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El Niño-Southern Oscillation (ENSO)

This chapter presents my analysis of the El Niño-Southern Oscillation

(ENSO) climate phenomenon and its economic impacts. This work

provides the first line of evidence in support of traded markets in

ENSO risk. The chapter includes:

• a description of the ENSO as a climate phenomenon;

• a brief discussion of what current climate science tells us about

ENSO’s impacts;

• an introduction to indexes of ENSO (see chapter 3 for additional

information on ENSO-related SST dataset); and

• statistical analysis of the correspondence between the ENSO index

and disaster damages (estimated in chapter 1) around the world.

Introduction to El Niño-Southern Oscillation

ENSO refers to a coupled oceanic/atmospheric cycle, its occasional

break-down called El Niño, and supercharging called La Niña. In

normal years, the ENSO cycle refers to currents and winds (each re-

inforcing the other) that bring water along the surface of the Pacific

ocean from South America (from the eastern side of the Pacific) to

Indonesian and the South Pacific (the western side of the Pacific). As

that water travels along the ocean surface, it warms, thanks to the

intense sunlight in the tropics. This results in water piling up on the

Pacific’s western side1 actually making sea levels measurably higher 1 Confusingly, the Western Pacific
bumps up against Southeast Asia.

in Indonesian than in Peru. As this mass of warm water accumulates,

much of it sinks deeper into the ocean, where it naturally flows back

east, across the Pacific, toward South America. By the time that the

subsurface mass or water has reached the South American coast it is

cold, allowing it to store more of the nutrients that serve as the ba-

sis of a vibrant aquatic ecosystem. So, as it springs up to replace the

water moving west, it enriches the fisheries off Peru and Chile.
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During an El Niño anomaly, this cycle weakens. (See figure 2.1

modified from Rosenzweig and Hillel [2008] below.) As less water

reaches the western end of the Pacific, sea-surface temperatures rise.

Over the course of the year, a plume of warmer-than-normal water

creeps eastward across the Pacific. When that plume of warm water

reaches Peru, it parks a moisture laden air mass off the coast. When

that mass meets cold air coming east to west over the Andes moun-

tains, Peru suffers catastrophic downpours and flooding.
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Figure 2.1: Calendar of average El
Niño event, modified from Rosenzweig
and Hillel [2008]. Gray indicates
impacts contingent on the strength
of the event. Note that the calendar
for any one ENSO events can vary
greatly.

By contrast, during a La Niña anomaly the normal cycle enhances.

More water gets pushed from the South American coast, raising sea-

surface temperatures in Australia and Indonesia above normal. That

leaves Southeast Asia and Oceania with the same problem as Peru

during El Niño. A warm air mass sits in the region waiting for the

opportunity to cause extreme rains and floods.

The ENSO cycle drives weather patterns well beyond Australia,

Indonesia, and Peru. Figures 2.2 and 2.3 summarize global precipita-

tion and temperature impacts for El Niño. La Niña shows opposing

impacts, with a similar geographic footprint, but not necessarily of the
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Figure 2.2: El Niño global impacts

during the Northern Hemisphere

summer

Figure 2.3: El Niño global impacts

during the Northern Hemisphere

winter
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same magnitude.2 2 Rosenzweig and Hillel [2008] pro-
vides an excellent non-technical
overview of research related to the
economic impacts ENSO around the
globe.

Below are indicative publications covering regional or peril-specific

ENSO impacts in greater depth:

Global impacts

• Worldwide precipitation patterns

Ropelewski and Halpert [1987] and Ropelewski and Halpert

[1989] are seminal papers looking at the footprints of ENSO anoma-

lies between 1875 and 1983. The basis for figures 2.2 and 2.3, they

identify regions (19 for El Niño and 15 for La Niña) where precipi-

tation has a statistically significant link to the ENSO cycle.

Mason and Goddard [2001] provides a more recent probabilistic

estimates of ENSO’s influence on precipitation across the globe.

Global studies provide an excellent starting point for understanding

ENSO’s importance to catastrophic weather. But they rely on global

datasets with uneven coverage in the developing world. Judging by

Mason and Goddard [2001], alone you might conclude that El Niño

has a stronger influence on precipitation in the southwestern United

States than in southern Peru and southern Ecuador. That is an arti-

fact of the data that regional studies can address. Below are indicative

citations that illustrate hedging opportunities that may be obscured in

global ENSO research:

Regional impacts

• Flooding in the tropical Andean countries during El Niño

Khalil et al. [2007] was prepared in association with GlobalA-

gRisk’s Gates Foundation-supported work on El Niño insurance

for northern Peru. It looks at the link between different ENSO in-

dexes and extreme rainfalls in the Department of Piura, the local

basis risk on those indexes, and the influence of climate change

on regional flooding. It also addresses the trade-off between basis

risk and advanced payments using earlier months’ index values for

insurance.

• La Niña/El Niño flooding/drought in Australia

Chiew et al. [1998] provides an overview of the relationship be-

tween ENSO and rainfall, drought and streamflow in Australia.

The analysis shows that ENSO is a statistically significant pre-

dictor of hydrological conditions across Australia. In particular,

dry conditions in Australia tend to be associated with El Niño.

The authors suggest that ENSO is, on its own, a useful forecasting

tool for spring rainfall in eastern Australia and summer rainfall in
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north-east Australia. It is also helpful in predicting spring runoff in

south-east Australia and summer runoff in the north-east and east

coasts of Australia. However, autocorrelations diminish ENSO’s

value as a stand-alone predictor of Australian streamflows.

• Suppressed Atlantic hurricane activity during El Niño

Klotzbach [2011] finds ENSO is the the primary interannual

driver of variability in Caribbean hurricane activity, boosting hurri-

cane activity in La Niña years and suppressing it in El Niño years.

The article also examines interaction effects between ENSO and the

Atlantic multidecadal oscillation.

• Flood and drought in the Southern Cone during El Niño and La

Niña respectively

Grimm et al. [2000] analyzes precipitation and circulation across

South America’s Southern Cone. It finds significant links to the

ENSO cycle, both across the region and in eight distinct subregions.

The strongest subregional association links above-average rainfall in

Southern Brazil to El Niño.

• Drought in Northeastern Brazil during El Niño

Hastenrath [2006] looks at ENSO’s influence on the short rainy

season (covering just March and April) in the Nordeste region of

Brazil. Like northern Peru, the Brazilian Nordeste has a particu-

larly high incidence of poverty and a history of dramatic precipi-

tation events (drought in Brazil) coincident with extreme El Niño.

Hastenrath [2006] examines the climate drivers behind the region’s

recurrent Secas (droughts) with a focus on ENSO.

• La Niña/El Niño flooding/drought in Southeast Asia

Murty et al. [2000] looks at the acute airborne pollution in

Malaysia likely sparked by the 1997/1998 El Niño. That season

brought Indonesia’s worst drought in 50 years which in turn sparked

a forest fire on the island of Borneo that engulfed over one million

acres. This article summarizes the climatic roots of that disaster

and looks at how they interacted with land management decisions

to export the catastrophic consequences of an ENSO anomaly be-

yond its core region.

• Suppressed Indian monsoon activity during El Niño

Kumar et al. [2006] suggests that over the last 132 year El Niño

events have been a necessary, but not sufficient, prerequisite to

shortfalls in the Indian monsoon. The article suggests that Central-

Pacific (Modoki) El Niños have a stronger link to Indian drought

than classical Eastern Pacific El Niños. The article explains these
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differing El Niño signatures using an atmospheric general circula-

tion model.

• Drought in the West African Sahel during El Niño

Janicot et al. [2001] explores the unstable relationship between

Sahel rainfall and ENSO in the northern summer. Looking at 20

year running correlations between Sahel rainfall index and ENSO

SST between 1945 and 1993, the article suggests that the correla-

tion between El Niño and drought has changed over time. While

it was not signficant in the 1960s, it strengthened and has been

significant since 1976. The article proposes interactions with multi-

decadal oscillations as a cause of that change.

• Flooding in East Africa during El Niño

Indeje et al. [2000] investigates above-average rainfall linked to

El Niño through in the data of 136 weather stations across Kenya,

Uganda and Tanzania between 1961 and 1990. Using both an em-

pirical orthogonal function (EOF) and basic correlations, the article

identifies eight subregions with distinct rainfall patterns. The article

agrees with previous studies suggesting a modest tendency toward

above-average rainfall in El Niño years followed by below-average

rainfall the next year.

• Drought in Southern Africa during El Niño

Camberlin et al. [2001] looks at the connection between ENSO

and precipitation anomalies across Africa. The article confirms

previous findings that El Niño is linked to drought in East Africa

(shortfalls in the rainy season betweens July and September in

Ethiopia and between October and December in the east equatorial

countries) and in Southern Africa, especially during the second

part of its rainy season. Southern African rains also show a link to

teleconnections based in the Indian Ocean, which may account for

droughts in South Africa not associated with the ENSO cycle.

Index construction

ENSO anomalies are multifaceted phenomena involving feedback loops

from many climate systems. However, most major NMS define El

Niño/La Niña just by looking at one simple index, the temperature

of the sea-surface, relative to its seasonal average in specific regions

across the Pacific. Generally, NMS prefer to average their SST mea-

surements across a month or months, but they also issue more fre-

quent measurements. Hence, in its most basic form, the index tracking

ENSO anomalies is directly interpretable.3 3 The indexes of of some other re-

gional climate anomalies like the

AO (discussed in chapter 10) require

graduate-level mathematics to cal-

culate and are not denominated in

simple units like degrees.
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The index-based insurance purchased by Caja Nuestra Gente in

20124 used as its sole payment trigger November and December mea- 4 2012 marks the second year in a
row that the bank has purchased the
coverage designed by GlobalAgRisk.

surements of the NOAA-defined region know as Niño 1.2, which lies

directly off the Peruvian coast. (See figure 2.4 for a map of NOAA’s

Niño regions.) If the average of NOAA’s November and December

2013 SST readings for the Niño 1.2 region is 24◦C or above, then Caja

Nuestra Gente will receive an insurance payment for the occurrence of

a severe ENSO anomaly.

Figure 2.4: NOAA’s Niño SST regions
from http://www.cpc.ncep.noaa.gov

Niño 1.2 is the best predictor of catastrophic flooding in Peru and

Ecuador, El Niño’s flagship impact. However, NMS generally mark

ENSO anomalies using the Niño 3.4 region5 (roughly, from 5◦N to 5◦S 5 Niño 3.4, straddles two separate
regions, Niño 3 and Niño 4.and from 120◦ to 170◦W), which stretches across the central Pacific6
6 A.F. Khalil, H. Kwon, U. Lall, M.J.
Miranda, and J. Skees. El Niño-
Southern Oscillation-based index
insurance for floods: Statistical risk
analyses and application to Peru.
Water Resources Research, 43(10):
10416, 2007

7. Both regions, Niño 1.2 and the Niño 3.4, have a very high correla-

7 A.G. Barnston, M. Chelliah, and
S.B. Goldenberg. Documentation of
a highly ENSO-related SST region in
the equatorial Pacific. Atmosphere

Ocean, 35(3):367, 1997

tion during extreme anomalies. But Niño 3.4 is generally considered a

better proxy for the worldwide teleconnections associated with ENSO.

In particular, it does a better job capturing ENSO anomalies with

different geographic signatures. During the 1972/1973 El Niño, for

example, most of the sea-surface temperature warming occurred in

the central Pacific, closer to Niño 3.4. El Niño events focused on the

Central Pacific are also called Modoki Niños and can have large global

impacts8. 8 Karumuri Ashok, Swadhin K Be-
hera, Suryachandra A Rao, Hengyi
Weng, and Toshio Yamagata. El
Niño Modoki and its possible tele-
connection. Journal of Geophysical

Research: Oceans (1978–2012), 112
(C11), 2007

While month-by-month sea-surface temperatures alone provide a

functional benchmark for extreme ENSO anomalies, NOAA’s default

index for ENSO anomalies, the Oceanic Niño Index (ONI), attempts

to correct for two important statistical dynamics related to ENSO.

First, the teleconnections associated with ENSO, correspond best to

high sea-surface temperatures sustained across a few months. Conse-

quently, ONI uses a 3-month mean SST anomaly (i.e. each month is

reported as degrees above its average temperature) averaged over the

Niño 3.4 region. Second, average sea-surface temperatures in the Niño

3.4 region have demonstrated a slight upward bias in recent decades.

You can clearly see the bias in figure 2.5, where monthly averages over

http://www.cpc.ncep.noaa.gov
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successive 30 year periods have been creeping upward. This raises the

possibility that “El Niño and La Niña episodes that are [normalized to]

a single fixed 30-year base period (e.g. 1971-2000) are increasingly in-

corporating longer-term trends that do not reflect inter-annual ENSO

variability.”9 To correct for this, the ONI index takes each 3-month 9 Rebecca Lindsey. In watching for

El Niõ and La Niña, NOAA adapts

to global warming. ClimateWatch
Magazine, February 5 2013. URL

http://www.climatewatch.noaa.gov/

mean sea-surface temperature from the Niño 3.4 regions and divides

it by a corresponding average for a rolling base period. For example,

the March 1950 ONI value is equal to the average of Niño 3.4 tem-

peratures for January, February, and March, divided by the January,

February, and March average between 1936 and 1965. For recent data,

NOAA uses the 1981-2010 base period. This means that recent values

are subject to revision. NOAA currently changes the base period for

readings every decade, but as of 2016 will begin updating the base

period every 5 years.

Figure 2.5: Long-term warming

trend in Niño 3.4 region from NOAA

http://www.cpc.ncep.noaa.gov/

products/analysismonitoring/

ensostuff/ONIchange.shtml

The ONI index is more difficult to interpret than simple monthly

sea-surface averages. I suspect that this makes it less suitable as the

basis of an exchange traded risk management contracts. However, I

believe the smoothed index provides a solid foundation for this initial

statistical analysis.

Statistical analysis of EM-DAT disasters

Researchers have used the EM-DAT database to estimate ENSO’s

global impacts. But there are clear opportunities to enhance that

literature. Bouma et al. [1997], for example, identified a strong link

http://www.climatewatch.noaa.gov/
http://www.cpc.ncep.noaa.gov/products/analysismonitoring/ensostuff/ONIchange.shtml
http://www.cpc.ncep.noaa.gov/products/analysismonitoring/ensostuff/ONIchange.shtml
http://www.cpc.ncep.noaa.gov/products/analysismonitoring/ensostuff/ONIchange.shtml
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between the ENSO cycle and the number of people affected by disas-

ters globally. But curiously, part of the uptick is linked to increased

volcanic activity in years following El Niño events.

Goddard and Dilley [2005], by contrast, found that the overall fre-

quency of hydrological disasters in the EM-DAT database was not sig-

nificantly higher during El Niño or La Niña events than during ENSO

neutral periods. That analysis also found weak evidence of trends

in aggregate precipitation over land areas associated with ENSO ex-

tremes.

Goddard and Dilley [2005]’s finding are not surprising. First, ENSO

represents shifts in burden of disaster across the globe and changes

in the magnitude of disaster impacts. Indeed without some zero-

sum-like shift in disaster burden, there would be little advantage to

managing ENSO risk on an exchange, with relative winners from any

ENSO state trading risk with relative losers in that state. Second,

as discussed in chapter 1, the EM-DAT database has some evident

short-comings as a proxy for ENSO impacts, which I have worked to

correct. Even after my augmentation of missing data from the EM-

DAT database, flooding in northern Peru between January and April,

the largest and most dramatic impact of El Niño, hardly appears in

the database. For that reason, I believe that accurate disaster impact

statistics require Bayesian analysis which allows me to reference out-

side assessments of regional ENSO impacts as I extrapolate from the

disaster statistics I compiled in the last chapter.

Figure 2.6, shows disaster burden data aggregated across the world

next to the historic time series of the ONI index, with extreme El Niño

events marked in red and La Niña events marked in blue. As Goddard

and Dilley [2005] noted, it is difficult to identify clear tends in any of

the disaster types.

To identify groups of ENSO hedgers, my analysis segregates country-

disasters into groups that likely have similar hedging interest. In my

ENSO analysis I use four large groups:

• Flood and epidemics on South America’s Pacific Coast - Countries

on the Pacific coast of South America tend to face flood and epi-

demic risk associated with El Niño. Some countries, such as Peru

have experienced both flood and drought in extreme La Niña years,

but the physical and statistical link with regional drought is less

strong than for El Niño.

• Drought across the Southern Atlantic and Indian Ocean Basin -

Historically many countries have experienced drought in ENSO

years. The strongest links are with Pacific Asia and Oceania and

Atlantic South America. There are also important potential links

between ENSO and droughts in Southeast Asia, and Eastern/Southern
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age estimates by disaster type com-

pared to ENSO (ONI) index
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Africa. Given the link between drought and wildfire, wildfire inci-

dence is also included in this grouping.

• Storms in North America and the Caribbean - Perhaps the most

economically important offset for an ENSO market stems from the

an inverse correlation between ENSO and storm activity in the

Western Atlantic.

• Flooding in Pacific Asia and Oceania - This impact is generally

associated with La Niña.

Undoubtedly, there are other groups with important exposure to

the ENSO index and I could achieve a more accurate estimate of

ENSO damage by further distinguishing subgroups. However, I believe

that this grouping should be large enough to avoid spurious correla-

tions in the data but small enough that they will not mask regional

exposures to specific disaster-types.

South America’s Pacific Coast - Flooding, landslides and epi-

demics from El Niño

The economic impacts of El Niño are well known in Peru and Ecuador.

Despite the clear link between El Niño and disaster in the region,

there are relatively few extreme El Niño events in recent historical

record (1972/73, 1982/83, and 1997/98) and the region covers rela-

tively few countries so statistical inference about the economic burden

of El Niño in the region must come from relatively few disaster events.

In the typical extreme El Niño, sea surface temperatures off the

coast of Peru hit anomaly levels in the last months of a given year and

flooding begins in the first months of the following year. Based on that

pattern, I aggregated damage due to flood, landslide, and epidemic in

the first six months of each year between 1961 and 2010 and divided

by the median annual damage over the period of study (roughly 259 m

in 2010-USD). This sample included 192 separate disaster events.

To measure the influence of ENSO on, for example damages from

January through June 2010, I averaged the ONI index10 from Octo- 10 Note that this index is based on a
running average of monthly Niño 3.4
data.

ber 2009 through January 2010. Using this technique, it is easy to

distinguish the three extreme El Niño events in the recent series.

Using these time series (for the index and damages as a percent

of the seasonal median), I performed the Augmented Dickey-Fuller

Test and the Phillips-Perron Unit Root Test. Both tests favored the

alternative hypothesis of stationarity with greater than 95 percent

confidence. Neither, the index nor the damage time series showed

significant autocorrelation using a standard autocorrelation function,

indicating that there is only weak interaction between the values of
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mates by disaster type for countries

along South America’s Pacific coast

compared to ENSO (ONI) index
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one season and the next. As we have discussed earlier, many of the

most prominent ENSO measurement indexes have show some upward

bias in recent decades. However, the ONI index corrects for that bias.

I segregated the dataset to run separate regressions on:

1. El Niño seasons - those with an ONI average for October through

January above 111; and 11 The ONI index is normalized such

that a value of 1 indicates one degree

deviation above the average value for

the corresponding historical window

(see index construction section for

more details). The standard deviation

of the dataset is 0.82, so a value of 1

is slightly greater than a one standard

deviation anomaly.

2. Normal or La Niña seasons - those with a seasonal index below 1.

I chose to run separate regressions because I believe that the un-

derlying process producing flooding and related disasters is distinct

during moderate to strong El Niño conditions. This modeling decision

likely reduces the power of inference, but allows for opposing slopes

during each phase. I separate Bayesian regressions on each subset as

indicated in equation 2.1.

I selected a diffuse prior for both the slope and the intercept for

normal and La Niña years. The intercept’s diffuse prior was centered

on 1 and the slope’s on 0, simply to account for the fact that the

regression was stated in terms of median damages so most years in the

sample will have a value of one and show no trend related to ENSO.

I selected an informative prior for El Niño based on damages esti-

mates from Ecuador and Peru from the 1982/83 El Niño compiled in

Rosenzweig and Hillel [2008] using data from Glantz et al. [1991], as

well as Peruvian and UN reports. Those estimates placed the damages

of that disaster at roughly USD 10.5 b. (This estimate is presumably

in 1982/83 USD, so it would be larger if adjusted to present dollars.)

That disaster corresponded to an ONI index value slightly above 2.

I also assume that an ONI index of 1 (the point that distinguishes

between normal and El Niño conditions) results in median damages.

This gives me two points on which I can base my prior beliefs about

the slope and intercept of the line describing El Niño damages. The

move from an ONI of 1 to an ONI index of 2.165 resulted in approx-

imately 4045 percent greater damage than the median year. That is

equivalent to a slope parameter of 33.93.

I set a prior of bEl Niño ∼ N (33.93, 5.52). Based on Gelman and

Hill [2007] this is equivalent to providing one direct observation of the

slope parameter with a weight that is slightly less than one single data

point (because the standard deviation of observed damages is 5.37 less

than the standard deviation of the prior.) In other words, this prior

is slightly less influential to the final estimation than any single data

point in the regression.

Implicit in my belief about the slope of the line, is a similar prior

about the intercept parameter in the regression. If the effect of El

Niño is negligible, then the intercept of the El Niño regression is 1,

indicating losses that are 100 percent of the median. If the effect of a
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one point rise in my ONI index is to raise disaster damages to a level

to approximately 35 times the median (the prior I assigned above),

then then the intercept will be -33 (i.e. the line has a slope of 34 and

runs through point (1, 1)). This range (an intercept between 1 and

-33) is summarized in the prior aEl Niño ∼ N (−16.0, 172). This is a

relatively diffuse prior, and has a weight of considerably less than one

data point.

log Jan-Jun damage as percent of medianyear t ∼ N (ŷi, σ2
y )

ŷi = aNiño phase

+bNiño phase∗
mean Oct-Jan ONI indexyear t-1 through t

aLa Niña to normal ∼ N (1, 1000)
aEl Niño ∼ N (−16.0, 172)

bLa Niña to normal ∼ N (0, 1000)
bEl Niño ∼ N (33.93, 5.52)

σ2
y ∼ U (0, 100)

(2.1)

The output from those regressions in table 2.1, indicates that with

95 percent probability, the slope on the El Niño regression is positive

indicating that more extreme ONI index values are indeed associated

with increased disaster damages. The mean slope for La Niña and

normal seasons is close to 0, and 0 is with the 95 percent probability

interval. That indicates a weak or non-existent relationship between

disaster damages and ONI index values outside the El Niño range.

The slopes of the two regressions show no overlap in their 95 per-

cent probability intervals. The regression indicates that an average

ONI index reading of 2 for the months of October through January

(historically strong El Niño conditions, which happened three times

since 1970) was associated on average with a 1326 percent increase in

economic damages due to flooding, mudslides, and epidemics - equiv-

alent to roughly USD 3.4 b in absolute damages higher than during

normal or La Niña conditions. (See figure 2.8 for more details.) Us-

ing the limits of the 95 percent probability intervals for the slope and

intercept parameters, which imply the strongest and weakest link to

ONI respectively, the regression suggests that the credible range for

this figure is between USD 2.2 and 4.7 b.

Assuming that the probability of an extreme El Niño is roughly
3

40
(with three large El Niño events since 1970), then the mean damages

estimate suggests that the region will, at any given time, be interested

in roughly USD 250 m of risk coverage against the ONI index.

The difference in slopes is clear in figure 2.8 which shows a scatter

plot of damage data alongside the mean regression line and the 95

percent probability interval for that regression.
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El Niño Observed seasons 12

mean sd 2.50% 25.00% 50.00% 75.00% 97.50% R̂ n.eff

a -25.292 8.098 -42.289 -30.567 -24.921 -19.542 -10.655 1.0009 11000

b 19.278 5.371 9.637 15.445 19.046 22.855 30.392 1.0009 11000

sigma.y 9.910 3.464 5.059 7.442 9.282 11.665 18.451 1.0010 11000

La Nina to Normal Observed seasons 41

mean sd 2.50% 25.00% 50.00% 75.00% 97.50% R̂ n.eff

a 1.274 0.276 0.735 1.091 1.273 1.457 1.817 1.0013 4200

b -0.194 0.322 -0.822 -0.406 -0.195 0.018 0.450 1.0009 11000

sigma.y 1.555 0.183 1.247 1.427 1.538 1.667 1.953 1.0010 11000

Table 2.1: Diagnostics for Bayesian

regression of economic damages along

South America’s Pacific coast from

January to June on ONI October to

January average

East Pacific Asia and Oceania - Flooding from La Niña

Stable, liquid markets in teleconnection index risk will require bal-

anced populations of hedger with opposing risks. Assume that flooding

in South America creates a group of hedgers that want to receive pay-

ment in El Niño years. What region is the natural counter-party for

this hedge? There are two ways to identify likely counter-parties:

1. We could look for regions which could be considered winners from

an El Niño. For example a region that is often in water deficit and

receives above-average rainfall without suffering floods during El

Niño. However, these gains are likely to be modest relative to the

sudden and catastrophic losses caused by extreme El Niño. To

balance the market, you would need participation from many of

these counter-parties.

2. Alternatively, we could look for regions and industries that face

opposing losses across time. These counter-parties are perhaps

less desirable than El Niño winners. Setting up trades between La

Niña/normal phase losers and El Niño losers requires long-term

commitments from both parties. In interest rate markets hedgers

swap fixed and adjustable rates on loans based on indexed contin-

gencies. Similarly, El Niño hedgers could receive a lower interest

rate on an outstanding loan (in the case of El Niño) and visa versa

for La Niña hedgers. That type of hedge, while normally accom-

plished through OTC swaps markets today, could be mediated by

futures and options on futures.

La Niña related flooding in Pacific Asia and Oceania could be the ma-

jor driver of hedging activity in that second category. In this section, I

analyze the EM-DAT database for trends related to La Niña.

Using the average ONI index between October and January, the

largest La Niña events in recent history occurred in 1973/74, right on

the heels of the Modoki El Niño of 1972/73, and in 1988/8912. See 12 By some index measures the 2010

and 2011 La Niñas were also among

the strongest on record.
figure 2.9 for details.
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ENSO events generally begin in the Central Pacific with a slow-

down of the atmospheric/oceanic cycle that brings water upwelling off

the South American coast toward Indonesia. As that cycle slows, often

beginning as early as January (i.e. January 1997 for the 1997/98 El

Niño), by April of that year those changes are visible in the Eastern

and Central Pacific sea surface temperatures. Roughly by September,

still in advance of the impacts felt on South America’s Pacific coast

(roughly in the first six months of the following year, 1998 for the

1997/98 El Niño), persistent sea surface temperate anomalies result in

changes in patterns of precipitation in Pacific Asia and Oceania. (See

figure 2.1 for more detail on the calendar of events.) For that reason, I

analyze aggregate flood damage in the region from September of year

t though August of year t + 1 for its connection to the average ONI

index between October of year t and January of year t + 1 (the same

index used in the South America section). This division means that in

1972/73, when El Niño conditions quickly changed to La Niña condi-

tions in 1973/74, the flooding that occurred in September of 1973 in

Pacific Asia and Oceania is matched with the 1973/74 ONI readings.

Rather than analyze raw disaster data, I again set the seasonal

disaster impact as a percentage of the median through the period of

study. The median estimated flood damages in Pacific Asia and Ocea-

nia between 1960 and 2010 was USD 3.07 b between September of

year t and August of year t + 1. Those damages covered 523 disasters

in the EM-DAT database.

I performed the Augmented Dickey-Fuller Test and the Phillips-

Perron Unit Root Test on the damage data. While the Phillips-Perron

test favored the alternative hypothesis of stationarity with greater

than 95 percent confidence, the Augmented Dickey-Fuller Test failed

to reject the null hypothesis of non-stationarity. This indicates that

there may be long term trends in flood damage in the region which

could produce spurious correlations on OLS regressions. Stationarity

is not strictly required for Bayesian analysis, because the underlying

parameters of the regression are considered stochastic.

The damage time series did not, however, show significant auto-

correlation using a standard autocorrelation function, indicating that

there is only weak interaction between the values of one season and

the next.

I selected an informative prior for La Niña damages by referencing

my inference for the damages of El Niño on South America’s coast. I

believe that the influence of ENSO on flooding across this large region

(Pacific Asia and Oceania) is more subtle than El Niño’s effects on the

Pacific Coast of South America. In the latter case, my analysis indi-

cated that on average, a move from an ONI value of 1 to 2 provoked

a twenty-fold increase in flood damages across the region relative to
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normal or La Niña conditions. Hence, I assume extreme La Niña (an

ONI value of −2) will result in flooding in Pacific Asia and Oceania

somewhere between the median for region and five times above the

median.

When I combine this belief with the belief that normal conditions

will result in median losses across the region, I can also make infer-

ences about the intercept parameter in my regression. If the effect of

La Niña is negligible, then the intercept of the La Niña regression is 1,
indicating losses that are 100% of the median. If the effect of La Niña

is equal to the effect of extreme El Niño in South America, then the

intercept will be −4. This range (an intercept between 1 and −4 is

summarized in the prior aLa Niña ∼ N (−1.5, 2.52).

Given the tendency of some Pacific Islands to suffer from catas-

trophic flooding during El Niño, despite the regions’ tendency toward

drought, I broke the regression into three parts, rather than two 13. 13 UCAR. El Niño and climate
prediction: Reports to the nation
on our changing planet. Technical
Report 3, University Corporation for
Atmospheric Research (UCAR), 1994

This resulted in the regression equation listed in equation 2.2.

log Jan-Jun damage as percent of medianyear t ∼ N (ŷi, σ2
y )

ŷi = aNiño phase
+bNiño phase∗
mean Oct-Jan ONI indexyear t-1 through t

aLa Niña ∼ N (−1.5, 2.52)

anormal ∼ N (1, 1000)
aEl Niño ∼ N (−1.5, 2.52)

bLa Niña ∼ N (2.5, 2.52)

bnormal ∼ N (0, 1000)
bEl Niño ∼ N (−2.5, 2.52)

σ2
y ∼ U (0, 100)

(2.2)

The output from those regressions in table 2.2, indicate that:

• With 90 percent probability, the slope on the La Niña regression is

negative. Hence, more extreme ONI index value are associated with

increased flood damage in the region;

• With 95 percent probability, the slope on the El Niño regression is

positive. So, extreme positive ONI index values are also associated

with increased flood damage in the region;

• A slope of 0 for normal conditions is within the 95 percent confi-

dence interval, but that interval is biased toward negative values;

• The 50 percent probability intervals of each the regressions’ slopes

are distinct, but there is some overlap between the 95 percent prob-

ability interval of all three slope parameters.
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This indicates that while extreme values of the ONI index likely in-

fluence flood damage in the region, the connection would be clearer if

I included information from climate research through Bayesian priors

(as I do below for Atlantic storm damage) and changed the scale of

analysis to the sub-regional level.

Based on the regression, the expected impact of a La Niña event

of the same magnitude as that of 1988, an ONI index of -1.85 which

was reached twice since 1970, was an 261 percent increase in regional

flood damages relative to the median of slightly more than USD 8

b in absolute damages. (See figure 2.10 for more details.) While the

impact of La Niña on flooding across the region is less pronounced

than that of El Niño in South America, the expected damages are

large in aggregate. In fact they are large enough to fully offset the

hedging interest generated by El Niño along South America’s Pacific

coast, even after accounting for the fact that there have been only

two major La Niñas since 1970 versus three major El Niños over the

same period (i.e. adjusting for the probability of the extreme event in

question by 2
40 rather than 3

40 .)

My analysis indicates that futures and options on futures for ENSO

index risk would enjoy large balanced hedging interest. However, mar-

ket professionals will need to find clever ways to link natural counter-

parties in the market across time such that Asian hedgers are willing

to insure the losses of South American hedgers during El Niño years

and visa versa for La Niña years.

La Niña Observed seasons 9

mean sd 2.50% 25.00% 50.00% 75.00% 97.50% R̂ n.eff

a -1.045 1.756 -4.511 -2.213 -1.032 0.142 2.373 1.0010 11000

b -1.979 1.208 -4.376 -2.778 -1.973 -1.174 0.393 1.0010 11000

sigma.y 2.205 0.713 1.286 1.721 2.060 2.517 3.913 1.0012 5800

Normal Observed seasons 33

mean sd 2.50% 25.00% 50.00% 75.00% 97.50% R̂ n.eff

a 2.012 0.559 0.927 1.642 2.002 2.379 3.128 1.0011 10000

b -0.534 0.922 -2.352 -1.143 -0.529 0.063 1.286 1.0010 11000

sigma.y 3.097 0.420 2.397 2.802 3.051 3.343 4.031 1.0009 11000

El Niño Observed seasons 12

mean sd 2.50% 25.00% 50.00% 75.00% 97.50% R̂ n.eff

a -0.714 2.086 -4.826 -2.118 -0.708 0.694 3.347 1.0010 11000

b 3.354 1.546 0.298 2.316 3.347 4.389 6.427 1.0012 5600

sigma.y 7.334 1.792 4.764 6.077 7.032 8.260 11.760 1.0012 6000

Table 2.2: Diagnostics for Bayesian

regression of economic damages

in Pacific Asia and Oceania from

September to August on ONI October

to January average

North America and Caribbean - Storms from El Niño

So far, I have discussed catastrophes that are direct results of ENSO

anomalies. What distinguishes ENSO as a teleconnection index is its
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ability to reshape weather patterns across the globe, affecting regions

and weather phenomenon with no obvious immediate connection to

the ENSO event itself. This presents an opportunity. The hedging ac-

tivity generated by otherwise disparate weather events could, in part,

be driven to one central ENSO market, providing the liquidity, com-

petition, and collective information that will drive ENSO protection

prices steadily downward.

ENSO’s link to Atlantic hurricanes is likely the most important of

the true teleconnections (as opposed to the more direct linkages be-

tween ENSO and precipitation in the equatorial Pacific) that would

drive liquidity on an ENSO market. Hedging interest related to hurri-

cane damage might naturally come from the global reinsurance indus-

try, the large insurers of insurers that specialize in spatially correlated

risks. (See chapter 7 for more details on hedging interest from reinsur-

ers.)

US hurricanes represent the largest single non-life risk in the portfo-

lios of large reinsurers, hence any cost-effective hedging instrument

that could help them share Atlantic hurricane risk, or bring non-

hurricane risk into their portfolios to offset that hurricane risk, should

be very valuable to reinsurers14. Figure 2.11 shows my own measure 14 IAIS. Reinsurance and financial

stability. policy paper, International

Association of Insurance Supervisors

(IAIS), November 2011

of CAT bond issuance by peril type between 1996 and 2011 (2012 data

runs through March). CAT bonds are often considered a substitute for

reinsurance. They also reflect the risk that reinsurers want to transfer

out of their portfolios. The thick pink line in figure 2.11 is my esti-

mate of cat bond issuance specific to US hurricane risk. As you can

see, Atlantic hurricane risk has dominated catastrophe bond issuance

virtually every year since the market’s inception in 1996. (Figure 6.6

provides another estimate from a reinsurance brokerage with more

aggregation of issuance.)

Given the concentration of hurricane risk in reinsurance portfolios,

economic theory suggests that reinsurers should be excited by the

opportunity to hold positions that are not highly correlated to hurri-

canes, particularly in a market where they feel they have expertise.

But ENSO wouldn’t be just an uncorrelated market. It would be

a negatively correlated market, actually offsetting hurricane risk. Cli-

matological studies suggest that landfalls of major hurricanes along

the east coast of the United States and the Caribbean are historically

less likely during El Niño years than during normal ENSO phase or

La Niña conditions15 16 17 18. This result, corroborated by repeated 15 William M Gray. Atlantic seasonal

hurricane frequency. part 1: El Niño

and 30 mb Quasi-biennial Oscillation

influences. Monthly Weather Review,
112(9):1649–1688, 1984a

16 William M Gray. Atlantic seasonal

hurricane frequency. part 2: Forecast-

ing its variability. Monthly Weather
Review, 112:1669, 1984b
17 R.M. Wilson. Statistical aspects

of major (intense) hurricanes in

the Atlantic basin during the past

49 hurricane seasons (1950-1998):

Implications for the current season.

Geophysical Research Letters, 26(19):
2957–2960, 1999

18 P.J. Klotzbach. El Niño-Southern

Oscillation’s impact on Atlantic basin

hurricanes and US landfalls. Journal
of Climate, 24(4):1252–1263, 2011

studies of different data sets spanning three decades, means that rein-

surers selling El Niño protection will be paying out on contracts in

years where their hurricane losses are light and receiving payments in

years where the rest of their portfolios are suffering.

The EM-DAT database includes 616 separate catastrophic storm
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events between 1960 and 2010 impacting North America and the

Caribbean between the months of June and November (the tradi-

tional hurricane season). The median damage across the region for

each hurricane season is roughly USD 10.5 b, many times larger than

for floods in Southeast Asia and Oceania, or Pacific South America.

Economic damage estimates for all weather-linked disaster types across

the region is displayed alongside the ONI index in figure 2.12. No clear

trends are visible in the raw data, apart from a rise in the average

damages due to flooding and storms.

The Phillips-Perron Unit Root test favored stationarity for both

time series (for the index and damages as a percent of the seasonal

median) with 95 percent confidence. The Augmented Dickey Fuller

Test found a p-value of 0.05 for the damage series. Neither time series

showed significant autocorrelation using a standard autocorrelation

function.

Based on Klotzbach [2011] I created an ENSO index for hurricanes

by averaging ONI index values between August and October for any

given year (e.g. the 2010 hurricane season spanning June through

November 2010 is matched with the average ONI index values for Au-

gust through October 2010.) I then regressed hurricane damages on

the seasonal ONI index average as in equation 2.3. Distinct from the

other risk-regions analyzed in this chapter, I estimated regression coef-

ficients both for the individual ENSO phases (e.g. aLa Niña, anormal,

aEl Niño) and for all ENSO phases pooled together (e.g. apooled).
A pooled regression only makes sense in this case because previous

literature suggested that there may be a straight-forward inverse re-

lationship between ENSO and hurricanes, with high ENSO values

producing low levels of hurricane damage and visa-versa.

The pooled and normal coefficients were given uninformative priors

while the El Niño and La Niña coefficients were given priors based on

Klotzbach [2011], Bove et al. [1998], and Pielke Jr and Landsea [1999].

Klotzbach [2011] found that average number of major hurricanes per

year for El Niño years was 1.5, compared to 2.1 for years when ENSO

was in a normal phase. Bove et al. [1998] suggest that the ratio of

probabilities of a major US landfall in El Niño was 23 percent versus

58 percent in normal years. Finally, Pielke Jr and Landsea [1999]

suggested that the mean damage in El Niño seasons was USD 1997 2.0

b compared to 6.9 b for normal seasons.19 So given that three studies 19 Note that Pielke Jr and Landsea
[1999]’s median damage estimate,
made in 1997, is well below the
current USD 10.5 b suggested by
EM-DAT.

agreed that the burden of major hurricanes was roughly a third of its

normal value in El Niño years20, I constructed a prior that would put

20 Note that the studies used slightly
different definitions of El Niño.

an average El Niño event (roughly an ONI index of 1.2) at a level of

damage that was one-third the median across all seasons. I further

constrained that prior so as to avoid making the prior so steep as to

suggest no damage for an ONI index of 3 (larger than any on record
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but well within the realm of possibility).

The three studies showed similar agreement for La Niña. Klotzbach

[2011] suggested that the average La Niña season has a hurricane

burden two-thirds that of a normal season. Bove et al. [1998] and

Pielke Jr and Landsea [1999] found that the average La Niña season

has hurricane burden slightly lower than that of a normal phase sea-

son. Based on those studies, I constructed a prior suggesting that the

average La Niña season (an ONI value of roughly -1.2) had damages

that were between one-third higher than the median and one-half of

the median. Both these sets of priors are highly informative. I be-

lieve that informative priors are justified by the concurrent findings of

previous climate research on separate databases.

log Jun-Nov damage as percent of medianyeart ∼ N (ŷi, σ2
y )

ŷi = aNiño phase
+bNiño phase∗
mean Aug-Oct ONI indexyear t

apooled ∼ N (1, 1000)
aLa Niña ∼ N (1, 1.752)

anormal ∼ N (1, 1000)
aEl Niño ∼ N (0, 0.52)

apooled ∼ N (0, 1000)
bLa Niña ∼ N (−0.66, 1.252)

bnormal ∼ N (0, 1000)
bEl Niño ∼ N (−0.13, 0.42)

σ2
y ∼ U (0, 100)

(2.3)

Table 2.3 provides the output of the regressions in equation 2.3.

The grouped regression suggests the opposite of what I expected to

find - a slightly positive slope coefficient. For the phase-specific regres-

sions, a slope coefficient of 0 is well within the 95 percent probability

interval for all three phases, suggesting no clear relationship between

changes in the ONI index and storm damages in EM-DAT. However,

the intercept parameter for El Niño is likely below that for normal

ENSO phase seasons. The El Niño and normal phase intercept pa-

rameters begin to overlap at the 94 percent and 6 percent quantiles

respectively, suggesting that they are distinct with 88 percent proba-

bility.

Figures 2.13 and 2.14 provide a more complete picture of the regres-

sion findings. Even with strong guidance from previous studies, the

regional damage data in EM-DAT remains noisy and involves too few

observations from La Niña and El Niño years to provide a strong infer-

ence about hedging interest on an ENSO exchange. However, damages
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grouped observed seasons 51

mean sd 2.50% 25.00% 50.00% 75.00% 97.50% R̂ n.eff

a 1.931 0.472 1.009 1.615 1.931 2.245 2.876 1.0012 6300

b 0.454 0.561 -0.657 0.084 0.457 0.825 1.552 1.0009 11000

sigma.y 3.357 0.348 2.769 3.112 3.326 3.569 4.130 1.0012 5300

La Niña observed seasons 6

mean sd 2.50% 25.00% 50.00% 75.00% 97.50% R̂ n.eff

a 0.984 1.214 -1.381 0.176 0.975 1.800 3.341 1.0012 6800

b -0.194 0.941 -2.040 -0.829 -0.186 0.440 1.652 1.0010 11000

sigma.y 1.374 0.659 0.662 0.958 1.211 1.592 3.032 1.0011 10000

Normal observed seasons 39

mean sd 2.50% 25.00% 50.00% 75.00% 97.50% R̂ n.eff

a 1.940 0.593 0.776 1.552 1.934 2.328 3.112 1.0009 11000

b 0.310 1.185 -2.036 -0.478 0.312 1.073 2.637 1.0011 9000

sigma.y 3.706 0.449 2.951 3.388 3.662 3.982 4.692 1.0011 9100

El Niño observed seasons 7

mean sd 2.50% 25.00% 50.00% 75.00% 97.50% R̂ n.eff

a 0.259 0.493 -0.702 -0.070 0.268 0.590 1.219 1.0011 9300

b 0.131 0.390 -0.661 -0.125 0.142 0.394 0.886 1.0014 3900

sigma.y 4.142 1.656 2.174 3.071 3.785 4.768 8.262 1.0010 11000

Table 2.3: Diagnostics for Bayesian

regression of economic damages in

North America and the Caribbean

from June to November on ONI

August to October average

are likely lower in El Niño years than during the normal ENSO phase.

On average, the estimated losses for a modest El Niño season (Au-

gust through October ONI index average) are roughly 40 percent of

the median across all seasons (USD 10.5 billion). Given the magni-

tude of median losses, this is a difference that, while not statistically

significant with 95 percent probability, is of great economic impor-

tance. Given a 40 percent drop in hurricane damage during El Niño

season, the reinsurance industry should gladly act as counter-party

for any firm looking to purchase El Niño protection on a futures or

options market. Their windfall due to the drop in hurricane dam-

ages should be enough to cover the full range of estimated impacts on

South America’s Pacific costs (USD 2.2 to 4.7 billion) generated by an

extreme El Niño.

El Niño drought regions - Southern Atlantic, Indian Ocean basin,

East Asia, Oceania

El Niño is associated with drought and wildfire across large swaths of

the globe. In this analysis I grouped disaster data from all the regions

strongly suspected of suffering from El Niño related drought. That

includes most of of the Indian Ocean Basin, as well as the region most

associated with La Niña flooding, Pacific East Asia and Oceania. It

also includes the Brazil and the countries of the Sahel. See the damage

time series for this region is displayed along side the ONI index in

figure 2.15 for details.
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ENSO index, pooled across ENSO

phases
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Figure 2.14: Bayesian regression

analysis of damage estimates from

storms and flooding in North America

and the Caribbean predicted by

ENSO index, separate regressions for

each ENSO phase
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There are 299 droughts and wildfires in the EM-DAT database

corresponding to this group of countries, with a median September

through August (the same benchmark months used to measure flood-

ing in Pacific Asia and Oceania) damage due to drought and wildfire

of USD 1.7b. Each season’s damage corresponded to average ONI in-

dex values measured between October and January of that damage

season.

I performed the Augmented Dickey-Fuller Test and the Phillips-

Perron Unit Root Test on the damage time series. (See the Pacific

South America section for results from the corresponding index time

series.) Both tests favored the alternative hypothesis of stationarity

with greater than 95 percent confidence. The time series showed no

significant autocorrelation using a standard autocorrelation function.

Dai et al. [1998] used a linear regression to describe the relationship

between ENSO and drought across many regions of the world, without

segregating the dataset into its constituent ENSO phases. I follow that

convention here, presenting a single grouped regression, as in equation

2.4, rather than a series of regressions. To the extent that I believe

(based on Dai et al. [1998]) that the relationship between ENSO and

drought in these countries can be represented by a single line, then I

prefer a single regression because that would maximized the number of

observations in the sample.

The priors I chose for the regression are based on figure 2.16 which

suggests that between 1979 and 1995, an El Niño with a severity that

is two standard deviations away from the average, caused the burden

of drought across the world to be approximately 1.75 standard devi-

ations above its average, over the full period of study. Between 1900

and 1978 that same magnitude El Niño was associated with drought

burden approximately 1.5 standard deviations above the sample aver-

age. Assuming that the drought index used in the study is a reliable

proxy for drought in my sample, I used the standard deviation from

the sample to translate these observations from Dai et al. [1998], along

with observations for the intercept of each regression line, into a likely

range for the parameter values in my regression. I doubled the stan-

dard deviation of the prior relative to the standard deviation suggested

by the range in figure 2.16 to allow additional flexibility in the regres-
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sion. The resulting priors are presented in equation 2.4

log Sep-Aug damage as percent of medianyeartthought+1 ∼ N (ŷi, σ2
y )

ŷi = a
+b∗
mean Oct-Jan ONI indexyear t-1 through t

a ∼ N (2.625, 3.252)

b ∼ N (1.8, 2.52)

σ2
y ∼ U (0, 100)

(2.4)

DAI ET AL.: VARIATIONS IN DROUGHTS AND WET SPELLS 3369

Figure 3. Temporal (a, black line) and spatial (b) co-
efficient s of the first leading EOF of the monthly PDSI
(normalized by its standard deviations prior to the EOF
analysis, the pink and red areas are dry and the blue areas
are wet in El Niño years). Also shown in the upper panel are
the SOI (red line, sign flipped) and the normalized Darwin
sea level pressure index (green line) [Trenberth and Hoar,
1996]. Variations with time scales < 24 months are filtered
out for both the EOF temporal coefficient and the ENSO in-
dices. The smoothed ENSO indices are shifted to the right
by six months in order to obtain the maximum correlation
between the EOF coefficients and the ENSO indices (i.e.,
the ENSO indices lead the EOF coefficients by six months).
The correlations (r=0.61 with the SOI and r=0.67 with the
Darwin pressure index) are significant at <0.001% levels.

that the multi-year and decadal variations in the percent-
age areas are very large. For example, over the Sahel on
average about 50% of the region has been in severe drought
since 1970, which is about twice that in the first half of
the century. While the severe dry and wet areas are nega-
tively correlated, the sum of the two still has large variations
(Fig. 2). For example, the percentage area over Europe in
relatively normal conditions was ∼60% in the 1940s and in-
creased to ∼80% during the 1951-1980 period. In the Sahel,
only ∼10% of the area was in severe wet or dry conditions
in the 1960s, but it increased to ∼ 80% in the 1980s.
The long-term trends over the 1900-95 period are rela-

tively small in the severe dry and wet areas (and the number
frequency and severity of the severe dry and wet months).
However, during the last 2-3 decades, there are some in-
creases in the combined severe dry and wet areas, resulting
from increases in either the dry area (e.g., over the Sahel,
eastern Asia and southern Africa) or both the dry and wet
areas (e.g., over the U.S. and Europe) (Fig. 2). Most of the
increases occurred after 1970. Except for the Sahel, however,
the magnitude of dry and wet areas of the recent decades is

not unprecedented during this century.
An empirical orthogonal function (EOF) analysis of the

PDSI revealed a leading mode (Fig. 3) that correlates sig-
nificantly with ENSO events in time and space. This is
not surprising in view of the well established changes in the
distributions of rainfall, droughts and floods and through-
out the world during the warm and cold phases of ENSO
[e.g., Kiladis and Diaz, 1989; Dai et al., 1997]. The tem-
poral coefficients stay at a higher level after the late 1970s.
The active regions of the EOF are the areas that exhibit the
largest changes during the last 2-3 decades in the percentage
areas (cf. Fig. 2), the number frequency, and severity of the
severe dry and wet months, suggesting that this mode is pri-
marily responsible for the recent changes in severe droughts
and wet spells. The scatter plot (Fig. 4) of Fig. 3a re-
veals that the El Niño-induced PDSI anomalies are signifi-
cantly higher during 1979-95 than would be expected using
the 1900-78 relationship. The regression slope for 1900-78 is
larger than that for 1979-95 when negative values of the SOI
(as given by pressure at Darwin) are few. If the pre-1979
model is used to predict the PDSI coefficient, the upward
shift around 1979 in the PDSI coefficient in Fig. 3a would
largely disappear. t-tests on the difference of the means of
the temporal coefficient before and after a given year yielded
a peak t-value (∼29, significance level<0.01%) around 1978.
This suggests that the ENSO-induced PDSI anomalies af-
ter about 1978 depart from what would be anticipated from
the previous record. The ENSO EOF accounts for ∼7.8%
of the global variance of the (normalized) PDSI. This num-
ber is considerably higher regionally over the U.S., the Sa-
hel, southern Africa, Kazakhstan and southwestern Russia,
northeastern China, and eastern Australia, and also higher
if only ENSO years are considered. The ENSO EOF results
primarily from the rainfall anomalies associated with ENSO

Figure 4. Scatter diagram of PDSI EOF1 coefficient
(response) versus (6-month shifted) Darwin pressure index
from Fig. 3a. The crosses are monthly data points for 1900-
78 and the circles are for 1979-95. The thick solid line is the
linear regression for 1900-78 and the thin lines are the 99%
confidence interval for this regression line. The dashed line
is the regression for 1979-95.

Figure 2.16: Reprinted from Dai

et al. [1998] - a scatter plot of the

first eigenvalue of the Empirical

Orthogonal Function for a common

drought index, the Palmer Drought

Severity Index (PDSI) (response)

plotted across the world versus the

Darwin pressure index (a measure

of ENSO strength) from six months

previous. The crosses are monthly

data points for 1900-1978 and the

circles are for 1979-1995. The thick

solid line is the linear regression for

1900-1978 and the thin lines are the

99% confidence intervals. The dashed

line is the regression for 1979-1995.

The output from those regressions in table 2.4, place a slope coef-

ficient of 0 well within the 95 percent probability interval. (See figure

2.17 for more detail.) This indicates that despite informative priors,

the data in the EM-DAT database are too noisy to discern any rela-

tionship between ENSO and drought in these regions. The median

economic burden of drought on the region is modest relative to those

of the other peril/region groups studied here, so not only is the rela-

tionship statistically weak, but it is also of less economic consequence

than the other relationships analyzed in this chapter.

Based on this regression I have decided against including economic

damage from likely El Niño drought regions in my estimate of hedging
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interest for an exchange traded ENSO market.

All ENSO phases Observed seasons 51

mean sd 2.50% 25.00% 50.00% 75.00% 97.50% R̂ n.eff

a 1.660 0.399 0.869 1.399 1.658 1.926 2.453 1.0009 11000

b 0.295 0.382 -0.455 0.039 0.290 0.548 1.056 1.0010 11000

sigma.y 2.916 0.303 2.390 2.704 2.893 3.097 3.599 1.0013 4300

Table 2.4: Diagnostics for Bayesian

regression of economic damages in

North America and the Caribbean

from June to November on ONI

August to October average

How do these markets compare to other widely traded commodi-

ties?

This statistical analysis approximates the hedging interest that could

be generated on ENSO markets. The analysis deals exclusively with

disaster damages - so my estimate of hedging interest is confined to

the measurable losses that might otherwise be managed with insurance

(e.g. a firm purchases a futures contract so that they have funds to re-

build critical infrastructure after a major anomaly). It does not cover

the hedging interest that will come from firms or institutions using,

for example, ENSO derivatives as a diversified asset that can improve

their underlying portfolio of business. In other words, whereas my

initial hedging interest estimate is based off of expected losses, much,

perhaps most, of the hedging interest on a successful teleconnection

index exchange will stem from firms and individuals anticipating lost

opportunities.

Index/anomaly Pr(event) Peril Region Window

Median

seasonal

damage

Damage

from large

event E[Damage (lg event)]

ENSO

El Niño

ONI index ≥ 2 0.075 for ONI = 2
Flood/

landslide/

epidemic South America Jan-Jun 0.259 3.4 0.257

Storms

North America/

Caribbean Jun-Nov 10.5 5.4 0.410

from median -5.0 -0.377

La Niña

ONI index ≤ -1.85 0.05 for ONI = −1.85
Flood Asia/Oceania Sep-Aug 3.07 8.0 0.401

Table 2.5: Regression estimates of

extreme ENSO events indicative of

hedging interest (damages in USD b)

Table 2.5 presents aggregate findings from the damage regressions

for historically large ENSO anomalies. These estimates are meant to

provide general guidance about the hedging interest that might be
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Figure 2.17: Bayesian regression

of drought and wildfire damages

estimates from likely El Niño drought

regions, 1960-2011 predicted by ONI

index
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generated by individual large anomalies, conditional on their occur-

rence and weighted by their approximate historical probability.

Based on these results, ENSO anomalies, both high and low, could

generate hedging interest in the range of a few billion dollars. The

estimates are particularly promising for futures and options markets

because they show a rough balance between interest in El Niño and La

Niña coverage.

The damage associated with El Niño flooding in South America is

entirely offset by a combination of savings to the insurance industry

from El Niño’s inverse correlation to Atlantic tropical storm damage

and interest in hedging La Niña risk from Pacific Asia and Oceania.

In fact, hedging interest may concentrate on the La Niña side of the

market, although this is difficult to assess without additional analysis

of damages in the regions likely to suffer from droughts during El

Niño.

Of course, the figures for ENSO in table 2.5 are more valuable

relative to a benchmark showing how similar analyses would apply to

the indexes underlying successful futures and options contracts. In

table 2.7, I present estimates of the impact of one and two standard

deviation falls in the annual average crop price index from the US

Department of Agriculture in terms of the percentage change in the

total value of the US’s annual crop for corn, wheat, and soybeans21.22 21 National Agricultural Statis-
tics Service. National Agricul-
tural Statistics Service Archive:
Crop Values Annual Summary.
http://usda.mannlib.cornell.

edu/MannUsda/viewDocumentInfo.do?

documentID=1050, 2012
22 The figures in table 2.7 come from
regressions of annual percentage
changes in each index (price and
production value) which are not
discussed here.

These benchmarks place ENSO risk in the context of indexes that are

already the basis of successful exchange-traded derivatives markets.

For the sake of comparison, I’ve included a similar table coving

anomalies in the Arctic Oscillation (AO) in table 2.6. The analysis

underlying those benchmarks is available in Arctic Oscillation (AO).

The regressions indicate that large anomalies in ENSO and AO

indexes could generate hedging interest of a comparable magnitude

to large changes in price indexes for major US crops. It is difficult

to compare risks as distinct as price changes in corn and extreme El

Niño. But tables 2.5, 2.6, and 2.7 show that events that would be

considered “extreme” (approximately two standard deviation events) in

both AO and ENSO indexes are comparable to two standard deviation

events in major crop price indexes, both in terms of absolute and

expected losses.

http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1050
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1050
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1050
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Index/anomaly Pr(event) Peril Region Window

Median

seasonal

damage

Damage

from large

event E[Damage (lg event)]

AO

Low

−3.5 < AO index ≤ −3 0.025 for AO = −3

Storms/

extreme temps

Countries/

with territory

above 45◦N Dec 0.181 1.8 0.045

Jan 0.674 6.7 0.1675

Feb 0.165 1.6 0.04

Mar 0.202 2 0.05

Dec-Mar 1.222 0.3025

AO index ≤ −3.5 0.01 for AO = −3.5

Storms/

extreme temps

Countries/

with territory

above 45◦N Dec 0.181 2.3 0.0575

Jan 0.674 8.5 0.2125

Feb 0.165 2.1 0.0525

Mar 0.202 2.6 0.065

Dec-Mar 1.222 0.3875

Table 2.6: Regression estimates of

extreme AO events indicative of

hedging interest (damages in USD b)

Index/anomaly Pr(event)

Fall in

annual

production value E[Fall]

Corn, % change in price received

23% ≤ percentage fall <46% 0.12 23% fall from the 2011 price

3.752 0.45024

percentage fall ≥ 46% 0.1 46% fall from the 2011 price

7.504 0.7504

Wheat, % change in price received

18% ≤ percentage fall <36% 0.22 18% fall from the 2011 price

2.018 0.44396

percentage fall ≥ 36% 0.05 36% fall from the 2011 price

4.037 0.20185

Soybean, % change in price received

17% ≤ percentage fall <34% 0.24 17% fall from the 2011 price

2.985 0.7164

percentage fall ≥ 34% 0.06 34% fall from the 2011 price

5.971 0.35826

Table 2.7: Regression estimates of

change in total annual US crop value

(1908-2011) based on percentage price

change (USD b), for approximately

one and two standard deviation

moves.


