the normal, log-normal, and gamma pro-

vide comparable fits to the data. In addition to looking at QQ-plots, I

also performed a two-sample Kolmogorov-Smirnov (KS) test on each

of the randomly generated samples to indicate whether each generated

sample came from the same distribution as the historical record. The

KS test uses the null hypothesis that the data from both samples fol-

low the same distribution and we fail to accept the null (suggesting

that the samples are indeed from distinct distributions) if the p-value

of the KS test falls below our chosen threshold (generally 0.05.) The

KS tests were inconclusive, unable to distinguish between the histori-

cal record and any of the generated samples at any reasonable level of

statistical significance.

If ENSO indexes are non-stationary, as implied by figure 2.5, then

the parametric modeling in this section must be adjusted to reflect the

possibility that Pacific SST anomalies are slowly increasing in strength

and/or frequency.

To some extent, NOAA’s indexes of SSTs already adjust for that

trend, by extrapolating historic measurements using a running window

of baseline monthly temperatures. If modelers, believe that the index

this adjustment is insufficient, they may attempt to model the index’s

gradual change directly. Alternatively, insurers who believe that non-
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Figure 3.9: QQ plots of October SST

for Niño 3.4 ERSST.3b compared to

samples from various distributions

(n=2 million)
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month normal lognormal gamma weibull

1 0.57 0.66 0.65 0.33

2 0.77 0.82 0.78 0.18

3 0.96 0.97 0.96 0.36

4 0.81 0.80 0.83 0.76

5 0.90 0.90 0.92 0.70

6 0.91 0.90 0.92 0.82

7 0.96 0.94 0.95 0.62

8 0.97 0.97 0.98 0.58

9 0.77 0.81 0.81 0.47

10 0.80 0.75 0.79 0.37

11 0.53 0.63 0.62 0.18

12 0.75 0.80 0.81 0.36

Table 3.1: Kolmogorov-Smirnov test
statistics comparing fitted distribu-
tional samples to historical SSTs

stationarity is a real, but difficult to quantify, phenomenon may choose

not to model it at all, but to demand a slightly larger risk premium on

their insurance.

Defining a payout function

Prior to pricing, simulated ENSO-SSTs need to be translated into

payments for hedgers using a payout function.

I am most concerned with extreme El Niño/La Niña, so I’ve chosen

to structure the payout functions for my example options around

events between one and three standard deviations away from the

monthly mean. More specifically, payments on the options begin at

one standard deviation21 above or below the monthly average (for 21 This is also called the trigger or
attachment point.

El Niño coverage/calls and La Niña coverage/puts respectively) and

payments reach one hundred percent of the notional value (or sum

insured) at three standard deviations above or below the monthly av-

erage. Figure 3.10 shows the average monthly value for Niño 3.4 in

black. The red and blue bands show the index values for each month

that would trigger a payment on calls and puts respectively.

Within those ranges, I use linear pricing such that an index value

halfway across the red band in figure 3.10 (i.e. halfway between the

the trigger and max payout point) would obligate a payout that is half

of the sum insured on a call/El Niño contract. The full linear function

for October El Niño is shown in figure 3.11.

As an example, suppose that I bought USD 100 of coverage for

USD 10 against October El Niño. If actual October SST was halfway

across the red band, or 28.74◦C, I would receive USD 50.
In practice, GlobalAgRisk found that hedgers (and speculators) pre-

fer a payout function that offers a minimum payout in the event that

the index reaches just above the trigger. For example, an index value
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Figure 3.10: Index values for El Niño
(red) and La Niña (blue) events
between one and three standard
deviations away from monthly average
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Figure 3.11: Payout function for call

option on October SST for Niño 3.4

ERSST.3b covering index values

between one and three standard

deviations above the baseline
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that just barely crosses into the red in 3.10 might trigger a payout of

5 percent on an El Niño/call contract, rather than the tiny payout

suggested the kind of linear function in figure 3.11.

Some potential clients also expressed interest in a more customized

payout function consisting of steps usually shaped around historical

events e.g. a 25 percent payout for the 1972/1973 magnitude event

and a 75 percent for a 1997/1998 magnitude event.

Static pricing

Given the option parameters, pricing function, and random samples

from fit distributions discussed above, I can now price derivatives

outside the predictive window.

Initially, I display the payouts generated just by historical October

SSTs. The average of these is a starting point for the derivative price.

This type of historical pricing is called burn analysis in (re)insurance.

Figures 3.12 and 3.13 show burns and average payouts on calls and

puts respectively.

As we discussed above, the last 30 years has been very active for

El Niño/La Niña events. Earlier decades (going back to the mid-

nineteenth century) hosted many fewer extreme El Niños/La Niñas.

Consequently, the burn price displayed here may in fact be high rela-

tive to our future expectations for October SSTs.

In figure 3.14, I show the prices generated (in USD of premium

per USD 100 of nominal coverage) from the random samples from fit

distributions. The figure includes burn prices and prices from samples

taken from kernel density smoothers fit over each month.

The prices from the various distributions are, with one prominent

exception, close together. On the El Niño side, the highest and lowest

prices are mostly within 125 basis points of one another in any given

month. On the La Niña side, that spread is slightly larger at roughly

150 basis point, but only between April and June.

The Weibull, is the one model challenging this consensus. The

prices from the Weibull samples are clearly distinct from the rest of

the group - almost doubling the price of La Niña coverage relative to

the rest of the group. The Weibull sample suggested the lowest prices

for El Niño coverage, albeit by a much smaller margin than for La

Niña. That is understandable given the distribution’s heavy left tail.

Apart from the Weibull, the samples drawn from the kernel density

smoother suggests the second highest prices for both El Niño and La

Niña coverage. The burn prices are in the middle of the pack.
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Figure 3.12: Historical burn on call
option for October SST for Niño
3.4 ERSST.3b covering index values
between one and three standard
deviations below the baseline
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Figure 3.13: Historical burn on put
option on October SST for Niño 3.4
ERSST.3b covering index values
between one and three standard
deviations below the baseline
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Pricing inside the predictive window

Extreme El Niño/La Niña events emerge over time, with forecasts

giving us even more useful hints in the months leading up to a given

event. As those hints emerge, we change our beliefs around the likeli-

hood of an event. The price of El Niño/La Niña risk protection should

change to reflect those beliefs.

In this section, I present pricing analysis conditioned on SST fore-

casts released by Colombia University’s International Research In-

stitute for Climate and Society (IRI). Every month since mid-2002,

IRI has collected forecasts issued by major centers of climatological

research. Figure 3.15 shows IRI the forecasts as of March 2013.

Figure 3.15: Example of IRI’s col-
lected forecasts - March 2013

I link forecasts and observed SSTs through a Bayesian regression

that uses the long terms climate record as a prior. If the regression

indicates that the forecasts have no predictive power, then all the sim-

ulated SSTs from the regression will simply reflect monthly historical

averages.

Modeling the link between forecasts and SSTs

As an example, imagine that it is March and I am interested in

predicting October Niño 3.4 SST. IRI’s forecasts (given in terms of

anomalies) are smoothed using three-month blocks, as in figure 3.15.
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In that figure, there are three forecasts that contain information rele-

vant to October SSTs - ASO, SON, and OND.

There are myriad ways of combining both individual and average

forecasts for those three windows in a regression, but in this section I

use as my predictive variable the IRI model average. So, in the above

example, I would look at all the model averages made in March for

ASO, SON, and OND, taking the average of those three numbers in

any given year. I did the same for every month across that months

valuable forecasts. That forecast average then conditions the long-term

average anomaly for October22. IRI issues forecasts between 2 and 10 22 I used anomalies rather than abso-

lute SSTs to match IRI’s convention.
months prior to any given target month. For example, October SST

forecasts begin in December and end in September. Since I want pric-

ing for every month, from the vantage-point of every preceding month

with IRI forecasts, I need to run a total of 108 separate regressions.

Monthly Niño 3.4 ERSST.3b anomaliesmonth,year ∼ N (ŷmonth, f orecastmonth,year, σ2
ymonth, f orecastmonth

)

ŷmonth, f orecastmonth,year = amonth, f orecastmonth
+bmonth, f orecastmonth∗
average of IRI average forecastsmonth, f orecastmonth

(3.1)

Those regressions, specified in equation 3.1, are a simplified ver-

sion of a procedure that climate scientists and statisticians have re-

cently used to merge ENSO forecasts23,24. Note first that I do not 23
Lifeng Luo, Eric F Wood, and Ming

Pan. Bayesian merging of multiple

climate model forecasts for seasonal

hydrological predictions. Journal of
Geophysical Research: Atmospheres,
112(D10), 2007

24 CAS Coelho, S Pezzulli, M Bal-

maseda, FJ Doblas-Reyes, and

DB StephENSOn. Forecast cali-

bration and combination: A simple

Bayesian approach for ENSO. Journal
of Climate, 17(7):1504–1516, 2004

know the predictive power of IRI average forecasts. The parameter

σ2
ymonth, f orecastmonth

accounts for that forecasting uncertainty. It will be

large where IRI average forecasts have shown low historical predictive

power. Note also that this Bayesian regression will not be biased by

non-stationarity. The underlying parameters are not assumed to be

stationary, since they are realizations of an unknown distribution.

The prior probabilities I placed on model parameters are shown

in equation set 3.2. There are weakly informative priors on b and σy,

allowing them to move easily across a wide range of possible values in

response to the data. a by contrast has a strongly informative prior

based on historical data. This means that if b, the parameter indi-

cating the predictive power of IRI’s average forecasts, is at or near

zero, then the resulting simulations from the posterior distribution will

simply reflect long term trends in monthly SSTs.

amonth, f orecastmonth ∼ N (mean anomaliesmonth, st dev anomaliesmonth)

bmonth, f orecastmonth ∼ N (0, 100)
σ2

ymonth, f orecastmonth
∼ Inv gamma(0.001, 0.001)

(3.2)
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Dynamic pricing based on model results

The table below contains regression results for October SSTs, pre-

dicted between the preceding December and August. The regressions

were all estimated using parallel Markov Chain Monte Carlo (MCMC)

chains, each with 100,000 iterations, 50,000 of which were discarded as

a warm-up25. The R̂ on all parameters below and in part IV’s Pricing 25 Stan Development Team. Stan:

A C++ library for probability and

sampling, version 1.3, 2013. URL

http://mc-stan.org/

Appendix were 1, indicating convergence on the simulation.

August forecast average covering October Niño 3.4 SST anomalies

mean sd 2.5th q 25th q 50th q 75th q 97.5th q n eff Rhat

α -0.10 0.10 -0.40 -0.20 -0.10 -0.10 0.10 91045 1

β 1.10 0.20 0.80 1.00 1.10 1.20 1.50 88920 1

σ2
y 0.10 0.10 0.10 0.10 0.10 0.20 0.40 56829 1

July forecast average covering October Niño 3.4 SST anomalies

α -0.10 0.20 -0.50 -0.20 -0.10 0.00 0.20 92218 1

β 1.20 0.30 0.60 1.00 1.20 1.30 1.70 93712 1

σ2
y 0.30 0.20 0.10 0.20 0.30 0.40 0.90 54297 1

June forecast average covering October Niño 3.4 SST anomalies

α -0.10 0.20 -0.40 -0.20 -0.10 0.00 0.30 95908 1

β 1.40 0.30 0.70 1.20 1.40 1.60 2.10 91107 1

σ2
y 0.30 0.20 0.10 0.20 0.30 0.40 0.90 55596 1

May forecast average covering October Niño 3.4 SST anomalies

α -0.10 0.20 -0.50 -0.20 -0.10 0.10 0.40 92919 1

β 1.50 0.60 0.40 1.20 1.50 1.90 2.60 90255 1

σ2
y 0.50 0.30 0.20 0.30 0.50 0.60 1.40 59205 1

April forecast average covering October Niño 3.4 SST anomalies

α -0.10 0.20 -0.50 -0.30 -0.10 0.00 0.30 88326 1

β 1.90 0.60 0.70 1.50 1.90 2.30 3.00 83902 1

σ2
y 0.40 0.30 0.20 0.30 0.40 0.50 1.10 57674 1

March forecast average covering October Niño 3.4 SST anomalies

α 0.00 0.20 -0.50 -0.10 0.00 0.20 0.50 101040 1

β 1.80 0.90 0.00 1.20 1.80 2.30 3.50 96782 1

σ2
y 0.70 0.50 0.30 0.50 0.60 0.90 1.90 59539 1

February forecast average covering October Niño 3.4 SST anomalies

α -0.10 0.30 -0.70 -0.30 -0.10 0.10 0.60 98192 1

β 0.80 1.30 -1.80 0.00 0.80 1.60 3.40 88684 1

σ2
y 1.10 0.80 0.40 0.60 0.90 1.30 3.20 54912 1

January forecast average covering October Niño 3.4 SST anomalies

α 0.00 0.30 -0.60 -0.20 0.00 0.20 0.60 99518 1

β 1.00 1.60 -2.30 0.00 1.00 2.00 4.20 92225 1

σ2
y 1.00 0.70 0.40 0.60 0.80 1.20 2.80 55715 1

December forecast average covering October Niño 3.4 SST anomalies

α 0.00 0.30 -0.60 -0.20 0.00 0.30 0.70 80946 1

β -0.30 1.90 -4.00 -1.40 -0.30 0.90 3.50 76663 1

σ2
y 1.10 0.70 0.40 0.60 0.90 1.30 2.90 56323 1

Table 3.2: Bayesian regression linking

October Niño 3.4 SST anomalies

to average of relevant IRI ensemble

forecasts

Looking at the 2.5th and 97.5th percentile of the distributions

for b, its clear that the forecasts become more valuable predictors as

the year goes on. Going from December to August, the 95 percent

probability interval for the forecast parameter, b steadily tightens to a

range including 1. This suggest that the correlation between forecasts

and eventual SSTs increases throughout the predictive window. As the

http://mc-stan.org/
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explanatory value of b increases, a decreases. Just as climate scientists

suggested, a’s 95 percent probability tightening around 0 after March.

Using the posterior draws of parameter values from these 108 re-

gressions, I simulated SSTs predicted by each possible forecast value

between -2 and 2 (forecasts are rounded to one decimal). For exam-

ple, I took 50,000 posterior draws of a, b, and σ2
y from the regression

corresponding to October SSTs predicted by April forecasts. I used

each of those 50,000 vectors of three parameters to randomly generate

one October SSTs, based on an average April forecast of mild El Niño

conditions in the coming October (a forecast value of 0.5.) That left

me with 50,000 October SST conditioned on a forecast of 0.5 made in

April. I repeated that procedure to produce conditional distributions

for SSTs for each month of the year, predicted by a wide range of fore-

cast values, from all possible forecast months. The resulting stochastic

catalog allowed me to price El Niño/La Niña risk for any month given

any IRI average forecast.

The empirical distribution functions of those posterior simulations,

converted back into absolute SSTs, are shown in figures 3.16 and 3.16.

In those figures, deeper blue lines indicate colder forecast averages

from IRI and deeper red lines indicate warmer forecasts.

Notice how the blue and red lines are tightly bound ten months

prior to any given target month (down the rightmost column) in

figures 3.16 and 3.17. This indicates that forecasts had little or no

predictive power, as warm forecasts were as closely associated with

eventual warm conditions as cold forecasts, and visa versa. In some

cases, where the blue lines peek above the red, the colder forecasts are

actually associated with higher eventual SSTs. The fact that the red

and blue lines bunch together as you move left to right across rows

in figures 3.16 and 3.17 suggests that the signal from IRI’s average

forecasts deteriorates as we go further back in the predictive window.

By contrast, two months away from a target month (down the left-

most column of figures 3.16 and 3.17), forecasts are meaningful. Blue

lines sit below red lines. So a warm forecast shifts the distribution of

eventual SSTs warmer and visa versa.

The spring predictive barrier is also clear in the figures. The dif-

ference between April outcomes, conditioned on particularly cold and

warm forecasts made just two months prior, is smaller than the same

difference for February SSTs made ten months out. In visual terms,

the ECDFs for row April, column t-2 months are more compact than

the ECDFs for row February, column t-10 months. In other words,

April SSTs show a weaker link to February predictions than February

SSTs show to predictions from the preceding April.

In table 3.3, I translated these simulation results into pricing for

October La Niña protection (put options on October SST). As before
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Figure 3.16: Cumulative distribution
functions for realized January through
June Niño 3.4 SST conditioned on
average IRI ensemble forecasts for
various months
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IRI anom price per USD E[SST] 2.5th q 25th q 50th q 75th q 97.5th q

-2.00 0.80 23.93 0.00 0.66 0.96 1.00 1.00

-1.90 0.77 24.07 0.00 0.59 0.89 1.00 1.00

-1.80 0.73 24.21 0.00 0.54 0.82 1.00 1.00

-1.70 0.68 24.35 0.00 0.47 0.75 1.00 1.00

-1.60 0.64 24.49 0.00 0.41 0.68 0.95 1.00

-1.50 0.58 24.63 0.00 0.34 0.60 0.87 1.00

-1.40 0.53 24.77 0.00 0.28 0.54 0.79 1.00

-1.30 0.47 24.91 0.00 0.21 0.47 0.71 1.00

-1.20 0.41 25.05 0.00 0.15 0.39 0.63 1.00

-1.10 0.35 25.19 0.00 0.08 0.32 0.55 1.00

-1.00 0.30 25.33 0.00 0.02 0.25 0.48 0.99

-0.90 0.24 25.47 0.00 0.00 0.18 0.40 0.90

-0.80 0.19 25.60 0.00 0.00 0.11 0.33 0.81

-0.70 0.15 25.74 0.00 0.00 0.03 0.25 0.72

-0.60 0.11 25.88 0.00 0.00 0.00 0.17 0.63

-0.50 0.08 26.02 0.00 0.00 0.00 0.10 0.55

-0.40 0.06 26.16 0.00 0.00 0.00 0.02 0.46

-0.30 0.04 26.30 0.00 0.00 0.00 0.00 0.38

-0.20 0.02 26.44 0.00 0.00 0.00 0.00 0.31

-0.10 0.02 26.58 0.00 0.00 0.00 0.00 0.23

0.00 0.01 26.72 0.00 0.00 0.00 0.00 0.16

0.10 0.01 26.86 0.00 0.00 0.00 0.00 0.08

0.20 0.00 26.99 0.00 0.00 0.00 0.00 0.01

0.30 0.00 27.14 0.00 0.00 0.00 0.00 0.00

0.40 0.00 27.27 0.00 0.00 0.00 0.00 0.00

0.50 0.00 27.41 0.00 0.00 0.00 0.00 0.00

0.60 0.00 27.55 0.00 0.00 0.00 0.00 0.00

0.70 0.00 27.69 0.00 0.00 0.00 0.00 0.00

0.80 0.00 27.83 0.00 0.00 0.00 0.00 0.00

0.90 0.00 27.97 0.00 0.00 0.00 0.00 0.00

1.00 0.00 28.11 0.00 0.00 0.00 0.00 0.00

1.10 0.00 28.24 0.00 0.00 0.00 0.00 0.00

1.20 0.00 28.38 0.00 0.00 0.00 0.00 0.00

1.30 0.00 28.53 0.00 0.00 0.00 0.00 0.00

1.40 0.00 28.67 0.00 0.00 0.00 0.00 0.00

1.50 0.00 28.80 0.00 0.00 0.00 0.00 0.00

1.60 0.00 28.95 0.00 0.00 0.00 0.00 0.00

1.70 0.00 29.08 0.00 0.00 0.00 0.00 0.00

1.80 0.00 29.23 0.00 0.00 0.00 0.00 0.00

1.90 0.00 29.36 0.00 0.00 0.00 0.00 0.00

2.00 0.00 29.51 0.00 0.00 0.00 0.00 0.00

Table 3.3: Put option prices for

October Niño 3.4 SST conditioned

on IRI ensemble forecasts released in

June

in this chapter, I used a payout function that began one standard de-

viation below normal and reached 100 percent of the nominal value of

the agreement (sum insured) at three standard deviations below nor-

mal. The full conditional pricing tables for all months, covering both

El Niño and La Niña, are available in the ENSO Pricing Appendix

(part IV).

Adjusting risk prices for real transactions

The prices in table 3.3 and part IV only reflect the underlying risk of

the index. In actual transactions, these pure risk prices will generally

be:



126 direct climate markets

• adjusted (downward) to reflect the time value of the premium paid

by hedgers;

• subjected to some margining26 rules, when applicable; and 26 Margining refers to the process of

setting aside collateral on financial

trades. On exchange-traded deriva-

tives there are clear, predictable rules

for how much money must be set

aside as collateral in a margin ac-
count as the trade’s settlement index

changes over time.

• adjusted (upward) to allow for some reasonable expected profit for

speculators.

I won’t address the first two procedures here. Time discounting is

straight-forward and I have no expertise in margining. However, I will

close this pricing chapter with a discussion on anchoring expectations

about speculators’ profits.

That anchoring is difficult because there are many reasonable

benchmarks for profit expectations. Should speculators expect reinsurance-

like returns? Futures-like returns? What have those returns been his-

torically?

Figure 3.18 (discussed in greater detail in chapter 6) shows one

reinsurance broker’s estimates of returns to investment in CAT bonds

and other insurance-linked securities (ILS). ILS markets show returns

between 8 and 12 percent above LIBOR over the last decade for wind-

exposed risk and between 3 and 9 percent for non-wind exposed risk.

Most of the high prices on non-wind risk are clustered at the begin-

ning of the observed period, so margins are at the low-end of that

range.

These ILS returns are an important benchmark in their own right,

since ENSO risk may trade in the form of CAT bonds. However, these

returns are also as a standard proxy for returns in actual reinsurance

markets.

Futures markets for major commodities provide another possible

benchmark for ENSO risk. Gorton and Rouwenhorst [2004] compiled

risk premium estimates for major commodities since 1959 by looking

at futures prices relative to settlement at regular intervals. Those

statistics are reproduced in the Miscellaneous Appendix’s table 5.

They include the average annualized arithmetic and geometric average

returns. Note that these returns are not adjusted above a benchmark

like LIBOR, so they are not directly comparable to the estimates in

figure 3.18.

One interpretation of table 5 is that some futures markets offer

speculators similar risk premiums as reinsurance markets, often above

10 percent per annum. That is surprising, given the general perception

that futures are highly efficient.

However, the table also shows that some of the most liquid markets

like corn, offer risk premiums of only a few percent. So clearly, the

world of futures includes some highly efficient markets that sit along

side many others that have provided speculators with high returns

over the past five decades.
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Figure 3.18: Weighted average risk
premium and expected loss over last
12 Months on catastrophe bonds
from “ILS Market Update” by Willis
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Regardless of their expected value, the risk premiums in futures

markets are evidently more volatile than those in reinsurance mar-

kets. None of the markets above show returns that are more than two

standard deviations away from zero. That may lead some to dismiss

the observation of persistent positive risk premiums as a statistical

anomaly.

Are there benchmarks within the world of exchange-traded deriva-

tives that are more directly relevant to ENSO risk than the commodi-

ties markets profiled in Gorton and Rouwenhorst [2004]? Chincarini

[2011] estimated risk premiums for on heating degree day (HDD) and

cooling degree day (CDD) futures contracts on the Chicago Mercantile

Exchange (CME). The results of that study are reprinted in Miscel-

laneous Appendix’s tables 6, 7, 8, and 9. Only a small percentage of

overall weather derivatives trading is in the form of on-exchange fu-

tures, so those estimates may not represent weather derivatives as a

whole. Nevertheless, they suggest that recent speculative premiums

for temperature risk have been on the low end of the range suggested

by Gorton and Rouwenhorst [2004]. The high volatility of those his-

torical premiums make it difficult to extrapolate about the long-term

efficiency of those markets.

Finally, the CME’s hurricane index derivatives the bring the rein-

surance/ILS premiums noted in figure 3.18 into the context of exchange-

traded derivatives. Surprisingly, the efficiency of hurricane derivatives

markets relative to ILS is not obvious. The CME’s marketing materi-

als suggest a 9.64 percent risk spread over expected loss on an example

hurricane contract. That is roughly 40 basis points below the mean

risk spread since 2009. But. the risk spread was below that level in 4

out of 10 quarters since 2009 and averaged 150 basis points below the

CME benchmark during those quarters.


