Things you should know from 11.1, 2, 3:

11.1

- What is the canonical labeling of the axes for the plane $\left(\mathbb{R}^{2}\right)$ and 3-space $\left(\mathbb{R}^{3}\right)$?
- How do you compute the distance between two points?
- How do you complete the square for a quadratic $a x^{2}+b$?
- What is the equation defining a sphere? The inequality defining a ball?

11.2

- How is the vector from a point P to a point Q defined? That is, how do you define $\overrightarrow{P Q}$?
- What is norm / length / magnitude \|a\| of a vector?
- What is a unit vector?
- What are the unit vectors in the x, y, and z-directions?
- How do you draw and use a force diagram?
- Basic trig facts: sines, cosines, and tangents of $\theta=\frac{\pi}{d}$ for $d=1,2,3,4,6$.

11.3

- How is the dot product $\mathbf{a} \cdot \mathbf{b}$ defined in terms of the components of \mathbf{a} and \mathbf{b} ? In terms of the angle θ between \mathbf{a} and \mathbf{b} ?
- What does it mean geometrically for two vectors to be perpendicular / orthogonal? In terms of their dot product?
- How do you compute the projection of a vector \mathbf{b} onto a vector \mathbf{a} ? That is, how do you compute $\mathbf{p r}_{\mathbf{a}} \mathbf{b}$?
- Given two perpendicular / orthogonal vectors \mathbf{u}_{1} and \mathbf{u}_{2}, how can any vector be decomposed / resolved in terms of \mathbf{u}_{1} and \mathbf{u}_{2} ?
- How is work defined in terms of a dot product?

