Quiz 1

MATH 241 Quiz 1

Answer the questions in the spaces provided. If you run out of room for an answer, continue on the back of the page.

Name: \qquad

1. Find a unit vector $\hat{\mathbf{a}}$ having the same direction as the vector $\mathbf{a}=2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$.

Solution: We want to find $\hat{\mathbf{a}}$ such that $\|\hat{\mathbf{a}}\|=1$. Note that

$$
\begin{aligned}
\|\hat{\mathbf{a}}\| & =\left\|\frac{\mathbf{a}}{\|\mathbf{a}\|}\right\| \\
& =\frac{\|\mathbf{a}\|}{\|\mathbf{a}\|} \\
& =1 .
\end{aligned}
$$

Thus, computing

$$
\|\mathbf{a}\|=\sqrt{2^{2}+(-1)^{2}+3^{2}}=\sqrt{14},
$$

we see that $\hat{\mathbf{a}}=\frac{1}{\|\mathbf{a}\|} \mathbf{a}=\frac{1}{\sqrt{14}}(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k})$.
2. Show that the vectors

$$
\mathbf{i}+\mathbf{k}, \mathbf{i}+2 \mathbf{j}-\mathbf{k},-\mathbf{i}+\mathbf{j}+\mathbf{k}
$$

are mutually perpendicular.
Solution: Computing all pairwise dot products, we see

- $(\mathbf{i}+\mathbf{k}) \cdot(\mathbf{i}+2 \mathbf{j}-\mathbf{k})=1+0-1=0$
- $(\mathbf{i}+\mathbf{k}) \cdot(-\mathbf{i}+\mathbf{j}+\mathbf{k})=-1+0+1=0$
- $(\mathbf{i}+2 \mathbf{j}-\mathbf{k}) \cdot(-\mathbf{i}+\mathbf{j}+\mathbf{k})=-1+2-1=0$

Thus, because all of the pairwise dot products are zero, the three vectors are mutually perpendicular.

