Quiz 2

MATH 241 Quiz 2

Answer the questions in the spaces provided. If you run out of room for an answer, continue on the back of the page.

Name: \qquad

1. Find a vector perpindicular to both $\vec{a}=(4,-1,0)$ and $\vec{b}=(2,1,3)$.

Solution: Taking the cross product of two non-parallel vectors is the easiest way to find a third vector which is perpindicular to both \vec{a} and \vec{b} :

$$
M=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
4 & -1 & 0 \\
2 & 1 & 3
\end{array}\right|=(-3-0) \hat{i}-(12-0) \hat{j}+(4+2) \hat{k}
$$

Thus, one possible solution is $(-3,12,6)$.
2. Let $P_{1}=(1,2,-1)$ and $P_{2}=(-1,0,3)$. Find any (parametric) equation for the line which contains both points.
Solution: Using the general parametric form for a line, $l(t)=\overrightarrow{v_{1}}+\overrightarrow{v_{2}} t$, we need to select $\overrightarrow{v_{1}}$ to be any point along the line, and $\overrightarrow{v_{2}}$ to be a vector parallel to the line. For the former, any choice such as P_{1} is sufficient. For the latter, the simplest choice is the vector $\vec{P}_{1} \vec{P}_{2}=(-2,-2,4)$. This gives parametric form

$$
l(t)=(1,2,-1)+(-2 t,-2 t, 4 t)=(1-2 t) \hat{i}+(1-2 t) \hat{j}+(1+4 t) \hat{k}
$$

3. The equation for the set of all points which are the same distance from the two points $(3,2,3)$ and $(-1,2,1)$ is the equation for a plane. What is this equation?
Solution: First we consider the equations for the distance from an arbitrary point (x, y, z) to either of the two given points:

$$
\begin{aligned}
& D_{1}=\sqrt{(x-3)^{2}+(y-2)^{2}+(z-3)^{2}} \\
& D_{2}=\sqrt{(x+1)^{2}+(y-2)^{2}+(z-1)^{2}}
\end{aligned}
$$

Since we want to look at the points which are equidistant, we set $D_{1}=D_{2}$, square both sides, and expand.

$$
x^{2}-6 x+9+y^{2}-4 y+4+z^{2}-6 z+9=x^{2}+2 x+1+y^{2}-4 y+4+z^{2}-2 z+1
$$

Then cancelling the x^{2}, y^{2}, and z^{2} terms yields

$$
-8 x+0 y-4 z+16=0
$$

