
Time and Synchronization in Executable UML

Leon Starr

Software Model Engineer
Model Integration, LLC.
San Francisco, California, USA

www.modelint.com

www.linkedin.com/in/modelint

leon_starr@modelint.com

Abstract

This article illustrates the platform independent timing and synchronization rules that
modelers use and architects implement to support Executable UML® applications.
UML standardizes behavioral notations such as statecharts and sequence diagrams,
but it does not define any synchronization rules. One of the most powerful features of
Executable UML is that it does not constrain the implementation with unnecessary
sequencing. In traditional programming languages, the stream of processing is sequen-
tial by default unless intentionally diverted through a variety of platform specific con-
currency mechanisms. The opposite is true in Executable UML. Everything happens in
a concurrent, platform independent timeframe unless there is explicit synchronization.
This allows us to create application models that can be deployed onto arbitrarily dis-
tributed platforms. This capability is increasingly relevant as platform technology
evolves from embedded to parallel to distributed to cloud and back, sometimes in the
duration of a single project! So it is ever more critical that all the hard work you put
into your analysis, models and designs not fall apart as the target platform inevitably
shifts.

UML is a registered trademark of the Object Management Group

Note to hardcopy/PDF readers: You may want to access the convenient hyperlinks available in the always up-to-
date online version found here along with my other writings: http://knol.google.com/k/-/-/2hnjef6cmm97l/7

www.modelint.com
 Page 1 of 33

http://www.modelint.com
http://www.modelint.com
http://www.linkedin.com/in/modelint
http://www.linkedin.com/in/modelint
mailto:leon_starr@modelint.com
mailto:leon_starr@modelint.com
http://www.modelint.com
http://www.modelint.com

UML DOES NOT PRESCRIBE SYNCHRONIZATION RULES

With all of the dynamic diagram types in UML: sequence diagrams, collaboration diagrams, statecharts,
activity diagrams and such, it may be surprising to learn that UML does not supply any timing and syn-
chronization rules. This is simultaneously a feature and a curse. It is a feature in that you are free to de-
fine your own rules. It is a curse in that... you are free to define your own rules.

The notational limits of statecharts when it comes to definitive synchronization can be illustrated with a
few simple examples.

Ambiguous example 1: Busy when event occurs

In this order processing application we have an object, Order 32 sitting in the CHECKING INVENTORY
state. It is executing the procedure inside the state when a Cancel event occurs.

Checking Inventory

entry/
if (selected_Product.In_stock) {

generate Ship to self;
} else {

generate Back_ordered to self;
}

32

Back_ordered

Cancel

Ship

What does Order 32 do when a Cancel event occurs during processing?

Is the processing interrupted and the Cancel transition taken? If so, what about any cleanup required?
There is probably none in this particular case, but you can imagine what might be required in a more
complex procedure. Or does the event get dropped since it arrives while the Order object is busy? Or
could the event be saved until completion of the procedure? The point here is not that any particular
rule is best, just that you need rules. UML can accommodate a range of possibilities, including none.
Let’s take a look at another example.

Ambiguous example 2: Interrupting a continuous action

The mixing tank object T17 is executing a do/ action when the Reset event occurs. In this case, let’s go
ahead and assume that we want to interrupt the activity.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 2 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

PRESSURIZE

do/

self.Pressurize();

Stop

T17

Stop

Done

How, exactly, will this be handled? At what level of granularity is interruption possible? And, again, what
about cleanup? The statechart offers notation, but no guidance as to how to process the interrupt.
Okay, one last example...

Ambiguous example 3: Sequencing events

Here we have a chemical measurement instrument commanded from buttons on the front panel of the
device and/or via a remote workstation connected on a network. A human operator first presses the
Initialize and then the Run buttons triggering the corresponding events. Simultaneously, a command that
triggers another Initialize event arrives on the network. (Perhaps the operator and remote user are un-
aware of the potential conflict). What happens?

Initialize

READY

INITIALIZED

RUNNING

Run

Initialize

Run

Initialize i

Are the two events commanded from the button panel processed in the intended order? Could the
network Initialize event happen in between, and if so, will it be ignored or processed?

 At the end of this article we will revisit these three examples and see how Executable UML resolves the
ambiguities.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 3 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

RESOLVING SYNCHRONIZATION AMBIGUITY

In these three examples we’ve seen that UML notation alone does not resolve real-time ambiguity in
statecharts. Given that we are modeling a real-time system, what are the options for proceeding?

Option 1 - Informal specification

Maybe you are building high level models that aren’t intended to solve any synchronization problems.
You just want a very informal specification of behavior and plan to leave all the hard work to the devel-
opers. Leave it to the coders and fix things in beta. Yee-ha!

Option 2 - Mix code into the specification

We can elaborate the weak statecharts by writing the procedure in each state using a traditional pro-
gramming language like C/C++ or Java. The code can invoke concurrent operating system facilities such
as threads, semaphores, critical section marks and so forth. This may work, but it doesn’t guarantee con-
sistent rules across all statecharts (or even within a single statechart), so the models may be quite com-
plex in the end. Let’s assume though, that considerable thought goes into the coding and a relatively
simple and global scheme is devised to keep the complexity from getting out of hand. You will then end
up with largely platform specific models. This compromises the quality of the analysis (mixed in imple-
mentation complexity), precludes early simulation and testing (you’ve got to write all the code first) and
limits the models to the target platform (redesign and retest required to move to another platform).

So the procedure coding approach may address the problem of implementing synchronization, but you
have to tread through a lot of implementation muck to get there. (And you have to keep treading each
time you build a statechart!) The difficulties of debugging systems that use concurrency mechanisms are
well documented out on the internet.

Option 3 - Model synchronization requirements with UML

Here, the idea is to apply a simple set of rules consistently across all of the statecharts. Both the analyst
and the designer benefit from this scheme. The analyst need not get bogged down in complex synchro-
nization mechanics and can build models that clearly expose1 application requirements. The designer can
more easily implement a lean, efficient state machine engine based on a uniform rule kernel. The de-
signer need not pick through and accommodate varied and specialized control mechanisms scattered
and buried inside the actions of each statechart.

The synchronization rules may be simple, but they must simultaneously offer the ability to capture com-
plex application requirements and be implementable on a wide variety of platform technologies.

Consider some of the advantages over options 1 and 2 if this can be done.

You will be able to build unambiguous, testable models of complex application behavior. These models
will be platform independent (PIMs).2 In other words, the implementation specific concurrency and syn-
chronization mechanisms will be factored out of the application models. What will remain are the appli-
cation specific synchronization requirements essential to all implementations. Well defined execution
rules make it possible to run the models on a virtual machine for testing purposes prior to implementa-

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 4 of 33

1 How to Build Articulate UML Class Models [1]

2 Model Driven Architecture (MDA) terminology [2]

http://knol.google.com/k/-/-/2hnjef6cmm97l/4
http://knol.google.com/k/-/-/2hnjef6cmm97l/4
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

tion. Rough metrics concerning peak and average signal/data exchange, relative action execution and
dwell time and various other latencies can be gathered. Finally, a single executable domain3 can be im-
plemented on a variety of concurrent platforms without necessitating changes to the models them-
selves4. This means that once the application synchronization is tested and validated it need not be re-
worked and retested just because a platform with varying distribution, timing and synchronization
mechanisms is targeted.

These advantages should be compelling for anyone building complex real-time systems that must ac-
commodate evolving platform technology. (Especially if task or processor distribution is in flux)

In this article we will explore option 3 as plenty has already been written about options 1 and 2!

But first, a lot of assumptions have been piling up, not least of which is that it is even possible for syn-
chronization to be platform independent. Let’s see.

AN EXAMPLE OF PLATFORM INDEPENDENT TIMING AND SYNCHRONIZATION

Some developers believe that timing and synchronization can be sorted out only with the platform and
target programming language taken fully taken into consideration. Without a detailed understanding of
how threads, tasks, semaphores and other synchronization facilities, including the hardware, work, how
can you definitively express and test any synchronization scheme? This is the thinking pushing most de-
velopers toward option 2. But maybe it doesn’t have to be that way.

Consider a synchronization problem in an elevator5 control system. A passenger standing inside the
cabin is going to push the OPEN button. If the cabin is at rest, the doors should open. If the doors are
already open, nothing happens. If the cabin is moving and the doors are closed, again, nothing should
happen. Now what happens if the open button is pressed at the exact same instant that the cabin wants
to move?

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 5 of 33

3 A domain is a type of package that contains a complete set of executable content, modeled or coded. There are some other
Executable UML specific definitions of a domain described in Mellor-Balcer[3].

4 The accompanying marking model (MDA terminology [2]), however, will likely change. It marks various model features to be
handled specially by the model compiler. Each MVM will make various marking features available appropriate to the class of
targeted platform. For example, certain classes might be marked for flash memory implementation.

5 That, of course, would be a “lift” control system for my British friends.

http://en.wikipedia.org/wiki/Executable_UML%23Domain_Chart
http://en.wikipedia.org/wiki/Executable_UML%23Domain_Chart
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

What happens when
you push the OPEN
button inside the cabin?

If the cabin is
waiting, open the
door.

So what happens when the button is
pressed and the cabin starts moving at the
exact same point in time?

But if the cabin is moving,
do NOT open the door!

OPEN

Is it necessary to consult the pthreads reference book before you can answer? Maybe dust off your fa-
vorite real-time OS manual just to be sure? Of course not! You already know what is supposed to hap-
pen. The cabin can never be moving while the doors are open. But how do we express the resolution of
simultaneous events? Informal text can’t solve the problem. An implementation certainly can.

Option 3 says that we need to find a middle ground where we can unambiguously model the synchroni-
zation requirement in a single Executable UML model. This model can then be transformed into many
different code sets, each implementing the exact same rules but using the unique features of a particular
platform. How do we do this?

Defining and executing platform independent synchronization rules

First we define a set of rules for interpreting statechart behavior. Actually, we don’t have to define them
since they are conveniently defined in Executable UML. (Though there is nothing to stop6 you from de-
fining your own!) For example, one Executable UML rule says that “a procedure in a state always com-
pletes before the object processes any new events”. We’ll get to the rest of these rules soon.

A modeler / analyst will then model one or more application domains using class, state and action mod-
els that conform to the Executable UML rules.

During development, the statecharts may populated with instance data and executed either by hand
(coins on sheets of paper) or, ideally, using a model interpreter that supports the Executable UML rules.
These do exist, or you can build your own7 if you are looking for something to do.

The model interpreter or model virtual machine (MVM) must be constructed so that the rules observed
by the modeler are correctly implemented.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 6 of 33

6 Well, ... time and money, perhaps. More about this at the end of the article.

7 Send me an e-mail when you get it working!

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com
mailto:leon_starr@modelint.com?subject=XUML%20Synch%20Article%20-%20Got%20it%20working%20
mailto:leon_starr@modelint.com?subject=XUML%20Synch%20Article%20-%20Got%20it%20working%20

Here is an environment that executes UML models on a desktop:

Executable UML Domain Models

Model Virtual Machine (MVM)

Desktop Platform

Running the Models in Simulation Mode

The MVM implements the rules so

that the models execute properly.

Signal dispatching, event queues,

state tables, resource locks, threads,

priority management, all that stu! is

being managed here.

We can test the models on a

desktop since the model interpreter

is implemented on *nix and

Windows and Eclipse platforms.

Looking forward to a Mac or Web

implementation!

Modeler builds these,

relying on perfect

implementation of the

synchronization rules

Model interpreter

executes the

synchronization rules

so that model behavior

may be tested

Platform
Independent

Model Execution
Rules

Platform independent rules are

followed by these models when

they execute in simulation mode.

Rules are established for the

execution of classes, statecharts

and actions.

The MVM will allow us to put all of our objects into an initial state, trigger an initial event and then let
the models execute actions and move state by state. Ideally, breakpoints can be set on states, events and
individual actions within procedures. (It’s actually more than an ideal. These things do exist out in the
wild). There is, of course, more to the MVM than just executing state synchronization rules. Some UML
actions access attributes and navigate class model relationships. So, in addition to statechart rules, ex-
ecutable data and computation semantics must also be supported by the MVM.

SIMULATION IS FINE, BUT WHAT ABOUT IMPLEMENTATION ON THE TARGET PLATFORM?

It’s nice to run your models and test them against platform independent synchronization rules. But the
desktop implementation of the model execution rules will be inappropriate for a highly embedded target
or a highly distributed target. In fact, the desktop model interpreter is just one of many possible plat-
form targets.

Let’s say that we are compiling to a highly embedded platform. In that case you are probably implement-
ing in C instead of Java. Yes, I know there’s an embedded Java runtime environment, but I’m talking highly
embedded, 50 - 256k, for example. There are many places where a Java virtual machine won’t fit. But

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 7 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

you can find room for the model execution rules, though, in extreme environments, you will limit the
types of applications that can be supported.

So the implementation solution is not to require that each platform accommodate a full scale Executable
UML virtual machine. Instead, application realities such as the quantities of persistent and non-persistent
objects, quantity of read only data and lots of other factors can be taken into account to create an Ex-
ecutable UML run time environment suited to a class of platform.

MVM-D
Compiler

MVM-E
Compiler

Executable UML Domain Models

Embedded Hardware

Model Compilation on a Target Platform

Change this when app

rules change

System Software (OS, drivers, etc)

MVM-E Runtime

Executable
UML

Generated
Code

MVM
Population

(data)

Non-
modeled

Code

Distributed Platform

System Software
(OS, DB, Network, etc)

MVM-D Runtime

Executable
UML

Generated
Code

MVM
Population

(data) Non-modeled
and Legacy

Code

Middleware

MVM-E
Marking Model MVM-D

Marking Model

Change this to customize

implementation, select

predefined design

patterns, deploy to tasks

and processors

Build or buy this to

make effective use of

platform and populate

the associated MVM

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 8 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

GUIDING PRINCIPLES OF THE TIME AND SYNCHRONIZATION RULES

Having surveyed the benefits desired and the technical concerns that must be addressed, we can list the
guiding principles of the Executable UML time and synchronization rules:

1) Simplicity

2) Minimize platform assumptions

3) Leverage existing theory

SIMPLICITY

Define as few rules as necessary. There’s enough complexity in the application without folding in a set of
synchronization mechanics riddled with exceptions, redundancies, event juggling and priority schemes. As
stated earlier, this benefits both the analyst and the designer. Subtle bugs often result because faults in
the application logic are clouded by complex language mechanics. Executable UML models are quite easy
to review compared to a lot of the UML gunk out there.

MINIMIZE PLATFORM ASSUMPTIONS

If the synchronization, data access and other execution rules are truly platform independent, the applica-
tion models will be deployable on a variety of platforms. Since the platform is not known ahead of time,
it is best to assume the worst. A rule assuming a global clock is available, for example, would limit de-
ployment to single CPU targets. An assumption that a group of classes in a subsystem should run in the
same thread will have limited portability. So we would prefer to go the other way and make the most
minimal assumptions about synchronization possible knowing that the models, once tested, will work the
same way on any arbitrarily distributed platform.

LEVERAGE EXISTING THEORY

Executable UML builds on existing theory. The data semantics, for example, are built on relational the-
ory. The synchronization rules borrow from distributed networking theory8.

Now, on to the rules.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 9 of 33

8 Lamport [4]

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html

The Rules

THERE IS NO GLOBAL CLOCK

The concept of a global clock, where all model elements are running in the same absolute timeframe is
difficult and often impossible to implement on distributed or multi-processor platforms. It is a nice con-
venience if you are targeting a single CPU, but we can’t count on that. In fact, the actual implementation
of the object state machines could be looping in a single thread within a single task in the degenerate
case of distribution. At the other extreme, each object could be running in its own processor. By as-
suming the worst case of distribution, we know that we can target all cases.

So there is no global clock. We assume that time is local to each object. In this illustration we depict
each object running in its own local time.

There is no global clock

Cabin Door

At any point in time, each object:

has its own local time

is in one state

is either executing a procedure or waiting for an event

Each class may be populated with some number of objects. Here we are concerned only with those
classes with statecharts. I like to picture the statechart of a class like a game board traversed by each
object of the class. At any frozen point in time, each object is in exactly one state of its class’s statechart.

So all objects belonging to the same class are driven by a single statechart. Across multiple classes, we
have all of the objects, each in a current state either executing the entry procedure within that state or
just waiting around for an event to occur.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 10 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

Obviously there are a few implications to this way of thinking that must be taken into account by the
remaining rules.

THE DURATION OF A PROCEDURE IS UNKNOWN

Each state contains a single entry procedure that we will refer to as the state’s “procedure” from here
on as done in Mellor-Balcer[3]. Within this block there may be multiple actions. It is also possible for
the entry procedure to be empty or to just contain a comment.

When an object enters a state, it begins executing the entire procedure immediately. At this
point in time we will call it a busy object. It takes an unknown period of time to complete the
procedure. That is because the speed of execution is platform dependent. Upon completion,
the object waits for an event to occur. Objects never automatically advance to another state.
At this point in time we have a waiting object.

While standard UML notation provides for entry, exit and do
actions, Executable UML uses only entry actions. Why are the
other two omitted? Simplicity. It turns out that you can do it all
with entry actions. You can also do it all with exit actions, for
that matter. In the development of the Executable UML profile,
much attention has been focused on having one way to solve a
problem instead of fifteen. That way a given set of requirements
should reduce down to a common model rather than multiple
alternatives with no objective criteria for distinguishing one from
the next.

It is a lot easier to read through a collection of statecharts all
using entry actions than it is to parse through a different sce-
nario for every state.

You may also note that procedures are associated with states
(Moore style) as opposed to transitions (Mealy style). The de-
bate as to which style is better is akin to that for curly braces in
C code and just as tedious. There is no significant complexity
difference between styles. The Moore style used in Executable
UML does lead to a simplified state table (the thing that actually
gets compiled) and makes it easy to specify the re-execution of
an action (go back to the same state).

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 11 of 33

http://en.wikipedia.org/wiki/Moore_machine
http://en.wikipedia.org/wiki/Moore_machine
http://en.wikipedia.org/wiki/Mealy_machine
http://en.wikipedia.org/wiki/Mealy_machine
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

?

In a platform independent world, the

duration of procedure execution is finite,

but unknown.

Platform dependent duration

HOLDING OPEN

entry/

// Wait, if necessary, for the door release

if (not self.Held)

generate Passenger_release to self;

EVENTS ARE HELD FOR BUSY OBJECTS

Waiting objects are idle until one or more events occur. If one of these events corresponds to a transi-
tion exiting the current state, the waiting object will follow the transition and get busy again.

Busy objects do not see any events. When events targeted at a busy object occur, they are held. At least
one of these held events will be become visible when the busy object has completed its procedure and
becomes a waiting object.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 12 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

HOLDING OPEN

entry/
// Wait, if necessary, for the door release

if (not self.Held)
generate Passenger_release to self;

HOLDING OPEN

entry/
// Wait, if necessary, for the door release

if (not self.Held)
generate Passenger_release to self;

Busy Object

Waiting Object

If events occur now, they will not be seen

by the busy object. But they will be held

by the MVM for later processing.

After the action is executed, the object

can see pending or newly occurring

events.

The object waits in this state until an event

occurs that triggers a transition.

Implications for the modeler

Since you cannot interrupt a procedure with an event, a state effectively defines the granularity of inter-
ruption within a modeled domain. So if you have an activity you might like to interrupt, you should break
it up into a sufficient number of states. Conversely, a collection of actions that won’t be interrupted can
be grouped into the same state. (You can put the actions into an object method and just invoke it from
one or more states to keep from drawing giant state rectangles!).

The modeler can’t just assume that a state will be busy for a short or long time and just hope it com-
pletes before some other parallel activity. “This action should be really fast, so let’s assume that it fin-
ishes before this other thing...” This lazy approach will not be rewarded kindly in a platform variant
world! If a procedure must finish before or after some other activity, it needs to be explicitly coordi-
nated with interlocking states or some other definitive mechanism.

If the modeler is not careful, a set of models might work fine during simulation and then break on a tar-
get implementation running at a different speed. Even worse, a system may work fine both in simulation
and on the initial target platform. Then, some day, the platform changes either with new hardware or
improved efficiency and then the models break! Platform independent testing puts the burden of careful
synchronization and clear understanding of the synchronization rules on the modeler. That said, it is
much easier to solve and test these problems in Executable UML than it is at the implementation level.
And models that pass these tests should prove more robust and resilient than the brittle alternative fro-
zen around a single platform.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 13 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

Implementation notes

While a procedure cannot be interrupted by an event at the model level, the MVM may suspend incom-
plete procedures to process system interrupts and then resume again. This is analogous to your desktop
operating system swapping out your spreadsheet application momentarily and then swapping it back
without you realizing it.

ALL EVENTS ARE PROCESSED AND DISCARDED

If an object is waiting, events are processed as they occur. If one or more events are collected while an
object is busy, they are processed one at a time once the object finishes executing its current procedure.
In either case, each event is subject to the same event processing cycle.

The cycle consists of three phases: selection, action and disposal. For a waiting object, the event process-
ing cycle is triggered when the next event occurs. This cycle is applied once for each event until a state
transition occurs or there are no more pending events.

Selection
Action

Disposal

A pending or newly arrived
event is selected

The event name and current state
determine the action taken

Transition

Ignore
Can't happen

The event is obliterated

The event processing cycle repeats until a state transition occurs
or there are no more pending events.

Selection

If there are pending events, the MVM (not the object) selects and presents one to the waiting object. If
not, the MVM will present the next incoming event.

You may be surprised to learn that pending events are not necessarily queued. They can be, but it
doesn’t make any difference as far as the models are concerned. When event ordering is critical, it must
be modeled explicitly without hoping that the MVM picks the right event. So the MVM is free to use
whatever algorithm it likes to choose among pending or simultaneously occurring events. In practice,

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 14 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

pending events are typically queued. This is a nice split between the MVM’s and the modeler’s responsi-
bilities. The modeler shouldn’t be worrying about how the MVM accomplishes its job as long as the syn-
chronization rules work. Event prioritization, event ordering and granularity of interruption can always
be managed with a properly synchronized and domain partitioned set of models without relying upon
any special MVM magic9.

Action

The processing of an event in a given state is defined by the modeler as exactly one of the following
choices: transition, ignore or error10.

Transition

If a transition has been specified for the event, then the object will follow that transition to the destina-
tion state. Any parameter values supplied with the event will be made available to the procedure in the
destination state.

OPEN DELAY

Time to close Door closed

IgnoreError

Ignore

Error

Passenger
close

OPENING

Error

Ignore

OPENING CLOSING

CLOSING

Passenger
open

CLOSING

Error

CLOSING

Ignore

OPEN DELAY

entry/
// Keep the doors open for the delay
period
// specified for this bank.

self.Set_open_timer();

(Close button pushed)

Event triggers a transition

A transition is specified for the
Time_to_close event, so the
Door object transitions out of
the OPEN DELAY state.

Time to
close

Time to
close

Passenger
close

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 15 of 33

9 Novice modelers often demand special features from the MVM that would unnecessarily complicate the synchronization rules
instead of just thinking the problem through and building the correct models. Event prioritization a commonly requested su-
perfluous feature.

10 “Error” is also called “can’t happen” or CH in the Executable UML community.

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

Ignore

Otherwise, if ignore has been defined in the state table (not visible on the statechart), no action will be
taken. The object remains in the current state. Imagine the response to someone pressing a button mul-
tiple times to call the elevator cabin to a floor. After the initial call is registered, but before the cabin
arrives, it is safe to drop any subsequent presses.

OPEN DELAY

entry/
// Keep the doors open for the delay
period
// specified for this bank.

self.Set_open_timer();

Event ignored

Passenger open

(Open button pushed)

No transition is specified for the
Passenger_open event in the
OPEN DELAY state. The state
table entry, however, specifies the
Ignore action. So the Door
object remains in place and no
further activity is triggered.

Time to
close

Passenger
close

OPEN DELAY

Time to close Door closed

IgnoreError

Ignore

Error

Passenger
close

OPENING

Error

Ignore

OPENING CLOSING

CLOSING

Passenger
open

CLOSING

Error

CLOSING

Ignore

Error

Finally, if error has been defined in the state table (again, not visible on the statechart), an error response
is triggered in the MVM. This is similar to an exception in program code that bubbles up to the inter-
preter or run-time environment without being caught. A standard response to error will be designed
into the MVM appropriate to the platform11.

I should probably point out that the state table is not part of UML. It is, however, necessary to fully de-
fine responses for each event-state combination. In practice, the process of carefully filling in each cell of
the table will reveal several holes in an apparently complete statechart. Statecharts are great for identify-
ing and understanding lifecycle behavior patterns. State tables are critical for ensuring completeness and
directing attention to logical blind spots.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 16 of 33

11 The exception response of a Mars rover, an embedded cardiac pacemaker and an inventory control system will differ widely.

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

OPEN DELAY

entry/
// Keep the doors open for the delay period
// specified for this bank.

self.Set_open_timer();

Event can't happen!

Time to close

Passenger close

The Time_to_close event is
triggered by the expiration of a
timer set in the OPEN DELAY
state. The timer either expires or
is cancelled before an object may
enter the HOLDING OPEN state.
Therefore, it cannot happen in the
HOLDING OPEN state.

Canceling Timer

entry/
self.Cancel_open_timer();
Generate Timer_cancelled to self;

HOLDING OPEN

entry/
// Verify that the door isn't being held open

if (not self.Held) {
generate Door11: Passenger_release to self;

}

Passenger close

Timer cancelled

If the Time_to_close event does,
in fact, happen in the HOLDING

OPEN state, an exception is
triggered in the MVM.

The modeler has marked the state
table entry for the Time_to_close @
HOLDING OPEN as error.

Either the model must be fixed (perhaps the self.Cancel_open_timer()
operation didn't correctly kill the timer. Or the MVM has issues! (Usually
the MVM is correct and the modeler must figure out what he or she did
wrong to anger the gods).

Time to close

Disposal

The event is discarded. Once processed, an event is gone forever as far as the MVM is concerned. The
modeler is, however, free to register the occurrence of an event or just the parameter data delivered, for
later reference, by entering or updating data in the class model. Consider, for example, the modeled
event “Seismic Activity (Magnitude:2.7, Epicenter:San Francisco, Time:09:24)” which could trigger a state
procedure that creates a new object in the Earthquake class and sets the corresponding attribute values.
The general rule is that if you want a fact to persist, you need to put the appropriate data into the class
model. Taking advantage of this fact can greatly simplify statecharts that attempt to field the same event
in every single state for fear of missing it.

When a signal is delivered to an object busily executing a procedure, the MVM creates a corresponding
event and holds it. If more events occur, they are also held. Eventually, the procedure completes and the

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 17 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

MVM presents one of the held events to the object. The object will process this event as transition-
ignore-error. In all three cases, the presented event will be destroyed in the process.

If the event is ignored, it evaporates away and the MVM presents another held event, if there are any left.
If the event triggers a transition, again the event disappears with any supplied parameter values passed to
the procedure of the subsequent state. If more than one event was pending, it will continue to be held
until completion of the next procedure. Does this mean that held events may be processed several
states downstream? Yes! Events persist until they are processed, at which point they are destroyed.
(This suggests yet another technique to avoid having to field the same event in every state of a state-
chart). Both techniques will be employed in the upcoming door statechart example, so keep scrolling!

Events are not necessarily prioritized or queued by the MVM. In other words, the modeler should not
count an any such thing. Events happen. If you need events to happen in a particular order, or if certain
events must supersede or preclude lesser events, you need to manage this in the synchronization of your
states. Remember that events are held, not necessarily queued.

The MVM sees two kinds of events. Self directed and non-self directed. When an object sends a signal
to itself, usually as part of an if-then action or just to trigger an advance at the end of a procedure, it re-
sults in the occurrence of a self-directed event. Collaboration among other objects of the same or dif-
ferent class happens when a signal is addressed to any other object.

Self directed events are always presented to an object before any non-self directed events are seen.

For the moment, let’s consider only non-self directed events.

The MVM saves these as they occur. There is no queuing requirement specified in Executable UML (nor
is there a need for one). It is the modeler’s responsibility to make sequence explicit, not hide it in the
MVM behavior. That said, most implemented MVMs queue incoming events as a matter of implementa-
tion convenience. Just don’t count on it.

SELF DIRECTED EVENTS TAKE PRECEDENCE

Now having said all this, there is one exception to event prioritization which applies only to self-directed
signals.

Signals and Events

When a signal is delivered to an object, it triggers an event
of the same name. In proper UML speak, a signal is sent and
an event occurs. Since the only events that occur in Execu-
table UML are triggered by signals, we often use the terms
signal and event interchangeably.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 18 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

You may have noted in the previous example that an object can force itself to advance (or re-enter the
same state) by sending a signal to itself. This feature is especially useful when local decisions are made as
was shown below:

TRANSFERRING PASSENGERS

entry/
// The cabin has just arrived at its destination
// Notify the active transfer and unlock the doors

select one my_Shaft related by self->Shaft[R2];
select one my_Xfer related by self->Xfer[R53];
generate Cabin_arrived to my_Xfer;

select one my_Door related by self->Door[R4];
generate Unlock to my_Door;

if (not my_Shaft.In_service)
generate Out_of_service to self;

Arrived at floor

New transfer

Take out of service

The Take_out_of_service event

will always be processed before

any pending New_transfer event,

which, would likely be ignored

in an OUT OF SERVICE state.

Self directed events are processed first

Either signal generated as a result of the if-then-else test is relevant only if processed in the current
state. In fact, you may notice that an object will never wait in a state like this because a self-directed,
transition triggering event is guaranteed to be waiting upon procedure completion. (My own personal
convention is to use initial caps to title such states as opposed to all uppercase for potential dwell states.
It would be nice if the supporting tools would use color or some other visual feature to make this dis-
tinction). So, the rule is that an object never sees a non-self directed event before all pending self-
directed events have been processed.

A self directed signal is sent from an object to itself. This is not to be confused with an event sent from
one object to another object of the same class!

Note to methodology/MVM definers: I think this is a bit of turbulence on an otherwise aerodynamic
system. Why not just replace self-directed events with the concept of forced transitions? Then we could
dispense with event priorities entirely. Am I right?

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 19 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

SIGNAL DELIVERY TIME IS UNKNOWN

When a signal is generated, it is sent immediately. Signals are never lost and delivery (in the form of a
corresponding event) is guaranteed. The delivery time, however is unknown since this is platform de-
pendent. So the modeler should not make assumptions that rely on a signal arriving within an absolute
time window12.

Implementation note

Now you may rightly assert that signals do get lost in the real world. Yes they do. But as far as the mod-
eler is concerned they don’t. The MVM is responsible for ensuring delivery. So the modeler should not
add model logic to compensate for lost signals13. Of course, the MVM might screw up and lose a signal.
For that matter memory might get corrupted, again, not of concern to your models. It is the MVM’s re-
sponsibility to recover, not your application models. Typically this will involve rebooting your domain or
resetting it to an earlier image. The range of soft, cold and hard restarting supported by an MVM is
something that varies from one platform to another.

SIGNALS FROM THE SAME SENDER ARRIVE IN THE ORDER SENT

Without a global clock, there is no way to resolve the time at which two signals from different senders
(objects or external entities) are issued. Consider two senders A and B. A sends ignition and B sends
launch at the same time to a recipient object R. But A and B each have their own local, unsynchronized
clocks. So even if each signal is time-stamped by its sender, the “same time” cannot be resolved without
a global clock. So R will see either ignition -> launch or launch -> ignition.

Signals from the same sender will, however, be seen in the order sent. This is because timestamps from a
single sender’s local clock can be resolved by the MVM. If sender A issues ignition, launch and B sends
abort, object R may see any of the following: abort -> ignition -> launch or ignition -> abort ->
launch, or ignition -> launch -> abort. In each case, ignition is seen before launch by object R.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 20 of 33

12 Having worked on a number of video frame rate systems, I can hear the collective gasp out there! In such systems the under-
lying MVM on the target platform must provide mechanisms to ensure that hard time boundaries are respected and the corre-
sponding events are triggered on time. In other devices, critical interrupts must be handled immediately. Some procedures may
have to finish within critical time windows. All of this is transparent to the model level, however. This is why we don’t have a
one-size-fits-all MVM! Each class of platform requires its own MVM.

13 This is analogous to assuming that a function call in the C programming language will, in fact, invoke the function. You don’t
write extra C code to recover in case the function calls don’t get made. Of course, you might not like the return value, but you
assume that the function actually does get called.

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

BA R

Ignition

Launch

Abort

Ignition

Launch

Abort Ignition

Launch

Abort
Ignition

Launch

Abort

Ignition

Launch

Possible arrival order at object R

Impossible arrival order!

Order is guaranteed for signals
originating from the same sender

This is not unlike the situation where two friends e-mail you simultaneously. The internet does not run
on global time and will deliver the messages in either order depending on various latencies. On the
other hand, an individual message that you receive contains perfectly ordered text. The packets from a
single sender are kept in order even if they arrive sporadically thanks to local timestamps.

The power of this highly distributed time model is that you can build models that reliably interface with
an asynchronous and often chaotic world. And once tested against the Executable UML rules, these
models will work on any platform. But with great power comes great responsibility14. The modeler must
now test against chronologically variant scenarios. Here are a few examples to give you a sense of what
is involved.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 21 of 33

14 Spiderman

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

Same events, but one test passes while the other fails

In this first example we have a medical scanning device that interfaces with a startup script, a human op-
erator and a power management system. The operator will want to skip the self test phase and just start
a scan. But the startup script is running and at any point the power system may need to reset the ma-
chine.

INITIALIZING

SELF TEST

READY

Reset

Next

Next Skip test

SCANNING

Scan

Next
ST

SC

R

Startup
Script Operator

Power
System

I

Correct final state in Test #1

Medical Scanning Device

The operator is ready before the startup script
has finished. But that's okay because "skip test"
is just ignored if a test is already in progress.
Fortunately we make it into the READY state
before the operator's Scan event is received.
Then a power problem occurs and we recover
normally by re-initializing.

Scanner

Scan

Skip test

Next

Reset
I

ignored

Assuming the device starts out in the INITIALIZING state, we will see the following state sequence: INI-

TIALIZING, SELF TEST, READY, SCANNING and INITIALIZING again. So the idea is that the startup script is still
running when the operator’s commands arrive. Then, during the scan, the power system re-initializes the
device. Lack of synchronization between the operator, startup script and power system is troubling. But
no error occurred in this Test #1. Let’s try again, possibly on a different platform (or with different tun-
ing in the simulation) and see what happens.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 22 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

Next
ST

R

Startup
Script Operator

Power
System

I

Same events, but test 2 fails!

Medical Scanning Device

Again, the startup script is too fast for the
operator (even faster than in test #1, and the
Skip Test event is still ignored. But the
power reset happens early as well and the
Scan command causes an irrecoverable
error! Same events, but different sequence
due to different platform latencies.

Scanner

Scan

Skip test

error!

Next

Reset
I

ignored

INITIALIZING

SELF TEST

READY

Reset

Next

Next Skip test

SCANNING

Scan

The exact same signals are sent as those in Test #1. This time, though, the startup script executes a bit
faster so the 2nd Next event is seen before the operator’s Skip Test event. That’s okay, because the
READY state is configured to ignore the Skip Test event if it occurs. But the Reset event occurs before
the Scan command this time. The INITIALIZING state is not expecting a Scan event and registers an error
when this happens. So the second test gives us an error!

There are many ways to resolve the discrepancies between tests 1 and 2. We could use a combination
of events and interlocking states to keep the three external entities from stepping on one another. For
example, we might queue operator commands (as objects) until the startup script is finished and then
generate events as we dequeue the operator commands. We could also have the operator interface hold
in some state until triggered from the READY or newly added WAITING TO INITIALIZE states. Or we could
just add lots of ignore responses to the state table to make the state model more resilient. Be careful
though, the practice of just ignoring anything you don’t care about willy nilly leads to oblivious state
models that don’t synchronize well with each other and the outside world. Use the ignore response
sparingly! My approach is to initialize all state-event responses to error, when I am building a new state
model, and then to selectively and strategically insert ignores as required. Each ignore will carry a
strong justification, which should be included in the documentation. (If you use a spreadsheet like I do,
sometimes, you can add comments to the table cells).

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 23 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

The main point here is that the modeler must remember that signals from different senders are syn-
chronized only if explicitly modeled. Only these signals from the same sender are guaranteed to arrive in
order.

Strategic use of the ignore response

In this next example it is unrealistic to coerce the input from multiple senders into a convenient se-
quence. We instead want our state chart to respond resiliently while accurately synchronizing with an-
other statechart. This is our elevator door-cabin problem mentioned at the beginning of this article. We
want to ensure that the cabin never moves unless the door is closed. But we can’t prevent a passenger
from pushing the open button just at the point that the cabin starts to move. Furthermore, if the cabin
wants to move at the exact time that the user pushes the open button we can’t know which event will
be seen by the door first. We can solve this problem by adding a LOCKED state to the door statechart
and employing the ignore response in all but the CLOSED state.

An elevator door will receive unsolicited and uncoordinated open and close requests from the passenger
and opened and closed events from the door sensors. There will, however, be coordination to ensure
that the cabin does not move until the doors are closed.

OPENING

Door opened

CLOSED

LOCKED

Unlocking

CLOSING

OPEN

Time to
close

Doors closed

Lock

Unlock

Okay to open

Lock

Close

Open

L

Close

CD

Doors closed

CG

Open

O

Cabin Signal IO

Passenger opens and closes the elevator door

Panel Door

The elevator door is open and the
passenger presses and releases the close
button. A moment later the open
button is pressed, but it is too late and
the door is locked for transport. The
door ends up in the LOCKED state and
the event is ignored.

ignore

The door starts off in the OPEN state when the passenger presses the close button. The corresponding
event pushes us into the CLOSING state where we wait until the sensor reports back with a
Doors_closed signal. Now in the CLOSED state a Lock signal is received from the cabin (it wants to

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 24 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

move). The door enters the LOCKED state where user open/close requests will be ignored. In fact, the
user tries to open the door, but too late, the event is ignored.

Naturally, this is only one of many possible event arrival sequences.

But what would have happened if the timing was slightly different?

OPENING

Doors open

CLOSED

LOCKED

Unlocking

CLOSING

OPEN

Time to
close

Doors closed

Lock

Unlock

Okay to open

Close

Lock

Open

Open

L

CD

Close
CG

Doors closed

O

OG

O

Time to close

CG

Lock

Doors opened

Doors closed

Cabin Signal IOPanel Door

Controlled chaos

Ignored, but a

boolean

Door.Locked

attribute has also

been set by the

Cabin which will be

checked in the

CLOSED state.

The Door.Locked

attribute is true, so

the Lock event is self

generated.

The Open event slid

in just before the

expected Doors

closed event from

the sensor. Since the

next Doors opened

event must occur

afterwards (same

sender), we can

safely ignore it.

Things appear to go wrong from the outset. The cabin is ready to move but may not proceed until the
door is in the LOCKED state. The Lock event is received, but ignored by the door object since it is cur-
rently in the OPEN state. According to our rules, the Lock event is then discarded. Fortunately, though,
the cabin (trust me,15 it did) set the Door.Locked attribute to true in the same procedure that sent the
Lock signal. We will refer to that attribute value later.

The operator pushes the Close button and we see the corresponding event and transition to the CLOS-

ING state. At this point we are expecting the Doors_closed event from the door sensor. But at the ex-
act moment that the doors fully close, or perhaps a split second before, the passenger hits the Open
button. The passenger and door sensors do not coordinate with one another, so the Open event could
snake in first and put us in the OPENING state. The doors are commanded to open in the state proce-
dure and, upon completion of the procedure, the door object sees the tardy Doors_closed event. Note

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 25 of 33

15 Or don’t and just download the Elevator Case Study [5] and see for yourself!

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com
http://www.modelint.com/download.html
http://www.modelint.com/download.html

that there is no possibility of the impending Doors_opened event getting here first as it is from the same
sender and must arrive after the Doors_closed event. And we can’t exit the OPENING state until we have
the Doors_opened event, so, if the Doors_closed event did not get processed in the CLOSING state, it
will get handled in the OPENING state. And the point is moot in the OPENING state, so the Doors_closed
event is safely ignored. (Assuming we set this correctly in the state table which I did not do the first
time!)

We eventually transition into the CLOSED state and execute its procedure (not shown) which checks the
status of the Door.Locked attribute. Since it is true, the door object sends a Lock signal to itself (again,
not shown). This pushes the door object into the LOCKED state. The attribute will be reset to false16
later in the Unlocking state.

It should be clear by now that a firm understanding of the Executable UML synchronization rules is es-
sential to addressing real world concurrency. Notation, by itself, doesn’t get the job done. It should also
be clear that executable modeling keeps the modeler honest. You are no longer allowed to leave the
hard problems for the programmer/designer!

RESOLVING AMBIGUITY

Now let’s go back to the original examples and interpret them using the Executable UML synchroniza-
tion rules.

Example 1: Busy when event occurs

Order 32 is executing the Checking Inventory procedure when a Cancel event occurs. What happens?

Checking Inventory

entry/
if (selected_Product.In_stock) {

generate Ship to self;
} else {

generate Back_ordered to self;
}

32

Back ordered

Cancel

Ship

We know that a busy object does not see incoming events. So the state procedure will execute and
produce either the Ship or Back_ordered event. Assuming the Cancel event occurs during this very
short time window, it will be held by the MVM. We also know that self directed events are selected and
presented by the MVM first. So Order 32 will always exit on a Ship or Back_ordered event, since each
triggers a transition. The Cancel event would be retained in the event pool until some future state
where it would most likely be ignored.

Since we know that we can’t interrupt a procedure with an event, we wouldn’t build the statechart this
way. We would probably intercept the Cancel event before or after the Checking Inventory state. An-
other idea would be for some operation or external function to set a boolean attribute on the Order

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 26 of 33

16 The cabin and door statecharts are coordinated so that there is no possibility of a write conflict on the Door.Locked attrib-
ute. Download the models [5] if you are interested in seeing more detail.

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com
http://www.modelint.com/download.html
http://www.modelint.com/download.html

class such as Order.Cancelled. Then, in a subsequent state, we could check it: if self.Cancelled, generate
Cancel to self; In any case, we would certainly remove the Cancel transition from this example.

Example 2: Granularity of interruption

To answer our original question about granularity of interruption for a continuous process, we can break
this single state example into discrete components.

PRESSURIZE

do/

self.Pressurize();

Stop

T17

Stop

Done

This will result in a more controllable but bigger statechart. Don’t worry though, because we can then
package the more complex statechart in a service domain and just start and stop it from our application
domain17. First, we will define the behavior of a Pressure Ramp class.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 27 of 33

17 This is one of many easy ways to avoid the unnecessary complexity and arbitrary leveling of statechart hierarchies.

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

Initializing

entry/
self.Inititialize(

End_press:event.Target_press
End_time:event.End_time

);
generate Run to self;

RUNNING

entry/
if MVM::Now() < self.End_time

self.Set_pump();
select one my_Press_Profile related by

self->Recipe[217];
generate Adjust to self

delay my_Press_Profile.Interval;
else

generate Done to self;

// Ramp::Initialize method
// params - End_press, End_time

self.End_press = param.End_press;
self.End_time = param.End_time;
self.Start_time = MVM::Now();
select one my_Tank related by
 self->Tank[R201];
self.Start_press = my_Tank.Pressure;

Completing

entry/
select one my_Batch related by self->Batch[R221];
generate Ramp_complete to my_Batch;

select one tank_Pump related by
self->Tank[R201]->Pump[R208];

generate Off to tank_Pump;

// Ramp::Set_pump

select one my_Tank related by
 self->Tank[R201];
select one tank_Pump related by

my_Tank->Pump[208];

if my_Tank.press < self.Compute_desired_press()
generate On to tank_Pump;

else
generate Off to tank_Pump;

Run

Done

Start (Target_press, End_time)

Adjust

Stop

Stopping

Pressure Ramp Class

entry/
// Put cleanup actions here

The Pressure Ramp is created by specifying a target pressure and some future time. It immediately
starts up and adjusts the pressure by turning a pump on and off until the completion (end) time.

The procedure’s actions are organized into methods, shown on the right, which are invoked from the
appropriate state. This keeps our statecharts more readable, printable and testable. State actions should
focus on control with the data processing and computation encapsulated in the methods.

As you can see, we can interrupt the pressure ramp with the Stop event. If we are busy executing the
RUNNING procedure, this event will be pooled until after we generate the delayed Adjust event. At this
point we see the pending Stop event and transition out cleanly. This is a nice solution since we don’t
corrupt any data on the way out. Keep in mind that the MVM can shut us down even in the middle of a
state procedure if, say, someone hits an E-Stop button. Normally, we would gracefully interrupt by send-
ing a Stop signal, though. So it is the modeler’s responsibility to anticipate real world interrupts and pro-
vide the appropriate cleanup mechanism if the interrupt can reasonably be handled in the application
domain.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 28 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

The Pressure Ramp statechart may be more eloquent, but the original example was concise and intuitive.
We should, and can, get the best of both worlds. First we recognize that the Pressure Ramp concept is
not specific to pressure. If we wanted to control temperature instead, we could globally replace “Press”
with “Temp” on our statechart. So the renamed Ramp class could be subsumed as part of a generic
process control service domain that could then be configured and directed from our higher level (client)
Pressure application domain.

Along with the Ramp, we would have loaded appropriate control profile data into the Process Control
domain, and bound it to corresponding entities in the Pressure Application domain. Now we can create
the following simplified statechart in our application.

PRESSURIZING

entry/
generate Pressurize to PROC_CTRL(

ctrl_type: "Tank",
equipment: self.ID

);

Done

Stop

Stopping

entry/
generate Quit to PROC_CTRL(

ctrl_type: "Tank",
equipment: self.ID

);

Pressurizing cancelled

NOT PRESSURIZING

entry/
// Pressure control not active

We wait for the confirmation

event to be received from the

process control domain before

declaring the pressurization

phase complete to avoid

synchronization errors.

The Process Control domain is

pre-configured with a control

profile, ramp, etc. We just

supply our Tank.ID and

Equipment Type and Process

Control looks up the recipe and

starts the pressurization.

The "Pressurizing cancelled"

event was configured into the

Process Control domain to be

sent upon completion.

The Process Control domain

handles the stop and cleanup

and reports back when done.

Tank class

The entry procedure in the tank’s PRESSURIZING state triggers pressure control feedback activity in the
Process Control service domain. The triggering event does not specify a ramp since the whole purpose
of a domain separation is to insulate the analysis and implementation of one domain from another. So
we just specify our type “Tank” and ID value knowing that the bridge to the Process Control domain
maps18 to the relevant content, a ramp and any control profile data in this case.

We then sit in the PRESSURIZING state until we get a Done event (triggered by completion of the Ramp
or whatever mechanism is running in the Process Control domain). Alternatively, a Stop event occurs
which puts us in the Stopping state where we tell the control mechanism to quit. (Another way to do it
is to route the Stop event directly to the Process Control domain and just have a Stopped event bubble

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 29 of 33

18 Future article on analysis domains and bridges planned.

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

up to the Application domain. Either way, we end up in the, for lack of a better name, NOT PRESSURIZING
state.

Now the application reflects the relatively high level view of the Tank, the Process Control domain han-
dles ramps, profiles, control curves and such with an even lower level Signal IO domain managing the
analog/digital interfaces to the sensors and actuators. Bridge’em all together and we have ourselves a
system!

So with the availability of domain packaging and clear synchronization rules, we dispense with the need
for special do/ semantics in Executable UML. The entry/ procedure19 is all we need.

Example 3: Sequencing events

In this last example we have a scientific measurement instrument commanded from both an LCD button
panel on the front of the station and via a remote workstation connected on a network. A human op-
erator presses the Initialize and Run buttons in sequence. Simultaneously, another Initialize command
arrives from the network. What happens?

Initialize

READY

INITIALIZED

RUNNING

Run

Initialize

Run

Initialize i

We know that the Initialize event from the front panel will be seen before the Run event. But the Initial-
ize event from the Network could slip in at any point. An object sitting in the READY state will certainly
see one of the two Initialize events first and then transition to the INITIALIZED state. At this point, either
the Run event or the second Initialize event will be seen. If ignore is specified as the response in the
INITIALIZED state (likely), the second Initialize event will be dropped, then Run will be seen followed by a
transition into the RUNNING state. If, instead, the Run event is detected second, the object will transi-

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 30 of 33

19 You can define an Executable UML with exit/ procedures only and might be just as good. There are many equivalent state
machine formulations (Mealy/Moore), etc out there. The point is to keep it simple. Inclusive use of both entry/ and exit/ actions
and incorporation of state history, while we’re at it, is a recipe for needlessly confusing models.

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

tion to the RUNNING state where the 2nd Initialize must be processed somehow (transition, ignore,
error).

Now is this the desired behavior? Without the requirements at hand, you don’t know. But you do know
precisely how this model will behave given a specific scenario.

MAKING YOUR OWN RULES

The Executable UML described in this article is documented in a number of books and supported by
multiple vendors. More importantly there are at least a dozen MVMs and model compilers that support
the rules described in this article (including two running on my laptop). See the tool references at the
end of this article for more information. Additionally, several more specialized MVM’s and model compil-
ers have been built which are custom built internal to companies that deliver embedded and distributed
systems.

While Executable UML defines a robust, simple and time tested set of rules, you are free to invent your
own. Here are some pro’s and con’s to consider.

Pros

+ Adapt to special circumstances in your application or platform. However, you’ll probably get more lev-
erage by directing your talents at a better model compiler / MVM implementation.

+ Adapt to the capabilities of non-Executable UML modeling tools.

Cons

- There is a huge investment of time and effort to ensure that the rules are internally consistent and have
no unforeseen consequences. Plus you’ll have to write yourself a book describing the rules for any fu-
ture modelers.

- If you change the timing and synchronization rules, you lose compatibility with any existing Executable
UML model compilers, model level debuggers and MVMs. So you will have to build these as well.

- All my example models will break if you change the rules! So you’ll need to write your own tutorials
for prospective modelers ;)

If you do decide to define your own Executable UML, the OMG has recently published a guide to profil-
ing UML accordingly [8]. Good luck!

The important thing is that you somehow arrive at a set of timing and synchronization, data access and
other rules agreed upon by both the modelers and the platform developers. Ultimately you need to de-
cide whether you want to devote your ingenuity to modeling the application, defining a new methodol-
ogy or designing an efficient platform. I’ve made my choice to focus on the first item since there seems
to be plenty of bright folks focusing on the other two.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 31 of 33

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

Summary

Executable UML adds executability to UML by introducing a number of features including platform inde-
pendent time and synchronization rules. Other features necessary to make UML a full fledged develop-
ment language are a precise underlying data model for the class diagrams and a rigorous action language.

A key characteristic of the time and synchronization rules is that concurrency is the default paradigm.
We assume that each object operates in its own local timeframe. Procedure sequencing and state syn-
chronization must be explicitly modeled and tested. You could rightly say that Executable UML comes
with no “artificial sequencers”20. This makes it possible for a single modeled domain to run on a wide
variety of target platforms. There is no need to tweak the models to take advantage of added available
parallelism since the models are already tested to run with maximal concurrency. The more parallel your
platform, the more efficiently the models may run.

An MVM is necessary to run Executable UML models. Ordinarily, the requirement for a VM implies a
significant burden on the implementation. In reality, though, the MVM can be custom built for various
classes of platform. (One common misconception is that a separate MVM must be created for each plat-
form. Not true, especially with a data driven MVM design!) The MVM implementation on each platform
class, however, will be quite different. A highly embedded MVM may optimize for small event queue sizes,
assume fixed instance populations and even provide a way to explicitly bind instances to absolute mem-
ory locations. A highly distributed MVM will may manage a sophisticated threading, fault tolerance and
multiprocessor scheme.

But the same time and synchronization rules are supported regardless of MVM implementation. Some
MVM’s may support a variety of marking21 features so that various model components in an Executable
UML domain can be compiled more efficiently. Some model compilers take into account initial data
populations in addition to the models and markings to fully optimize the implementation.

The MVM of a desktop simulation environment, in particular, will be quite different than that of a highly
distributed or highly embedded platform.

Since synchronization problems can be definitively resolved, serious models can be built. This also re-
quires a rigorous action language to define the state procedures. It’s a topic for another article to be
sure. But parallelism available at the state level can be (and is) carried into the procedures so that multi-
ple actions run in parallel as data dependencies permit.

With the support of Executable UML, intellectual effort can be focused on resolving complex systems at
the application level. The resulting distillation of intellectual property is highly portable. Organizations
that produce spin-off products from an initial design should benefit greatly.

On the down side, a whole new set of development skills and mindset is required to build Executable
UML models. The ability to focus on an application without getting caught up in issues that are the do-
main of the MVM and platform is difficult for many developers. Also the ability to think and test in con-
current terms takes a bit of practice. That said, the days of sequential thinking in system design are long
gone.

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 32 of 33

20 New coffee mug idea - I’m on it...

21 The “marking model” is an MDA concept. See the MDA Distilled book [2] for a good explanation.

mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

Published Resources

[1] How to Build Articulate UML Class Models, OMG uml.org and Google Knol, Leon Starr, 2008

[2] MDA Distilled, Principles of Model Driven Architecture, Mellor, Scott, Uhl, Weise, Addison-Wesley,
2004, ISBN 0201788918

[3] Executable UML, A Foundation for Model Driven Architecture, Mellor-Balcer, Addison-Wesley, 2002,
ISBN 0201748045

[4] Time, Clocks and the Ordering of Events in a Distributed System, Leslie Lamport, Communications of
the ACM 21, 1978 (yes, really, 1978!)

[5] Elevator Application Executable UML Case Study, Leon Starr, Model Integration LLC, 2001, 2005

[6] Model Driven Architecture with Executable UML, Raistrick, et al, Cambridge University Press, ISBN
0521537711

[7] Executable UML, Wikipedia entry

[8] Semantics of a Foundational Subset for Executable UML Models, 2nd Revised Submission, OMG, Aug
2008 (I have not been able to find this on the web yet, sorry). I had my copy e-mailed to me by Steve
Mellor. Will update the online version of this article as soon as I find it.

[9] Semantics of a Foundational Subset for Executable UML Models (FUML), OMG, 2008. (Seems to be a
subset of document [8]) http://www.omg.org/spec/FUML/

Tool and Vendor Resources

If you are interested in tools that support Executable UML, here are a few:

Nucleus BridgePoint, Mentor Graphics, http://www.mentor.com/products/sm/uml_suite/

iUML, Kennedy-Carter, http://www.kc.com/

Pathfinder Solutions, http://www.pathfindermda.com/

OOA Tool, Kavanagh Consultancy, http://ooatool.com/Products.html

For my own work, I use BridgePoint mostly. But I work with whatever tools my clients are using includ-
ing Artisan, Rose-Rhapsody (IBM).

Time and Synchronization in Executable UML
 Leon Starr

www.modelint.com
 33 of 33

http://knol.google.com/k/-/-/2hnjef6cmm97l/4
http://knol.google.com/k/-/-/2hnjef6cmm97l/4
http://www.amazon.com/MDA-Distilled-Addison-Wesley-Object-Technology/dp/0201788918/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1230053787&sr=8-1
http://www.amazon.com/MDA-Distilled-Addison-Wesley-Object-Technology/dp/0201788918/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1230053787&sr=8-1
http://www.amazon.com/Executable-UML-Model-Driven-Architecture-Addison-Wesley/dp/0201748045/ref=sr_1_1?ie=UTF8&s=books&qid=1217902901&sr=1-1
http://www.amazon.com/Executable-UML-Model-Driven-Architecture-Addison-Wesley/dp/0201748045/ref=sr_1_1?ie=UTF8&s=books&qid=1217902901&sr=1-1
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html
http://www.modelint.com/download.html
http://www.modelint.com/download.html
http://www.amazon.com/Model-Driven-Architecture-Executable-UML/dp/0521537711/ref=sr_1_1?ie=UTF8&s=books&qid=1217902806&sr=1-1
http://www.amazon.com/Model-Driven-Architecture-Executable-UML/dp/0521537711/ref=sr_1_1?ie=UTF8&s=books&qid=1217902806&sr=1-1
http://en.wikipedia.org/wiki/Executable_UML
http://en.wikipedia.org/wiki/Executable_UML
http://www.omg.org/spec/FUML/
http://www.omg.org/spec/FUML/
http://www.omg.org/spec/FUML/
http://www.omg.org/spec/FUML/
http://www.mentor.com/products/sm/uml_suite/
http://www.mentor.com/products/sm/uml_suite/
http://www.kc.com/
http://www.kc.com/
http://www.pathfindermda.com/
http://www.pathfindermda.com/
http://ooatool.com/Products.html
http://ooatool.com/Products.html
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
mailto:leon_starr@modelint.com?subject=HTB%20Articulate%20CMs%20Article
http://www.modelint.com
http://www.modelint.com

