ERIKA LORRAINE MILAM

The Equally Wonderful Field: Ernst Mayr and Organismic Biology

ABSTRACT

Biologists in the 1960s witnessed a period of intense intra-disciplinary negotiations, especially the positioning of organismic biologists relative to molecular biologists. The perceived valorization of the physical sciences by "molecular" biologists became a catalyst creating a unified front of "organismic" biology that incorporated not just evolutionary biologists, but also students of animal behavior, ecology, systematics, botany—in short, almost any biological community that predominately conducted their research in the field or museum and whose practitioners felt the pinch of the prestige and funding accruing to molecular biologists and biochemists. Ernst Mayr, Theodosius Dobzhansky, and George Gaylord Simpson took leading roles in defending alternatives to what they categorized as the mechanistic approach of chemistry and physics applied to living systems—the "equally wonderful field of organismic biology." Thus, it was through increasingly tense relations with molecular biology that organismic biologists cohered into a distinct community, with their own philosophical grounding, institutional security, and historical identity. Because this identity was based in large part on a fundamental rejection of the physical sciences as a desirable model within biology, organismic biologists succeeded in protecting the future of their field by emphasizing the deep divisions that ran through the biological sciences as a whole.

*Department of History, 2115 Francis Scott Key Hall, University of Maryland, College Park, MD 20742, milam@umd.edu.

The following abbreviations are used: CDP, Cyril Dean Darlington Papers, CSAC 106.3.85, Special Collections and Western Manuscripts, Bodleian Library, University of Oxford, Oxford, UK; CES, papers related to the Conference on the Evolutionary Synthesis, Ernst Mayr Papers, B M541, American Philosophical Society, Philadelphia, PA; EMP, Ernst Mayr Papers, Faculty Papers, Harvard University Archives, Pusey Library, Harvard University, Cambridge, MA; GSP, George Gaylord Simpson Papers, MS Coll. 31, American Philosophical Society, Philadelphia, PA; HUGFP, Harvard University, Biography, Faculty Papers; NAS, National Academy of Sciences; NIH, National Institutes of Health; NMS, National Medal of Science; NSF, National Science Foundation; TDP, Theodosius Grigorievich Dobzhansky Papers, B D65, American Philosophical Society, Philadelphia, PA.

Historical Studies in the Natural Sciences, Vol. 40, Number 3, pps. 279–317. ISSN 1939-1811, electronic ISSN 1939-182X. © 2010 by the Regents of the University of California. All rights reserved. Please direct all requests for permission to photocopy or reproduce article content through the University of California Press’s Rights and Permissions website, http://www.ucpressjournals.com/reprintinfo.asp. DOI: 10.1525/hsns.2010.40.3.279.
During the 1960s, in reaction to the increasing prestige of biochemistry and molecular biology, biologists who studied the systematics of animals and plants, animal behavior, ecology, and evolution began to band together under a new name: organismic biology. Although the term had been in infrequent use since at least the 1930s, it became a touchstone for biologists only after Ernest Nagel's 1961 *Structure of Science*, in which he spent a chapter unfavorably contrasting “organismic” biology with “mechanistic” biology. Nagel insisted that although the reduction of organismic biology to physico-chemical laws had not yet been accomplished, the question of whether it **could** was empirical. There was no necessary philosophical or biological justification he could see for maintaining biological knowledge as distinct from the sciences of nonliving substances. Biologists like Ernst Mayr, who believed that true biology could never be explained using solely physical and chemical approaches, vilified Nagel's position, but embraced his terminology.

For organismic biologists, the 1960s began with the 1959 Centennial Celebration of Darwin's publication of *On the Origin of Species*. For Ernst Mayr, history provided a way to investigate the intellectual antecedents of his own approach to evolution and systematics. In part through Mayr’s patronage, the history of evolutionary theory offered historians of science an opportunity to interact with many of the great names in the field and an attractive alternative.
to the then-dominant history of the physical sciences.\(^4\) Mayr delighted in spending time with historians and philosophers of biology and encouraging them in their work—especially if it dealt with the history or philosophy of evolution and not mechanistic science.

For molecular biologists, on the other hand, the early 1960s were filled with news about the race to break the genetic code, and Nobel Prizes for the discovery of the structure of DNA.\(^5\) During the 1960s, tensions within the biological sciences increased dramatically, as members of distinct approaches to the study of the living world vied for pieces of the rapidly increasing monies available to fund research from the National Science Foundation, the National Institutes of Health, and other federal agencies.\(^6\) Although molecular biologists and biochemists may have seen each other as primary rivals in this fight, naturalists of all sorts began to worry about the future of the biological study they knew and loved as media attention, Nobel Prizes, institutional positions, and funding were heaped upon biochemists, molecular biologists, cellular biologists, and even biophysicists.\(^7\)

\(^7\) On the discovery of the structure of DNA, the race to break the genetic code, and the relationship between biochemistry and molecular biology, see, for example, Pnina Abir-Am, “The
In reaction, botanists, zoologists, taxonomists, and ecologists who studied the whole plant or whole animal defined themselves in opposition to those scientists who studied biological organization on a sub-organismal scale. They came to de-emphasize (but not forget) the traditional taxonomic boundaries between their fields and together advocated an organic or organismal approach to the study of life. Whereas molecular biologists worked valiantly to find practical applications of their research for human medical conditions, organismic biologists also sought to claim the human as part of their jurisdiction. Yet rather than concentrating on medicine, they suggested that organismic biology could shed light on the human condition, through an evolutionary lens.

The cast of characters for this paper consists of those self-defined organismal biologists who invested themselves in maintaining the boundaries of their field in the 1960s: Ernst Mayr (to whom I devote particular attention), Theodosius Dobzhansky, and George Gaylord Simpson, all of whom were already iconic figures in evolutionary theory. This paper explores their role in producing philosophical and historical accounts of organismic biology that served to demarcate their endeavors from those of molecular biologists. Yet as many historians have vividly illustrated, evolutionary biologists in the 1960s disagreed over just about every major question they posed to one another, including the unit of selection, the mechanisms by which natural selection acted, the importance of mathematical models, and the applicability of *Drosophila*
research to understanding evolutionary processes in nature. When it came to defending organismic biology, the strategies of Mayr, Dobzhansky, and Simpson were equally diverse.

The perceived valorization of the physical sciences by “molecular” biologists became a catalyst creating a unified defensive front of “organismic” biology that incorporated not just evolutionary biologists, but also students of animal behavior, ecology, systematics, botany—in short, almost any biological discipline that was predominantly practiced in the field or museum and whose practitioners felt the pinch of the prestige and funding accruing to molecular biologists. The term “molecular” biology, in this context, reflects the usage of organismic biologists at the time, when it was intended as a catchall phrase identifying sub-organismic approaches to the study of life. This usage differs dramatically from that of scientists who self-identified as molecular biologists, using the term instead to distinguish themselves from biochemists, for example. Although the origins of such a divide within biology were certainly in place by the 1950s, it was through the increasingly tense relations with molecular biologists in the 1960s that “organismic” biologists cohered into a distinct community. Organismic biologists created their own philosophical grounding (conceptions of causality), historical identity, and claims to unique forms of knowledge (the evolution of human nature), based in large part on a fundamental rejection of the physical sciences as a desirable model within biology.

This paper addresses three problems that organismic biologists believed were in need of solutions in order to succeed in their struggle with the molecular biologists: Were ideas of reductionism and causation developed in the physical sciences applicable to biological research? Should organismic and molecular

9. Dietrich, for example, has suggested that even as early as the 1940s one of the only things about which the architects of the modern synthesis could agree was that developmental biologist Richard Goldschmidt could be identified as a common enemy. Michael Dietrich, “Richard Goldschmidt’s ‘Heresies’ and the Evolutionary Synthesis,” *Journal of the History of Biology* 28, no. 3 (1995): 431–61.

12. The idea of co-production has a large historiography within the science and technology studies literature and environmental history. Notably, see Sheila Jasanoff, ed., *States of Knowledge: The Co-Production of Science and the Social Order* (New York: Routledge, 2004).
biology be recognized as independent enterprises at an institutional level? Which approaches to nature were historically responsible for the great advances of twentieth-century evolutionary thought? For organismic biologists, these institutional negotiations, modes of explanation, and claims for historical foundations all came to define what they saw as two distinct approaches to biological research.

I argue that the boundary between molecular and organismic biology was erected and maintained by organismic biologists in an attempt to protect their approach to the life sciences from any further encroachment by the physical sciences. Their success was so great, I believe, that it has left historians of biology with the distinct impression that organismic biology has always existed, albeit under names like natural history or evolutionary biology. Which in one sense it has—biologists have been studying whole organisms for centuries—but in another sense, organismic biology in the 1960s represented a new set of coalitions and professional associations, a re-sorting of allegiances within the biological sciences, defined by the politics inherent to biological research at that historical moment. The struggle for unity in the 1940s had given way to a contest for authority by the 1960s. As a community, organismic biologists

13. It seems likely that the deeply felt urgency of organismal biologists to maintain distinct divisions within the biological sciences was not as commonly felt among molecular biologists. In a revealing anecdote, Lindley Darden remembers a conversation she had with Matthew Meselson, in which she asked him if he called himself a “molecular biologist.” He said he preferred “biologist” because he had always had an interest in evolution (Lindley Darden, personal communication).

14. Spencer Weart has described a similar kind of defensive consolidation of widely differing specialties into the solid-state physics community in the 1950s, as a function of the continued diversification of sub-disciplines of physics in the first half of the twentieth century. He contrasts this with a more typical narrative of how a scientific community develops in time—like ivy growing on a wall, there are a few initial key papers that slowly grow into a full-fledged vine/community. In this way, the histories of solid-state physics and organismal biology are quite similar. Where they diverge is through the simultaneous development of formal designations of a “discipline” in solid-state physics (university chairs, conferences, journals, etc.) that don’t identify organismal biology as a distinct sub-discipline in the 1960s. One might argue that pre-existing journals, such as Evolution and American Naturalist, could have performed such a function, but these journals continued to restrict their publications to different subsets of the organismal community. Spencer Weart, “The Solid Community,” in Out of the Crystal Maze: Chapters from the History of Solid State Physics (Oxford: Oxford University Press, 1992), 617–69; David Kaiser, “Information Overload,” in American Physics and the Cold War Bubble (Chicago: University of Chicago Press, forthcoming).

succeeded in their goal of securing their philosophical, institutional, and historical position in the biological sciences, but at the cost of highlighting deep divisions within the biological sciences.

PROBLEM ONE, MODES OF EXPLANATION IN BIOLOGY

Methods for dividing biological research into multiple modes of inquiry based on level of biological organization were certainly in place by the 1950s. Over the course of the 1960s, however, increasing tensions between molecular (sub-organismal) and organismic (organismal and super-organismal) biologists seemed to suggest that the division around organism mattered far more than differences surrounding any of the other organizational levels. It was during this decade that Mayr, Simpson, and Dobzhansky came to defend the dividing line between organismic and molecular biology as distinguishing true (i.e., evolutionary) biology from mere chemical and physical investigations of its molecules.

In the 1950s, geneticist Sewall Wright published two articles that developed the idea of a hierarchy of biological sciences arranged according to levels of biological organization.16 He took his cue from a combination of cell theory (organisms are a tightly knit colony composed of other organisms) and Alfred Emerson’s idea of communities as superorganisms (a species is a single, loosely knit organism composed of individuals).17 Wright suggested each level of

Gregg Mitman’s *State of Nature: Ecology, Community, and American Social Thought, 1900–1950* (Chicago: University of Chicago Press, 1992) explicates the importance of conversations about “levels” of biological organization to the biological sciences in the first half of the twentieth century. By the second half of the twentieth century, seeing communities as superorganisms was in decline, but the rhetoric of “levels” of biological organization and investigation continued.
biological organization was capable of growth and reproduction, and possessed “characteristics that are more than those of a mere aggregation of similar individuals.” Wright then extended this idea to a hierarchy of the biological sciences based on the level of biological organization under investigation. Of great significance to Wright was the fact that geneticists, of many different stripes, had contributed crucial information to the understanding of most levels of biological organization (populations, multicellular organisms, cells, and molecules. (Fig. 1) The genes themselves he compared to “complex creatures” remarkably similar to the living individuals that had inspired natural historians like entomologist William Morton Wheeler. By way of conclusion, Wright argued that genetics would only cease to exist as a field if all biological theory became completely united through its efforts. Genetics, he continued, “played a major role in binding all [biological] science into one coherent whole.”

Mayr’s response came surely (if not swiftly). Mayr had been worried about the influence of reductionist biology since at least 1949, when he wrote to a friend that despite his affection for the American Museum of Natural History where he worked, he was tempted to find a university position that involved teaching because he felt that “in most places they do everything to discourage young taxonomists rather than the opposite . . . I feel that it is very necessary to provide some counterbalance against the strictly physiological, bio-chemical
FIG. 1 Sewall Wright’s 1959 Hierarchy of the Biological Sciences. Note that the various fields of genetics are present at every level except the largest, ecologic system, and the smallest, nonautonomous molecule. An earlier iteration of this figure appeared in Wright’s “Gene and Organism,” The American Naturalist 87, no. 832 (1953): 5–18, on 10. Source: Sewall Wright, “Genetics and the Hierarchy of Biological Sciences,” Science 130, no. 3381 (1959): 962. Reprinted with permission of AAAS.

<table>
<thead>
<tr>
<th>Ecologic system</th>
<th>Biological level</th>
<th>Climax phase</th>
<th>History</th>
<th>Multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>World biota</td>
<td>Description</td>
<td>Paleontology</td>
<td>Biotic evolution</td>
</tr>
<tr>
<td></td>
<td>Local biota</td>
<td>Biogeography</td>
<td>Biotic stability</td>
<td>Ecologic succession</td>
</tr>
<tr>
<td></td>
<td>Ecology (community)</td>
<td>Species stability</td>
<td>Phylogeny</td>
<td>Macro-evolution Transformation</td>
</tr>
<tr>
<td></td>
<td>Interbreeding population</td>
<td>Taxonomy</td>
<td>Phylogeny</td>
<td>Micro-evolution (7) Population genetics</td>
</tr>
<tr>
<td></td>
<td>Deme</td>
<td>(7) Population genetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organ</td>
<td>Anatomy</td>
<td>Gross physiology</td>
<td>Descriptive embryology</td>
</tr>
<tr>
<td></td>
<td>Tissue</td>
<td>Histology</td>
<td>General physiology (4) Physiological genetics</td>
<td>(2) Cytogenetics</td>
</tr>
<tr>
<td></td>
<td>Cell</td>
<td>Cytology</td>
<td>(3) Theory of the gene</td>
<td>Gene mutation Process</td>
</tr>
<tr>
<td></td>
<td>Autonomouss nuclear molecule</td>
<td>Gene</td>
<td>Gene chemistry</td>
<td>Gene physiology</td>
</tr>
<tr>
<td></td>
<td>Nonautonomous molecule</td>
<td>DNA</td>
<td>Biochemistry</td>
<td></td>
</tr>
</tbody>
</table>
trend in our zoology departments." 22 Mayr took the opportunity of his 1959 introductory address to the annual Cold Spring Harbor Symposium on Quantitative Biology to insist on the confusion between evolutionary and genetic perspectives in the existing literature on the history of biology. 23 In his paper, he did not react to Wright directly, but instead to what he perceived as a groundswell in molecular biologists’ claims to be “modern” biologists in comparison to “classical” or “old-fashioned” natural historians. 24 The topic of the symposium was “Genetics and Twentieth Century Darwinism” in honor of the one hundredth anniversary of Darwin’s On the Origin of Species. Mayr contended that “virtually all the early Mendelians” were rabidly anti-selectionist, preferring to explain evolutionary change in terms of mutations. Only the simultaneous downfall of DeVriesian saltationism and Lamarckian inheritance of acquired characteristics had made possible the evolutionary synthesis of genetics and evolutionary theory in the 1930s. In Mayr’s recounting, historical claims that the mathematical-genetical theories of Ronald Fisher, J. B. S. Haldane, and Sewall Wright formed the basis of the evolutionary synthesis were sadly mistaken. 25 In fact, he argued, geneticists of the early twentieth century delayed the synthesis. Like Wright, Mayr next broke modern biological research into five distinct “levels of integration”—namely, “the chromosome, the individual, the population, the species, and the phyletic line.” 26 He discussed each in turn, highlighting the unanswered evolutionary questions each level of integration posed to the biologists seated in front of him. Evolutionary biology was not

22. Ernst Mayr to Erwin Stresemann, 8 Aug 1949, quoted in Haffer, Ornithology, Evolution, and Philosophy (ref. 4), 260.

finished but deserved equal respect and footing with molecular biology. Indeed, biologists ignored or belittled evolutionary theory at their own peril—at stake was not only an understanding of their universe, but the very future of man, as I will discuss shortly.

Although Mayr keenly felt the division between two different kinds of biological investigation, he had not yet settled on a consistent terminological convention by which to refer to them. Neither he nor Wright yet used the words organismic or molecular as shorthand for this incommensurability. In part, this stems from the fact that in 1959 Mayr was more interested in defending evolution against the influence of geneticists than he was in defending the broader community of organismic biologists against molecular biology. This would slowly change, although these two defensive lines can be difficult to tease apart because they were engaged in the same battle to maintain the position of museum- and field-based biology in a rapidly changing world.

In 1961, Mayr published a direct challenge to Nagel’s philosophical assertions and one possible reading of Wright’s organizational scheme—biologists could not understand life simply by studying its molecules. He began the paper by contrasting his perspective with that of the “logician” Nagel, whom he had recently heard speak at the nearby Massachusetts Institute of Technology’s Hayden Lecture series. Echoing his earlier concerns, Mayr argued that functional and evolutionary approaches to biological research (Nagel’s mechanistic and organismic approaches) presupposed two different kinds of causal questions, which he termed proximate and ultimate causes. Mayr defined functional biology as the quest to understand the inner physiological workings of organisms isolated from the complexities of the organism as a whole. Functional biologists, he continued, asked how biological phenomena were produced, and sought immediate mechanistic causes, and he consistently referred to molecular biology in his examples. Evolutionary biologists, on the other hand, who kept organisms (either individual or species) as their focus of study, sought to answer why or how come biological phenomena were produced

27. Mayr, “Cause and Effect in Biology” (ref. 2), 1501.
28. Ibid., 1506.
in an organism. The answer to these questions involved understanding the evolutionary past of the organism, the ecological environment in which the organism lived, and any genetic predispositions in the organism. Mayr differentiated between what he saw as mechanistic, molecular approaches and truly biological approaches to the study of life, which required an evolutionary perspective and the study of organisms. Even though Mayr had first conceived of the proximate-ultimate distinction in terms of his own research, in his 1961 paper he used this dichotomy to argue for the uniquely biological value of the evolutionary approach to understanding the living world.

George Gaylord Simpson was equally disgruntled with molecular biologists’ apparent assumption that they held the key to the “secret of life,” preferring instead to think of life as the “secret of DNA.” In 1961, the editors of *American Scientist*, the official magazine of the Sigma Xi Scientific Research Society, asked Simpson to write a “defense” of the biological study of organisms. In his article, published the following year, he argued that at least two dimensions were necessary for any organizational scheme intended to classify biological studies. The first dimension was the level of biological organization. Here, Simpson drew a sharp line between the biology of whole organisms and research intended to reveal the cellular or subcellular processes of life. The second dimension was methodological, and he echoed Mayr’s distinction between proximate and ultimate causes in biological investigations. Simpson distinguished between methodological reduction and composition, or the tendency to ask “how?” and “what for?” respectively. Only answers to the latter question, he contended, “the investigator is not dealing with a lion, or any other organism at

all, but with a chemical reaction in a test tube or some form of physical model.”
Such questions characterized the “mainly reductionist, lower-level subsiences of biology,” like biophysics and biochemistry. Simpson contrasted such quasi-biologists with true biologists whose research had “no direct concern with the physical sciences,” and instead relied on “exclusively biological” entities, like “whole organisms, populations, and communities.” For Simpson, current research in biochemistry, biophysics, neurophysiology, and genetics must eventually be related back to the level of the organism in order to sustain a coherent picture of biology as a whole. True biology was about organisms, from their interactions with each other and the ecological environment in which they lived, to the cellular machinery of which they were composed—molecular biology without reference to the organism was physical science in sheep’s clothing. Upon reading Simpson’s article, Dobzhansky immediately wrote and congratulated him on a job well done. He also suggested that, “the proper counterpart to ‘molecular biology’ is ‘organismic biology.’”

Dobzhansky, for his part, voiced his increasing concerns over the effect of molecular biology a few years later in “Biology, Molecular and Organismic.” In this paper, he suggested that it might seem appropriate to divide biology hierarchically according to nested levels of biological organization (as had Wright). However, Dobzhansky continued, this was impractical—far better was “a simple dichotomy of molecular and organismic biology, the latter name subsuming studies on all levels above a molecular one.” On the one hand, he commended Nagel’s analysis for its insightful description of the divisions within modern biology. On the other hand, he (without naming names) dismissed as nonsensical the claims from molecular biologists who would either “declare a moratorium on organismic biology until such time when it can be reduced to molecular terms” or “argue that organismic biology is largely a finished business.” Dobzhansky associated such claims with the belief that all biological investigation should follow the lead of Descartes’ “organism-the-machine” theory, contrasting this once again with organismic biology’s reliance on Darwinian evolutionary explanations. Yet ideally these approaches should

35. Simpson, “Status of the Study” (ref. 33), 42–43.
38. Dobzhansky, “Biology, Molecular and Organismic” (ref. 2), 445.
39. Ibid., 448.
have been complementary, not agonistic. For Dobzhansky, the power of molecular biology to describe biological mechanisms shared by all living organisms resided in the common evolutionary history of all life, including humans.40

Could organismic biologists have advanced a more integrationist program? One possibility was Wright’s assertion that all levels of biological organization (ecologic systems, interbreeding populations, multicellular organisms, cells, molecules) required different methodological approaches because new biological properties became manifest at each level. Yet such a scheme would grant molecular approaches a proper place in biology—an option Mayr in particular found anathema, while Simpson and Dobzhansky were more amenable. Another solution was to integrate across multiple levels of biological organization. Molecular biologists hoped that a solid understanding of DNA, proteins, and other biological molecules would eventually explain the order and diversity found at other levels of biological organization (the reductionist’s dream). This option was obviously unappealing, as it would obviate a need for the very kind of biological research Mayr hoped to protect. Dobzhansky proposed a second form of integration: if evolutionary biologists accepted the gene as the level at which selection acted, then evolutionary theory would also be present at every level of biological organization identified in Wright’s scheme.41 Mayr rejected Dobzhansky’s proposal as capitulating to the enemy. It might also have been possible to argue for a reverse-reductionist perspective—that a more thorough understanding of community-level interactions might eventually explain individual adaptations and the inner workings of cells and nuclei. Yet for Mayr this was not a viable strategy either, in part because of the diversity of organizational levels represented in organismic biology. No matter if the cellular and molecular biologists wouldn’t stand for it; neither would the ecologists, physiologists, or population biologists.42 So the strategy that Mayr hit upon, and Simpson largely supported, was his philosophical differentiation of proximate and

41. Smocovitis, Unifying Biology (ref. 15), 177; Dobzhansky, “Biology, Molecular and Organismic” (ref. 2), and Dobzhansky, “Are Naturalists Old-Fashioned?” (ref. 10).
ultimate causality in nature. Just as organismic biologists could not explain what was happening at a molecular level, neither could molecular biologists explain what was happening at an organismal level. In contrast to Wright’s organizational scheme, evolutionary theory united all levels of biological organization except cells and molecules. The result, then, was two different and necessarily distinct forms of scientific inquiry (one biological and the other predominantly chemical or physical) that existed in a kind of mutual détente, each with its own philosophical grounding.43

In defending their turf, Simpson and Dobzhansky also picked up on a different aspect of Mayr’s address to the annual Cold Spring Harbor Symposium on Quantitative Biology—that biologists’ understanding of the future of humanity depended on organismal theories of evolution. For example, in Dobzhansky’s letter to Simpson, he noted that he wished Simpson had emphasized that “organismic biology is fundamental for the understanding of man, while molecular biology is more important for the understanding of his ailments, and for finding a cure against colds.”44 Such a claim might have seemed unusual in the early 1960s, when human cytogenetics seemed to promise new insights into hereditary disease, the criminal mind, cancer research, and international population studies.45 So when organismic biologists justified the importance

of their approach to understanding people, they argued that only an organismic approach could help us understand human nature. Even though molecular biologists could identify the effects of large-scale mutations in people, understanding human social and sexual behavior required the attention of biologists who understood the processes of organic evolution under natural conditions.

By the 1960s, the tone and the target of evolutionists’ theorizing about humanity was the essence of what it was to be human. For example, in 1958, psychologist Anne Roe and Simpson (Roe’s husband) co-edited a volume on evolution and behavior. In the introduction, they contended that “the highest aim of evolutionary psychology is to provide a historical basis for and explanation of human psychology.”46 The volume was their attempt to incorporate animal behavior into the evolutionary synthesis and was based on a series of papers presented at a conference held a few years earlier. Similarly, in conjunction with the 1959 Darwinian Centennial Week at the University of Chicago, Mayr invited Julian Huxley, former Director General of UNESCO and student of animal behavior in his own right, to give a speech at the Museum of Comparative Zoology at Harvard. In his letter to Huxley confirming travel arrangements, Mayr explicitly described the purpose of Huxley’s talk as an effort to buoy the importance of museums, and especially of systematics, to the future of biological research. Mayr feared that “molecular biology [was] increasingly taking over Biology departments,” while more research on the “the whole animal and the whole plant” was still desperately needed. In Mayr’s opinion, both university authorities and the broader public seemed oblivious to the importance of museums as useful research spaces outside of biology departments in which research on whole organisms could be protected. He added, “the study of man will get its greatest impetus from the type of people who center in natural history museums . . . one-sided support and emphasis on the type of biology that can be carried out in the experimental laboratories cannot achieve a harmonious growth of biology as a whole.”47 By 1964, when Mayr wrote to Konrad Lorenz, he had adopted “organismic” biology as shorthand for his position. “What is important . . . is to emphasize that in addition to that wonderful field of molecular biology, we have an equally wonderful field of organismic biology, a field which is becoming increasingly important for the understanding of man

47. All quotes in the paragraph are from the following letter: Mayr to Julian Huxley, 23 Oct 1959, EMP, HUGFP 14.15, Folder Julian Huxley.
and the planning of his future.” Mayr hoped that Huxley would choose to emphasize both of these points in his address at Harvard University.

Simpson, over the course of the 1960s, published a series of increasingly vociferous articles in which he began to insist upon the distinctive natures of the biological and physical sciences and to point to the unique ability of organismic biology to understand the nature of man. In the early 1960s, he praised Mayr’s paper on causality in biology as the clearest discussion he had read of the philosophical foundations of modern biological thought. By later in the decade Simpson’s tone became increasingly antagonistic. In a 1966 article entitled “The Biological Nature of Man,” Simpson asserted that “nothing that has so far been learned about DNA has helped significantly to understand the nature of man or of any other whole organism.” In 1967, he resorted to calling the current obsession with molecular biology a combination of “monomania and schizophrenia” in the biological sciences. He deftly deflected the claim that molecular biology was modern biology by extending back the intellectual tradition on which it rested to at least the eighteenth century with the identification of the oxygen cycle in plants and animals, long before Darwin conceived of his theory of natural selection on which modern organismal biology was founded. Further, he suggested, “since biology is the study of life, and molecules, as such, are not alive, the term ‘molecular biology’ is self-contradictory.” He offered in its place “evolutionary organismal biology.” Simpson’s discussions of molecular biology were never unilaterally negative, but what I suggest by excerpting some of his pithier statements is, first, that during the 1960s tensions between organismic biologists and molecular biologists were increasing, and second, that it was during this time that Simpson, Dobzhansky, and Mayr came to identify themselves as organismic biologists.

49. For a nuanced paper on how Simpson’s role in the evolutionary synthesis and his attitude to molecular biology shaped his views on molecular evolution, see Aronson, “Molecules and Monkeys” (ref. 43).
52. The last three claims all come from the same source: Simpson, “Crisis in Biology” (ref. 32), 367.
53. Ibid., 366.
54. Aronson, “Molecules and Monkeys” (ref. 43).
The synthesis architects also referred to themselves as “evolutionary biologists.” In a way, evolutionary biology became a subset of organismic biology (which additionally included ecology, population biology, and animal behavior). Yet evolution simultaneously provided the theoretical justification for the organismal approach to nature envisioned by Mayr, Simpson, and Dobzhansky. Throughout the 1950s and '60s, organismic biologists strove to characterize their brand of biology as unique and irreducible to “molecularist” techniques or theories. They also increasingly framed their research in terms of its centrality to understanding the human condition as a way of claiming at least part of the mantle of modern biology for the organismic approach to scientific research.

PROBLEM TWO, INSTITUTIONAL RECOGNITION

Organismic biologists, as they had come to call themselves, became wary of molecular biology in part because they believed molecular biologists were slowly gaining control of biology departments and scientific institutions across the United States, if not the world.

Edward O. Wilson’s memoir, *Naturalist*, included a frank retelling of his memories of politics in the Biology Department at Harvard in the 1960s, including the dismissal of nonmolecular work as “classical” biology. The so-called molecular biologists were in a bit of a tight spot, too. The huge promises of the discovery of the structure of DNA and the breaking of the genetic code were not followed immediately with hoped-for practical gains in medical research. Molecular biologists claimed organismal...
research was old-fashioned, but they don’t seem to have reacted defensively to the organismic biologists. The result: disputes over the nature of “modern” biology and the restructuring of biological institutions across the country, mainly at the instigation of organismic biologists.

In Wilson’s account of the “Molecular Wars” at Harvard, he recalls that by 1960 concerned faculty within the Department of Biology had formed a caucus called the Committee on Macrobiology. Zoological faculty advocated abandoning their traditional systematic divisions in favor of a group united by their shared interest in higher levels of biological organization—organisms, populations, and ecosystems (rather than molecules or cells).\(^59\) They hoped banding together would help protect their interests at the university level. Although the committee was a great success in the eyes of the participants, the name was not, and “Macrobiology” lasted only until the fall of 1962 when they found a more suitable name: the Committee on Evolutionary Biology. In reaction, other faculty in the department soon formed their own Committee on Cellular and Developmental Biology.\(^60\) Wilson’s prose adds some color. He described the attitude of the molecular biologists as inflammatory—“Let the stamp collectors return to their museums”—and the gut reaction of the evolutionary biologists as equally volatile—they “were not about to step aside for a group of test-tube jockeys who could not tell a red-eyed vireo from a mole cricket.”\(^61\)

Wilson noted that it was shortly after this informal split that biology departments across the country, including Harvard’s, began to divide into departments of molecular, cell, and developmental biology, on the one hand, and

60. According to the catalog listing of the Harvard University Archives, the second committee was in place by 1969, at least. At Berkeley, the Department of Molecular Biology formed separately from the Zoology Department; however, the general categorical distinctions were similar. The department defined two main goals within the biological sciences: taxonomy and “general” biology, the latter of which concerned “the universal attributes of life, just as physics is concerned with the universal attributes of matter.” It was precisely this impression, that molecular biology and biochemistry should be categorized as “general biology,” which the organismal biologists wished to dispel. “Report of the Committee to Plan the Scope and Activities of a New Department Concerned with Relating Biology and the Physical Sciences,” 22 Oct 1962, Wendell M. Stanley Papers, Bancroft Library, University of California, Berkeley, BANC MSS 78/18c, Box 23, Folder History of M.B. Department, pp. 1–2. Quoted in Angela Creager, “Wendell Stanley’s Dream of a Free-Standing Biochemistry Department at the University of California, Berkeley,” *Journal of the History of Biology* 29, no. 3 (1996): 331–60, on 355–56.
departments of evolutionary or population biology, on the other.62 This coincided with a push to unify botany and zoology departments—a trend that largely pleased zoologists, but left botanists feeling far more ambivalent.63 When the University of California, Irvine, opened its doors in 1965, in place was a Department of Organismic Biology. The State University of New York, Stony Brook, created a Department of Ecology and Evolution in 1969. Around the same time, the Department of Systematics and Ecology was formed at the University of Kansas, as was the Committee on Evolutionary Biology at the University of Chicago. Similarly, the Zoology Department at University of California, Davis, formed two “area committees” in the early 1970s—Organismal and Environmental Biology, and Cell and Molecular Biology.64

Wilson also intimated that the “molecularists” at Harvard were willing to let the future of the department rest on official recognition outside the university, such as Nobel Prizes (for which he notes evolutionary biologists were ineligible) and the number of publications in *Nature*, *Science*, and the *Proceedings of the National Academy of Sciences*.65 To this list I also add the National Medal of Science (awarded by the President of the United States through the National Science Foundation, and for which evolutionary biologists were eligible) and election to the National Academy of Sciences.

The National Medal of Science (NMS) was established by Congress in 1959, following the Soviet launch of the Sputnik satellite, and was awarded for the first time in 1962 to engineer Theodore von Kármán, the “dynamic aerodynamicist.”66 In subsequent years, scientists were recognized for four categories of research: physical sciences, biological sciences, mathematics, and engineering. Within the category of the biological sciences, organismic biologists proved quite successful. President Johnson awarded Theodosius Dobzhansky an NMS because of his role as “a world leader in experimental population biology.”

62. Ibid., 226. Harvard University’s Department of Organismic and Evolutionary Biology, however, was not created until the early 1980s.

63. Appel, *Shaping Biology* (ref. 6), 224. Appel suggests that a number of botanists felt they should instead join forces with cellular and molecular biologists rather than playing second fiddle to zoologists.

64. The “area committees” at Davis separated into two departments in 1993. These dates are reconstructed by following key biologists’ departmental affiliations as listed on their publications currently archived in JSTOR.

Dobzhansky was one of two biologists to be awarded the medal in 1964; the other was Marshall Nirenberg for his work on the genetic code. When George Gaylord Simpson was awarded an NMS the following year, the official citation described Simpson as “a pioneer in synthesizing the findings of genetics and paleontology and applying them to the study of evolution.” Ernst Mayr was similarly honored in 1969, and Wilson in 1976. All told, between 1962 and 1980, organismic biologists received almost twenty percent of the medals awarded for research in the biological sciences. However, no financial remuneration accompanied this award because a 1962 bill to include up to $10,000 along with the NMS failed to pass the House of Representatives. Opponents of the bill suggested that money would “cheapen” the medal and that a nonmonetary award was in keeping with national tradition (no cash awards are given with medals for military bravery, for example).

Money for organismic research was certainly available through the National Science Foundation (NSF). In 1954, for example, over sixty percent of all federal funding for systematics was disbursed through the NSF. Molecular and regulatory biologists, by way of contrast, received less than five percent of their total federal funding through the NSF. Even a decade later, systematics and ecology received about twenty percent of NSF’s monies, although NSF was supplying only five percent of federal funding for biological research by 1963 (the growth of the National Institutes of Health played a large role in the expansion of federal funds for primarily molecular, cellular, and neurobiological

70. About an equal number were awarded for agricultural advances, and about thirty percent each to medical and molecular research. See the full list of recipients at www.nsf.gov/od/nms/results.cfm?action=find (last accessed on 13 May 2010).
71. “Science Cash Award Opposed,” New York Times, 7 Aug 1962; “House Rejects Plan on House Awards,” New York Times, 9 Aug 1962. By way of contrast, the Darwin Medal, awarded biannually by the Royal Society of London for work pertaining to Darwin’s research, was awarded to Ronald Fisher (1948) and J. B. S. Haldane (1952) before either Julian Huxley (1956) or Simpson (1962) received the honor. Sewall Wright (1980) also received the medal before Ernst Mayr (1984). Even this award, however, came with only £1000. For a list of award recipients, see http://royalsociety.org/Darwin-Medal/ (last accessed on 13 May 2010).
72. Appel, Shaping Biology (ref. 6), 150–51.
In other words, systematic and environmental research continued to receive a large proportion of NSF funding through the 1970s, even as federal funding across the board for cellular and molecular research quickly outpaced organismic funds. It seems likely that systematic research fared so well at the NSF throughout these difficult decades because systematicists could control their own budget. When the Division was reorganized in 1964, the four sections thus created still provided insulation for systematic research—cellular biology, environmental and systematic biology, molecular biology, and physiological processes. The success of the organizational structure at NSF may have provided a model for organismic biologists, like Mayr, who sought institutional protection in other forums.

The National Academy of Sciences (NAS) proved a much stickier wicket for organismic biologists. Wilson was elected in 1969 in the midst of a continuing struggle among biologists over the internal organization of Class II of the NAS: the Biological and Behavioral Sciences. (The other designations were Class I: Physical and Mathematical Sciences, and Class III: Engineering and Applied Sciences.) Class II consisted of nine sections: botany, zoology (previously called zoology and anatomy), physiology, microbiology (previously called pathology and microbiology), anthropology, psychology, biochemistry, and two brand new sections, medical sciences and genetics. Members were nominated by section—an informal candidate needed to garner at least two-thirds of the votes of a single section or one-half of the votes of any two sections within a class to be nominated—but were elected within a particular Class, and approved by the entire membership of the NAS. Once elected, members could chose to

73. NSF funded $63.85 million on ecological and systematic research between 1967 and 1973, out of a total of $321.42 million for all biological research during the same years, excluding grants to special facilities and biological oceanography which fell outside the purview of the Division of Biological and Medical Sciences; Appel, Shaping Biology (ref. 6), 240. In 1963, NSF spent $41.65 million on research in the life sciences, a small proportion of the $891.91 million in federal funds devoted to research in the life sciences that same year (in addition to NSF, Appel collates funds from the U.S. Department of Agriculture, Army, Navy, Air Force, NIH, Department of Health, Education, and Welfare, Department of the Interior, the Atomic Energy Commission, and the National Aeronautics and Space Administration); ibid., 146. An analysis of organismal biologists efforts to lobby the NSF is well worth investigating, but beyond the bounds of this paper.

74. Ibid., 280–84.

76. Ibid., 174–81. These pages describe the rules and procedures for nomination and election at that time. Each section sent the names of its nominees to the class membership committee, which ranked the nominees in order of preference and created a combined list (a preference ballot)
which section they wished to belong, regardless of which section had been responsible for their nomination. The first major barrier to being elected, then, resided in the section-controlled process of nomination. This provided part of the motivation for Dobzhansky choosing to remain in the zoology section even after the new section for genetics was created—he feared that genetics would end up including people of such diverse interests that it would inevitably become either “unwieldy” or “dominated by a small clique.”

Mayr was slowly but surely gathering support from his closest friends to reorganize Class II in a way that he felt more accurately reflected the current divisions within the biological sciences. He had written to Simpson seeking support for revising the current electoral system. Simpson replied that something needed to be done in light of the low representation of paleontologists in the NAS, especially in comparison to geophysics: “Geophysics has 39 Academy members, and all other geological sciences put together have 42, representing specialties incomparably more diverse and professionals many times more numerous than in geophysics.”

Mayr responded in turn by pointing to the connection between the woes of organismic biologists in Class II and Simpson’s troubles in Class I.

One of the major troubles has been the fact that the physical scientists had captured the Council of the Academy and prevented all changes. Prior to last July all officers of the academy were physical scientists. They invariably had a

that it sent on to the home secretary. Each Class could advance only a certain number of nominees per year as determined by the Council, and the preference ballot created at this stage could contain up to one hundred fifty percent of the stated quota. The home secretary sent to the entire Class membership the class preference list, a statement of accomplishment for each scientist on the list, and the voting record from each section and the nominating group. Each member was asked to vote for at least a third and no more than one half of the names on each Class list. The home secretary then prepared two lists, one containing the names of the nominees ordered by the number of votes they had received up to the quota allowed for each section, and a second containing the names of the remaining candidates, also ranked by number of votes. These lists were distributed to the membership of the NAS present at the annual meeting, where any nominee’s name (and their placement on either the first or second list) could be revisited. The names on the first list were then declared elected by a two-thirds vote of members present at the annual meeting.

78. Simpson to Ernst Mayr, 20 Nov 1969, EMP, HUGFP 74-7, Box 18, Folder 1065.
majority of approximately 11 to 5 on the Council. When the structure of classes was introduced I fought a vigorous but losing battle against having the biochemists (more than half of whom had their actual laboratories in chemistry departments) added to Class II.79

If Mayr’s letters had little effect on Simpson, there was sufficient concern within Class II so that by 1973, negotiations for a reorganization of the sections were already underway.80 Dobzhansky wrote to the Office of the Vice Chancellor adding his vote of support for some kind of change: “The present section structure was logical one half a century ago,” he suggested, “but a reform is long overdue.”81 Under discussion was a proposal to replace the previous sections with new ones: biochemistry, molecular biology and biophysics, cellular and developmental biology (including microbiology), organismal biology, integrative and behavioral biology, and ecology and population biology.82 Applied biology and medicine had already been granted their own class and so were beyond the purview of the negotiations. Several concerns remained. Should the existing section of genetics be kept, or eliminated and its members redistributed according to their preference in the new sections? Should molecular biology and biophysics really be lumped together in the same section? Should that section be additionally combined with biochemistry to form a section called subcellular biology or molecular genetics? What to do with the physiologists, especially the plant physiologists? Should developmental biology be called out in the title of a section?

Negotiations continued through 1975, and Mayr wrote repeatedly to Philip Handler, President of the National Academy of Sciences, unhappy with the persisting imbalances in the NAS elections.83 “One lesson is rather clear to me,” Mayr insisted, “which is that a section consisting of a mixture of cellular and organismic biologists is a very unnatural body. The two camps know nothing about each other.” Although some of the good organismic candidates could in

79 Mayr to George Gaylord Simpson, 12 Dec 1969, EMP, HUGFP 74.7, Box 18, Folder 1063.
80 See TDP, Series I: Correspondence, Folder NAS #4.
81 Theodosius Dobzhansky to Clifford Grobstein, 23 Aug 1973, TDP, Series I: Correspondence, Folder NAS #4.
83 Mayr to Handler, 1 May 1975, 3 Jul 1975, EMP, HUGFP 74.7, Box 23, Folder 1229.
theory be supported by the Section of Genetics (population geneticists), he added, “in recent years that section has supported only molecular geneticists. Too bad, but a fact.” Handler responded by confirming that yes, indeed, plans were still underway to reorganize the sections within Class II to mitigate such problems. He noted that a questionnaire was being sent to all members of Class II asking for an evaluation of the new proposal. In this proposal, Handler promised, was a section “called something like ‘Population Biology, Evolution, and Ecology.’ While this may not be an ideal combination to deal with the problems you describe, such a section would indeed permit opportunity for competition among such individuals . . . quite independent of any competition among the ‘molecular biologists.’”

A letter from Theodore H. Bullock, chair of the NAS Zoology Section, to other members of section described the new proposal in more detail. In 1974, those members present at the official meeting of Class II had voted to rearrange the sections as follows: biochemistry, cellular and developmental biology, physiological biology, neurobiology, population biology and ecology, genetics, and botany. Additionally, the letter specified, that at the 1975 official meeting of Class II, members decided that the matter needed to be settled by a mail ballot of the entire membership. It had taken three years to hammer out this compromise, and all involved hoped the ballot would be approved. In answer to the questions raised in 1973, genetics was kept as a separate section, as was biochemistry. The proposed section of molecular biology and biophysics was scrapped entirely, and a new section created to accommodate the physicists left out of the original proposal. The new proposal passed, with the only amendment the addition of the word “evolution” to the fifth section, making it “population biology, evolution, and ecology,” as Handler had promised.

It is hard to calculate what effect this reorganization had on the ability of organismic biologists to elect members in their field to the NAS. What is clear is that before the reorganization, Mayr and Dobzhansky advanced the names

85. Handler to Mayr, 19 May 1975, EMP, HUGFP 74-7, Box 23, Folder 1229.

86. Bullock to Members of the Zoology Section, National Academy of Sciences, 2 May 1975, TDP, Series I: Correspondence, Folder NAS #4.

of three scientists whom they thought ought to be elected. They made sure not to put all the names forward at once to avoid splitting the vote of organismic biologists; they strategized about which section in which to advance their names; and they wrote letters to their colleagues casually mentioning the outstanding achievements of their nominees. Yet despite their efforts, these nominees repeatedly failed to obtain a sufficient number of votes. After the reorganization, however, all three were successfully elected: Hampton Carson in 1978, Francisco Ayala in 1980, and Robert Selander in 1982.88

It was also during this time that Richard Lewontin and Bruce Wallace, less than three years after their election, submitted letters of resignation to the NAS over the classification of research conducted by NAS members for the Department of Defense and other branches of the federal government during the Vietnam War. In a recent interview, Lewontin recounted his decision. Certainly, he agreed that he was conscious of his role as a social critic and wanted to send a clear message to the academy: either all such work stop immediately, or he would resign! Well, the work didn’t stop and he was as good as his word. When time came to vote on his resignation, the members of the Academy accepted his resignation with regret.89 The maneuvering of the members of the NAS was another reason Lewontin cited for his resignation: “I realized around that time that the existence of a thing called the National Academy of Sciences, an honorary organization to which every scientist wants to aspire, is destructive of intellectual life. The whole notion of the chief motivating element being prizes, honorary degrees, personal prestige, memberships in academies, that really turned me off.”90 As far as I can reconstruct, after Lewontin’s resignation, Thomas Eisner and Bruce Wallace proposed a new bylaw that would declassify all research conducted by members of the NAS. When this proposal did not pass, Wallace also submitted a letter of resignation. Wallace’s resignation was not approved by the membership, however, in hopes that he would reconsider, which he did. Both Mayr and Dobzhansky were livid at Wallace for his letter

88. Dobzhansky to Mayr, 5 Jun 1973; Dobzhansky to Mayr, 22 Jul 1973; Dobzhansky to Mayr, 4 Dec 1974; Mayr to Dobzhansky, 12 Dec 1974; Dobzhansky to Mayr, 8 Oct 1975, TDP, Series II: Correspondence with Ernst Mayr, Box 1.

of resignation, perhaps in small part because they consistently lamented the lack of organismic biologists in the Academy.91 What is clear from this episode is that although Mayr saw his chief enemy as molecular biology, others had different agendas—in this case, the fight against the military-industrial complex—and these agendas did not always accord.

After the new sections were created, Mayr’s interest in maintaining the boundary between organismic and molecular biology continued apace. In 1983, he wrote to a fellow NAS member describing what he saw as the “real meaning” of their section, namely systematics, evolution, and population biology. In the years since 1975, Mayr complained, he had come to regret the addition of ecology because of its breadth of field. Several of the nominees put forward by ecologists in the section for possible election worked on the “chemical and physical aspects of the environment.” Their proper place at the NAS, he intimated, was in someone else’s section, like applied biology. As “population biology, evolution, and ecology” was able to elect a maximum of two people each year, Mayr choked at the idea of giving up even one of these places to an ecologist with affinities for the physical sciences.92

The political negotiations Lewontin found so distasteful were also extremely effective. Both at their home universities and at institutions such as the NSF and the NAS, organismic biologists succeeded in carving out an enduring and separate space for themselves in the landscape of the American biological sciences.

Problem Three, History of Biology

The efforts of organismic biologists to codify their collective identity through the history of evolutionary theory echoed their concerns over their identity as philosophically distinct from molecular biology, and their status in biology departments and at the National Academy of Sciences. Over the course of the 1960s, Mayr became increasingly fascinated with the history of biology and by the 1970s was working simultaneously on two major historical projects designed to place organismic biology in its proper historical context: his 1974 conferences on the evolutionary synthesis that culminated several years later in the publication of *The Evolutionary Synthesis: Perspectives on the Unification of Biology,* and his history of biology, *The Growth of Biological Thought: Diversity.*

91. Dobzhansky to Mayr, 22 Jul 1973, TDP, Series II: Correspondence with Ernst Mayr, Box 1.
Evolution, and Inheritance. He intended each as a philosophical defense of what he considered true, nonreductionist biology.

The historical narratives Mayr produced in the 1970s and ’80s served as far more than mere records of intellectual heritage. In 1972, Mayr wrote to ethologist Niko Tinbergen, exclaiming, “it is rather remarkable how long biology was dominated by the misconception that one should ask the same questions in biology as in physics or chemistry. I have been fighting this for as long as I can remember... If I am lucky I will be able to express this in my historical studies.” By giving organismic biology its own historical legacy, Mayr supplied another dimension to its identity.

His commitment to advancing the prestige of organismic biology by calling attention to the contributions of systematics and paleontology to the synthesis was repeated time and again in his correspondence surrounding the 1974 conferences on the Evolutionary Synthesis. For example, in a letter to George Gaylord Simpson, Mayr wrote, “as far as the conference on the ‘Synthesis’ is concerned—confidentially—I want to counteract the present historiography which gives just about all the credit to the geneticists. They shall have all the credit they deserve, but not more.”

In his correspondence with historian of science Mark Adams about the conference, Mayr repeated this point again. He noted that Adams’ essay rightly emphasized the attitudes of the leading Darwinians in the early twentieth century, “that Mendelism was the enemy of Darwinism.” Therefore, “the contribution of genetics to the synthesis has been greatly exaggerated.” Because Mayr believed so strongly that the existing histories of biology were biased in favor of mechanistic biology, he felt no compunction about producing what he suspected were histories biased in favor of organismic biology. If he were wrong, Mayr contended, his scientific contemporaries and later historians would untangle the politics from the truth.

95. Mayr to Simpson, 27 Aug 1973, GSP, Series I: Correspondence, Folder Ernst Mayr #3.
96. Mayr to Mark Adams, 29 Sep 1978, CES, Box 1, Folder Mark Adams.
With his letter, Mayr included a questionnaire for Simpson to complete. Mayr sent the same questionnaire to all biologists he felt would be key to revising the history and he also sent copies to many of the historians attending the conference (not to fill out, but for reference). The questionnaire itself consisted of four parts. Personal information came first, and included questions about professional associates, teachers, opponents, and publications. The second part of the questionnaire asked respondents to rank various factors in terms of their relative influence on delaying the synthesis (which took place, Mayr noted, seventy-five years after Darwin published *On the Origin of Species*). The third part contained questions that sought to establish both arguments used by opponents of Darwinian evolution and positive contributions to the synthesis. The final section requested information about professional contacts with biologists outside respondents’ primary field of expertise, and respondents’ views during the synthesis period on mutation, variation, the environment, natural selection, the nature of evolution, recombination, gene and genotype, fitness, species concept, and speciation. The entire questionnaire was geared toward reconstructing a list of the theoretical misconceptions that had prevented biologists from achieving a synthesis earlier, and a list of positive factors (people and theories) responsible for overcoming these past misconceptions.

Simpson was irritated by the questions, as he felt they set the playing field before anyone had a chance to object. He wrote to Mayr, “I think that your conclusions are distorted not by commission but by omission.” Mayr responded almost immediately.

I knew that and I emphasized my bias. It is precisely such a conference which will bring out such omissions . . . I have always felt that nothing clears the air as

98. Simpson to Mayr, 8 Sep 1973, GSP, Series I: Correspondence, Folder Ernst Mayr #3. Simpson sent a copy of his answers to the questionnaire not only to Mayr, but to a number of his other friends as well. Additional copies survive: Simpson to Dobzhansky, 18 Mar 1974, TDP, Series I: Correspondence, Folder GG Simpson; “Answers to Questionnaire Concerning the Evolutionary Synthesis,” CDP, C.104, H.165.
much as a clear, even if blunt, statement of opinions. If they are wrong they will surely be refuted almost immediately. This is the beauty of a conference, that an unfounded claim can be refuted at once.99

Let us consider, for a moment, why Simpson found Mayr’s questionnaire so aggravating: it was Mayr’s contention that the evolutionary synthesis had been \textit{delayed} by geneticists and in many ways represented a return to classical Darwinism. Simpson wrote with his usual flair, calling Mayr’s historical characterization an “oversimplification to the point of falsification.” Simpson continued, “there was no ‘return’ but a continuous development from 1859 to now, for Darwinism, Neo-Darwinism and synthetic theories formed an intellectual sequence that always had adherents and that continuously progressed even when it had more opponents than it does now.”100 Certainly, Simpson lamented the current state of affairs in which neither the average molecular biologist nor the average organismic biologist understood the other’s research. During the synthetic period, by comparison, he suggested that communication between disparate biological fields was far more common. Because the “best minds” had been interested in evolutionary questions, “the synthesis . . . developed normally or even rather rapidly as the history of science goes.” By the time Simpson was well into the heart of the questionnaire, he interspersed his answers with grating criticisms—“this question is also poorly phrased”—but he answered every question in great detail.

Simpson was not the only critic of Mayr’s questionnaire. At issue for many of his respondents was Mayr’s assertion there had been an almost total neglect of ultimate causes and interest in evolutionary theory between Darwin and the 1930s. Respondents on both sides of the Atlantic pointed to the important contributions of mathematical geneticists in changing their thoughts about evolution during the 1920s. British ecological geneticist E. B. “Henry” Ford suggested that it was mathematician and theoretical population geneticist Ronald Fisher’s 1927 paper, “On Some Objections to Mimicry Theory—Statistical and Genetic,” that constituted the “true start of the modern synthesis.”101 His answers to the questionnaire made it clear that Fisher had

100 Simpson to Mayr, 8 Sep 1973, GSP (ref. 98).
been a personal and intellectual source of inspiration for him. Julian Huxley was also very committed to the importance of genetics as a discipline sparking interest in evolutionary theory. Among the American respondents, Drosophila and human geneticist Curt Stern identified both J.B.S. Haldane and Sewall Wright as important contributors to his intellectual development (as well as Charles Darwin, August Weismann, and Dobzhansky), and fondly remembered his conversations with Alfred Sturtevant about evolutionary theory during the two years he spent working in Thomas Hunt Morgan’s laboratory studying fruit flies in the 1920s. Even Simpson suggested that when he was working out his own synthesis, he read and used works by Fisher and Haldane. He noted that he was “a bit late in getting to Sewall Wright, but did so in time,” and had cited seven of Wright’s papers in *Tempo and Mode in Evolution*. Developmental embryologist Viktor Hamburger succinctly responded—“there was no ‘almost total neglect of ultimate causes’” before the 1930s.

Another issue for many of the respondents came from the secondary questions inquiring as to why the synthetic theory had not been adopted by botanists for so long, or by developmental biologists at all. Unsurprisingly, scientists who worked in these fields took exception to Mayr’s characterization of their intellectual heritage. Hamburger insisted that the synthesis was not “missing” in developmental biology, and referred Mayr to his own work in Germany, that of Ivan Ivanovich Schmalhausen in the USSR, and of Conrad Hal Waddington in England. However, he continued, their collective integration of evolutionary

102. Follow-up questions and answers to Ford’s original questionnaire can be found in Edmund Brisco Ford Papers, Special Collections and Western Manuscripts, Bodleian Library, University of Oxford, Oxford, UK, National Cataloguing Unit for the Archives of Contemporary Scientists, 14.7.89, C.2646. 103. Already in poor health when he received the questionnaire, Julian Huxley was unable to attend the meeting, and Juliette Huxley (his wife) helped him complete the questionnaire. “Julian Huxley,” CES, Box 1, Folder Julian Huxley. 104. Curt Stern,” CES, Box 2, Folder Curt Stern. On life in the Morgan lab, see Robert Kohler, *Lords of the Fly: Drosophila Genetics and the Experimental Life* (Chicago: University of Chicago Press, 1994). 105. Simpson to Mayr, 8 Sep 1973, GSP (ref. 98). For more on Wright’s influence on the synthesis architects, especially Simpson and Dobzhansky, see Provine, *Sewall Wright and Evolutionary Biology* (ref. 24). 106. Viktor Hamburger to Ernst Mayr, 27 Oct 1975, CES, Box 1, Folder Viktor Hamburger. 107. Notably absent here is any mention of Richard Goldschmidt’s work in the United States. See Dietrich, “Richard Goldschmidt’s ‘Heresies’” (ref. 9), for an account of how Goldschmidt became persona non grata to the synthesis architects. For a picture of Hamburger’s role in the
and developmental research had never made it into the canon of the “Modern Synthesis”—a failure he laid at the feet of Mayr, not the developmental biologists. Along similar lines, botanist and synthesis architect G. Ledyard Stebbins denied Mayr’s implication that plant evolutionists did not contribute actively to the synthesis. They had, Stebbins asserted, “but the zoologists who formulated the theory ignored or minimized their contributions, because they didn’t conform well to theories based on observations with animals.” A particularly thorny issue for Stebbins was Mayr’s insistence on the primacy of geographic isolation as the basis of speciation. He wrote, “I can’t help being offensive. If on this basis you don’t want me in Boston, that’s OK with me. What is normal for birds, may not be normal for plants.”

It is not my concern here whether Mayr got his history (or his biology) right. Some of his chosen respondents agreed with all of his interpretations. French population geneticist Ernst Bösiger, for example, wrote that the synthetic theory as he understood it was “in reality quite different from the theoretical and mathematical models” of Fisher, Haldane, and Wright. Instead, the point is that despite their disagreements over the historical and biological content of the meeting, they all wanted to participate. It was an exciting and important step in writing the history of a field they wanted to remember and protect. As such, they agreed with Mayr’s original premise—they too wanted to correct a bias in the existing literature on the synthetic period, even if they disagreed over the details and the nature of that bias. The end result was a history of evolutionary synthesis, see Gregory Davis, Michael Dietrich, and David Jacobs, “Homeotic Mutants and the Assimilation of Developmental Genetics into the Evolutionary Synthesis, 1915–1952,” in Cain and Ruse, eds., Descended from Darwin (ref. 15), 133–54.

109. These quotes come from a letter Stebbins wrote to Mayr the day after receiving the questionnaire. Stebbins to Mayr, 3 Mar 1974, CES, Box 2, Folder G. Ledyard Stebbins. For Stebbins’ answers to the questionnaire itself, see CDP, C.104, H.166.

111. Even Simpson, who always preferred writing things down to talking with people, sought to preserve his answers for posterity by distributing them to multiple sources. See Wilson’s description of Simpson in Naturalist (ref. 57), as well the articles by Aronson, “Molecules and Monkeys” (ref. 43), and Joe Cain, “A Matter of Perspective: Multiple Readings of George Gaylord Simpson’s Tempo and Mode in Evolution,” Archives of Natural History 30, no. 1 (2003): 28–39.

112. Darlington’s papers additionally include copies of the questionnaires submitted by Hampton Carson (CDP, C.104, H.166), Bernard Rensch (CDP, C.104, H.165), and Dobzhansky (CDP,
theory in the twentieth century designed to unite organismic biologists with a common set of historical questions (if not answers).

Although Mayr maintained that voices of opposition would mitigate any of his claims that were overly biased, in practice he prevented those voices from being heard. For this reason, co-editing the *Evolutionary Synthesis* volume with William Provine was more of a challenge than Mayr anticipated, given Provine’s affection for Sewall Wright, population genetics, and precisely the kind of history Mayr was trying to dispel. Provine’s first attempt to write an epilogue for the *Evolutionary Synthesis* was a point-by-point refutation of Mayr’s introduction (which had served as the keynote to the conferences). After reading the draft, an enraged Mayr wrote to Provine: “The reason I slanted the keynote was that the literature on the split in evolutionary biology between 1900 and 1935 up to now was totally one-sided, all written by geneticists.”

To pacify Mayr, Provine rewrote the epilogue completely, omitting all references to Mayr’s keynote. Mayr carefully managed the content and conclusions of the *Evolutionary Synthesis* to emphasize the importance of the newly constructed vision of organismic biology during the synthesis period.

Mayr never intended his other historical project, *The Growth of Biological Thought*, to be the history of all biological research either. Rather, he planned the book as the first of a two-volume set on the history of biology: *The Growth of Biological Thought* would cover the study of ultimate causes in biology, and
the second would cover proximate approaches to the study of life.116 Immediately after returning the final proofs of the first volume to the publisher, Mayr wrote again to Tinbergen, describing his historiographic intent in creating \textit{The Growth of Biological Thought}:

I vigorously defend the viewpoint that many of the theories and methodologies of the physical sciences are not sufficient for some of the processes of biology. What the physical scientists do not understand is that something can be completely consistent with the laws of physics and chemistry at the molecular level but that something that is controlled by genetic programs of information, something totally absent in the inanimate universe, can not be reduced to the laws of physics. I also vigorously promote the viewpoint that we naturalists have put a great deal of thought into biology which is necessary for a full understanding of the world of life.117

This is not to say that Mayr ignored genetics; he devoted almost two hundred pages to the study of “Variation and its Inheritance.” As with the first two parts of the book, however, he began with Aristotle and wended his way slowly to the twentieth century. When he arrived at his final chapter on the chemical basis of inheritance, he noted that five or six books had already been written on the history of DNA research and so he would “touch only on the high spots and concentrate on the \textit{biological} aspects of DNA research.”118 Arguing that biological thought in the early decades had been divided between the naturalists on the one hand and the experimentalists on the other, he asserted that the true payoff for genetics (as for diversity and evolution) came through its contribution to the modern synthesis.119 Given Mayr’s heartfelt commitment to ultimate causation in biological research, it is hardly surprising that he abandoned the second volume that he had planned to devote to the history of physiology, developmental biology, neurobiology, and the search for proximate causes in biological research.120

Reviews of \textit{The Growth of Biological Thought} poured in, and almost all noted the battle lines Mayr drew between two antithetical research traditions: population thinking (key to evolutionary thought) and essentialism (key to the

\begin{thebibliography}{119}
\bibitem{116} Mayr, \textit{Growth of Biological Thought} (ref. 93), vii–viii.
\bibitem{117} Mayr to Tinbergen, 26 Jan 1982, EMP, HUGFP 14.7, Folder Nikolaas Tinbergen 1980–82.
\bibitem{118} Mayr, \textit{Growth of Biological Thought} (ref. 93), 811 (emphasis added).
\bibitem{119} Ibid., 566.
\bibitem{120} Ibid., vii–viii.
\end{thebibliography}
physical sciences). In some cases, reviewers believed he had oversold his case and they doubted the longstanding rivalry Mayr presented—it too neatly situated molecular research within an older biological tradition that Mayr claimed was anything but “modern.” For example, Ian Tattersall’s review in *American Anthropologist* noted that although Mayr promised “a history of the ‘development of the ideas dominating modern biology,’” he delivered a far more idiosyncratic vision of “what Mayr personally regards as particularly important.” In fact, Tattersall continued, Mayr’s “judgmental” voice throughout his book divided the cast of characters into a “long parade of heroes (for example Aristotle, Buffon, Darwin, Mayr) and villains (Plato, Descartes, most of the early experimental geneticists).” Theoretical biologist John Maynard Smith’s enthusiastic review nonetheless noted that it was “characteristic of Mayr’s book that the emotion it arouses in me is a wish to argue with him, not about history, but about his scientific views.” In particular Maynard Smith took exception to Mayr’s assertion that when mathematicians became interested in evolutionary theory they usually got it wrong or their views were irrelevant. Many reviews also noted the autobiographical flair Mayr imparted to his history. George Gaylord Simpson’s review, for example, was even titled “Autobiology” and suggested that *Growth* was “in an unconventional and highly unusual way an autobiography. In it Mayr is seeking out, cleverly and successfully, the roots of his own accomplishments and opinions.”

Simpson’s enjoyment of the book, however, and after summarizing many of its main highlights and addressing a few quibbles, he closed his review by heartily recommending the book to anyone interested in evolutionary theory. Of these reviewers, Michael Ruse was the most forthright in establishing his own argument. *Growth*, he suggested, “is not really a book about science at all. It is only accidentally a book about history . . . What Mayr is really trying to do is to persuade you of certain views of life, and to crush other views.”

In the end, biologists read Mayr’s *Growth of Biological Thought* with a keen sense of his professional and philosophical stakes in writing it.

Even so, many of the new histories of evolution that followed Mayr's history of the theory, as presented in both *The Evolutionary Synthesis* and *The Growth of Biological Thought*, were either imbued with the same philosophical assumptions as Mayr, or opposed to those assumptions. Evolutionary biologist Douglas Futuyma, for example, speculated that in dismissing the contributions of mathematical population geneticists (like Wright) to modern theories of evolution, Mayr was a victim of “that same lamentable rift between mathematical theoreticians and naturalists that delayed the arrival of the Modern Synthesis, and that persists still.” Yet despite this criticism, Futuyma’s review burbles with enthusiasm and awe at the breadth and depth of Mayr’s knowledge. With his historical writings, Mayr thus succeeded in setting the rules of the game for evolutionary history, even if other historians and philosophers disagreed with his version of that history. In doing so, Mayr also succeeded in providing organismic biology with a historiographic tradition that differed markedly from contemporary historical attention to the “molecularist” sciences.

CONCLUSION

E. O. Wilson recalls that his views as an organismal biologist were “radicalized” by 1970. He “wanted a revolution” among young biologists interested

127. Ruse, “Admayration” (ref. 121), 190.
129. I have, for example, been unable to find a review of any of Mayr’s historical books written by a molecular biologist.
in evolutionary theory.130 Sure enough, as organismic biologists coalesced into a community with a coherent and unified past, this provided a ready target against which up-and-coming scientists could position themselves.131 His hoped-for revolution came in many forms: mathematical ecology, paleobiology, and animal behavior. Wilson pointed to the loose cadre of biological theorists that began to form in the 1970s, from Lawrence Slobodkin, who founded the department of ecology and evolution at SUNY–Stony Brook in 1969, to Robert MacArthur, an early pioneer in theoretical population biology. We might easily add more names to the list such as John Maynard Smith, William Hamilton, and George Williams through the appropriation of game theory by biologists.132 Recent historical attention to the emergence of paleobiology has illustrated how Stephen Jay Gould, Jack Sepkoski, and Tom Schoch challenged what they saw as a neo-Darwinian hegemony embodied in the theories of Dobzhansky, Mayr, and Simpson.133 So even as organismal biologists struggled to unify themselves into a single defensive front, disunity welled up from within.

The political reordering of the American biological sciences during the 1960s and '70s forged a new professional identity for a particular group of scientists—as organismic biologists—with carefully calibrated philosophical, institutional, and historical foundations. It was also during these decades that the interests of biologists in the history of their own field encouraged historians and philosophers of science to pay attention to biology. As a result, the polarized dichotomies so characteristic and important to the organismic biologists of the 1960s and '70s were read back into the history of biology in some accounts, like Ernst Mayr's \textit{Growth of Biological Thought} or, on a smaller scale, Simpson's depiction of the antipodal histories of molecular and organismic thought described in his article “The Crisis in Biology.”134

130 Wilson, \textit{Naturalist} (ref. 57), 232.

134 Simpson, “Crisis in Biology” (ref. 32), 365–77.
Of course it comes as no surprise that the history of biology, as much as other histories, is political. Yet if there was no necessary incommensurability between genetics and evolution, experimentalist and organismic methodologies, laboratory and field traditions, then the history of biology in the first half of the twentieth century might look radically different. This large-scale division of the history of the biological sciences is important because it has similarly divided the history of biology into two largely distinct historiographies. Recent scholarship is beginning to re-evaluate the dichotomy between “molecularist” laboratory-based biology and “organismic” field-based biology, especially evolutionary theory, within other times and other places.

A great many biological research programs sit at the interstices of these dichotomies, including animal behavior, invertebrate zoology, physiology, botany, developmental biology, and even eugenics. In his work on the history of ethology, for example, Richard Burkhardt has pointed to the diversity of places and practices devoted to studying animal behavior and the mutual collegiality of laboratory- and field-based biologists in the U.K. and Continental Europe. The most systematic attempt to analyze the fruitful cross-pollination of experimentalist and naturalist traditions in the early twentieth century is Robert Kohler’s Landscapes and Labscapes. In a recent essay entitled “The So-Called Eclipse of Darwinism,” Mark Largent provocatively suggests that biologists’ interest in evolutionary theory did not wane in the first decades of the twentieth century, but the myth of its eclipse allowed both biologists and historians to remove the history of eugenics from the mainstream history of biology. Historians of

135. Abir-Am, “Essay Review” (ref. 5); Smocovitis, “1959 Darwin Centennial Celebration” (ref. 3). Joe Cain has raised even deeper concerns. If all of our histories can, and will, be used by scientists as a way of justifying their research agenda, he suggested, then the problem is not if history is political, but how to gauge the political consequences of our historical narratives. Cain, “Ritual Patricide” (ref. 133), 363.

botany in the twentieth century have also demonstrated substantial collaboration between botanists using molecularist techniques and those using more organismic methods. By paying attention to these research traditions, historians have begun to rewrite the history of the life sciences in ways that describe the naturalist and experimentalist traditions as more collaborative and less antithetical than they seemed to organismic biologists in the 1960s.

Given the very limited ways in which one can generalize the political dynamics described in this paper, these new histories are especially important. Throughout this story, many participants in Mayr’s conferences on the evolutionary synthesis, even his closest associates, like Dobzhansky and Simpson, objected to his philosophical or historical characterization of their own research, reacting to similar institutional and funding pressures in different ways. Mayr may have succeeded in protecting the future of organismic biology, but he did so by emphasizing deep divisions running through the biological sciences as a whole. By the close of the 1960s, Mayr’s hopes for integrating all of biology under the banner of evolutionary theory had given way to a separate-but-equal approach to the organization of the modern biological sciences.

ACKNOWLEDGMENTS

For their insightful suggestions on improving this manuscript, I would like to thank an anonymous reviewer for HSNS, as well as Abigail Lustig and Staffan Müller-Wille. For helpful comments on earlier drafts, I also thank Joe Cain, Angela Creager, Michael Dietrich, Michael Gordin, William Provine, Betty Smocovitis, and a lively meeting of the District of Columbia History and Philosophy of Biology group, including Douglas Allchin, Tudor Baetu, Lindley Darden, Nancy Hall, Pamela Henson, John Parascandola, Eric Saidel, Alistair Sponsel, and Joan Straumanis.