Things you should know from 12.1, 2, 3:

12.1

- How do you determine the domain of a function $f(t)$? A vector-valued function $\mathbf{F}(t)$?
- How do you sketch an arbitrary curve in 3-space? Some hints:
- Determine where the curve begins and ends.
- Determine what the function looks like in the $x y$-, $x z$-, and $y z$-planes.
- Know the parametric forms of some basic curves: circle, spiral, expanding / contracting spiral, line.
- Practice! (And check your answer using MATLAB.)
- How do you determine where a curve intersects a surface?

12.2

- How do you compute the limit of a vector valued-function, namely $\lim _{t \rightarrow t_{0}} \mathbf{F}(t)$? Or, what do I mean by 'pass the limit inside the vector-valued function'?
- Some basic limit tricks:
- Plug-in (when you can).
- L'Hopital's rule.
- Factoring numerators and denominators of rational functions.
- Algebra. (Think of the $\lim _{t \rightarrow 0} e^{-1 / t^{2}}$ example.)
- When does a limit exist ${ }^{1}$? Must $\lim _{t \rightarrow t_{0}} \mathbf{F}(t)=\mathbf{F}\left(t_{0}\right)$?
- Basic limit results from Theorem 12.5^{2}.

12.3

- Basic derivative results: power rule, product rule, quotient rule, chain rule.
- Derivatives of the basic trigonometric functions, exponentials, logarithms.
- Basic antiderivative (integration) results: u-substitution, integration by parts, the Fundamental Theorem of Calculus.
- How do you compute the derivative of a vector-valued function, $\frac{d}{d t} \mathbf{F}(t)$?

[^0]- How do you compute the antiderivative (integral) of a vector-valued function, $\int \mathbf{F}(t) d t$?
- Basic derivative results from Theorem 12.10.
- Given a position vector $\mathbf{r}(t)$ for some particle in space, how do we compute its velocity $\mathbf{v}(t)$? Speed $\|\mathbf{v}(t)\|$? Acceleration $\mathbf{a}(t)$?
- Given the acceleration vector $\mathbf{a}(t)$ for a particle in space and its initial position and velocity, how do we compute its velocity $\mathbf{v}(t)$? Position $\mathbf{r}(t)$?

[^0]: ${ }^{1}$ At least intuitively. Don't worry about ϵ / δ-style arguments for this quiz.
 ${ }^{2}$ Though most of these are results you would have guessed without a theorem.

