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Course Goals

1 Understand the shortcomings of traditional parametric
regression-based techniques for the estimation of causal effects.

2 Translate a scientific question and background knowledge into a
formal causal model and target causal parameter.

3 Become familiar with the properties and basic implementation of
three distinct estimators of the causal effect of a point treatment:
Maximum Likelihood Substitution Estimator, Inverse Probability
Weighted Estimator, and Targeted Maximum Likelihood Estimators.

4 Be introduced to the ideas behind machine learning approaches as
tools for confronting the curse of dimensionality.

5 Understand the challenges raised by estimation of the causal effect of
longitudinal exposures.

6 Obtain an overview of estimating the causal effect of a longitudinal
exposure in the context of right censoring and time-dependent
confounding.
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LECTURE ONE

Motivation for Targeted Causal Inference Methods
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Tradition Approach in Epidemiology and Clinical Medicine

1 Fit several parametric logistic regression models, and select a favorite
one.

2 Report point estimate of coefficient in front of treatment, confidence
intervals, and p-value, as if this parametric model was a
priori-specified.
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Complications of Human Art in Statistics

1 The parametric model is misspecified.

2 The target parameter is interpreted as if the parametric model is
correct.

3 The parametric model is often data-adaptively (or worse!) deleted,
and this part of the estimation procedure is not accounted for in the
variance.
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Complications of Human Art in Statistics
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Published research fi ndings are 
sometimes refuted by subsequent 
evidence, with ensuing confusion 

and disappointment. Refutation and 
controversy is seen across the range of 
research designs, from clinical trials 
and traditional epidemiological studies 
[1–3] to the most modern molecular 
research [4,5]. There is increasing 
concern that in modern research, false 
fi ndings may be the majority or even 
the vast majority of published research 
claims [6–8]. However, this should 
not be surprising. It can be proven 
that most claimed research fi ndings 
are false. Here I will examine the key 

factors that infl uence this problem and 
some corollaries thereof. 

Modeling the Framework for False 
Positive Findings 
Several methodologists have 
pointed out [9–11] that the high 
rate of nonreplication (lack of 
confi rmation) of research discoveries 
is a consequence of the convenient, 
yet ill-founded strategy of claiming 
conclusive research fi ndings solely on 
the basis of a single study assessed by 
formal statistical signifi cance, typically 
for a p-value less than 0.05. Research 
is not most appropriately represented 
and summarized by p-values, but, 
unfortunately, there is a widespread 
notion that medical research articles 

should be interpreted based only on 
p-values. Research fi ndings are defi ned 
here as any relationship reaching 
formal statistical signifi cance, e.g., 
effective interventions, informative 
predictors, risk factors, or associations. 
“Negative” research is also very useful. 
“Negative” is actually a misnomer, and 
the misinterpretation is widespread. 
However, here we will target 
relationships that investigators claim 
exist, rather than null fi ndings. 

As has been shown previously, the 
probability that a research fi nding 
is indeed true depends on the prior 
probability of it being true (before 
doing the study), the statistical power 
of the study, and the level of statistical 
signifi cance [10,11]. Consider a 2 × 2 
table in which research fi ndings are 
compared against the gold standard 
of true relationships in a scientifi c 
fi eld. In a research fi eld both true and 
false hypotheses can be made about 
the presence of relationships. Let R 
be the ratio of the number of “true 
relationships” to “no relationships” 
among those tested in the fi eld. R 

is characteristic of the fi eld and can 
vary a lot depending on whether the 
fi eld targets highly likely relationships 
or searches for only one or a few 
true relationships among thousands 
and millions of hypotheses that may 
be postulated. Let us also consider, 
for computational simplicity, 
circumscribed fi elds where either there 
is only one true relationship (among 
many that can be hypothesized) or 
the power is similar to fi nd any of the 
several existing true relationships. The 
pre-study probability of a relationship 
being true is R⁄(R + 1). The probability 
of a study fi nding a true relationship 
refl ects the power 1 − β (one minus 
the Type II error rate). The probability 
of claiming a relationship when none 
truly exists refl ects the Type I error 
rate, α. Assuming that c relationships 
are being probed in the fi eld, the 
expected values of the 2 × 2 table are 
given in Table 1. After a research 
fi nding has been claimed based on 
achieving formal statistical signifi cance, 
the post-study probability that it is true 
is the positive predictive value, PPV. 
The PPV is also the complementary 
probability of what Wacholder et al. 
have called the false positive report 
probability [10]. According to the 2 
× 2 table, one gets PPV = (1 − β)R⁄(R 
− βR + α). A research fi nding is thus 

The Essay section contains opinion pieces on topics 
of broad interest to a general medical audience. 
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Summary
There is increasing concern that most 

current published research fi ndings are 
false. The probability that a research claim 
is true may depend on study power and 
bias, the number of other studies on the 
same question, and, importantly, the ratio 
of true to no relationships among the 
relationships probed in each scientifi c 
fi eld. In this framework, a research fi nding 
is less likely to be true when the studies 
conducted in a fi eld are smaller; when 
effect sizes are smaller; when there is a 
greater number and lesser preselection 
of tested relationships; where there is 
greater fl exibility in designs, defi nitions, 
outcomes, and analytical modes; when 
there is greater fi nancial and other 
interest and prejudice; and when more 
teams are involved in a scientifi c fi eld 
in chase of statistical signifi cance. 
Simulations show that for most study 
designs and settings, it is more likely for 
a research claim to be false than true. 
Moreover, for many current scientifi c 
fi elds, claimed research fi ndings may 
often be simply accurate measures of the 
prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interpretation of research.

It can be proven that 
most claimed research 

fi ndings are false.
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Complications of Human Art in Statistics

Debate over HRT

Professional groups gave HRT their stamp of approval 15 years ago.

Studies indicated HRT protective against osteoporosis and heart disease.

In 1998, a study demonstrated increased risk of heart attack among
women with heart disease taking HRT.

In 2002 a study showed increased risk for breast cancer, heart disease, and
stroke, among other ailments, for women on HRT.

Why were there inconsistencies in the study results?
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Complications of Human Art in Statistics

Debate over mammography

Mammography gained widespread acceptance as effective tool for breast
cancer screening in the 1980s.

The Health Insurance Plan trial and Swedish Two-County trial
demonstrated mammography saved lives.

In 2009, surprise over new recommendations from the U.S. Preventive
Services Task Force.

Among women without a family history, mammography now recommended
for women aged 50 to 74. Previous guidelines started at age 40.

Why was there a seemingly sudden paradigm shift?
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Estimation is a Science, Not an Art

1 Data: realizations of random variables with a probability distribution.

2 Statistical Model: actual knowledge about the shape of the
data-generating probability distribution.

3 Statistical Target Parameter: a feature/function of the
data-generating probability distribution.

4 Estimator: an a priori-specified algorithm, benchmarked by a
dissimilarity-measure (e.g., MSE) w.r.t. target parameter.
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Modeling beyond the Statistical Model: Causal Inference

Under additional non-testable assumptions one may describe the
probability distribution of the data in terms of an underlying parameter
varying over an underlying parameter space. For example, the underlying
parameter may be the probability distribution of a full-data random
variable such as a collection of intervention specific counterfactuals, and
the parameter space might be described by a full-data model (e.g., a
nonparametric structural equation model).

The model is the statistical model enriched with this parameterization (i.e.
non-testable assumptions).

One may then define the target quantity as the function of the underlying
parameter. We may call this the full-data parameter, or causal quantity if
it concerns a parameter in a causal model.
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One may then establish identifiability of this target quantity from the
probability distribution of the data (i.e., P0 = Pθ0 may identify our target
quantity ΨF (θ0)), possibly even under further restrictions on the
underlying parameter. This presents us with a statistical target parameter.

The statistical target parameter can always be interpreted pure statistically
within the statistical model, and under the stated non-testable
assumptions, it can also be interpreted as the underlying target quantity.

The statistical estimation problem only cares about the statistical model,
and statistical target parameter, while the non-testable assumptions enrich
the interpretation of the statistical target parameter.
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The Need for Targeted Learning in Semiparametric Models

1 MLE/machine learning are not targeted for effect parameters.

2 For that, we need a subsequent targeted bias-reduction step.

Targeted MLE

Targeted Learning

Avoid reliance on human art and nonrealistic (parametric) models

Define interesting parameters

Target the fit of data-generating distribution to the parameter of
interest

Statistical inference
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TMLE/SL Toolbox

Targeted effects

Effect of static or dynamic treatments (e.g. on survival time)

Direct and Indirect effects

Parameters of Marginal Structural Models

Variable importance analysis in genomics

Types of data

Point treatment

Longitudinal/Repeated Measures

Censoring/Missingness/Time-dependent confounding

Case-Control

Randomized clinical trials and observational data
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Targeted Maximum Likelihood Learning

Super Learner (van der Laan, Polley, and Hubbard; 2007)

Allows researchers to use multiple algorithms to outperform a single
algorithm in realistic non-parametric and semi-parametric statistical
models that are based on actual knowledge. It generalizes stacking, and
provides its theoretical underpinning.

TMLE (van der Laan and Rubin; 2006)

Produces a well-defined, unbiased, efficient substitution estimator of target
parameter of the data-generating distribution.

It updates an initial estimator by iteratively fitting an amount of
fluctuation along a least favorable parametric submodel through the initial
estimator.

JSM Short Course (San Diego, CA) Targeted Causal Inference July 29, 2012 15 / 30



TMLE for Causal Effects Based on Censored Data

TMLE: Double Robust

Removes asymptotic residual bias of initial estimator for the target
parameter, if it uses a consistent estimator of the treatment and
censoring mechanism.

If initial estimator was consistent for the target parameter, the
additional fitting of the data in the targeting step may remove finite
sample bias, and preserves consistency property of the initial
estimator.

TMLE: Efficiency

If the initial estimator and the estimator of treatment and censoring
mechanism are both consistent, then it is also asymptotically efficient
according to semi-parametric statistical model efficiency theory.
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TMLE

TMLE: In Practice

Allows the incorporation of machine learning methods for the estimation of
relevant part of data generating distribution and the treatment/censoring
mechanism, so that we do not make enforce restrictions that are not
dictated by the actual knowledge/statistical model.

Thus, every effort is made to achieve minimal bias and the asymptotic
semi-parametric efficiency bound for the variance.
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TMLE Algorithm

Targeted estimator

Observed data 
random 

variables
Target parameter 

map

True probability 
distribution

Initial estimator

Initial estimator of 
the probability 

distribution of the 
data

Targeted estimator 
of the probability 
distribution of the 

data

True value 
(estimand) of 

target 
parameter

INPUTS

STATISTICAL 
MODEL

Set of possible 
probability 

distributions of 
the data
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TARGET 

PARAMETER
Values mapped 
to the real line 

with better 
estimates closer 

to the truth
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This chapter focuses on understanding targeted maximum likelihood estimation.
Recall that TMLE is a two-step procedure where one first obtains an estimate

of the data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted towards making an optimal bias-
variance trade-off for the parameter of interest Ψ (Q0), instead of the overall density
P0. The procedure is double robust and can incorporate data-adaptive likelihood
based estimation procedures to estimate Q0 and the treatment mechanism. The dou-
ble robustness of TMLE has important implications in both randomized controlled
trials and observational studies, with potential reductions in bias and gains in effi-
ciency.
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Targeted MLE

1 Identify the parametric model for fluctuating initial P̂
– Small “fluctuation” → maximum change in target.

2 Given strategy, identify optimum amount of fluctuation by MLE.

3 Apply optimal fluctuation to P̂ → 1st-step targeted maximum
likelihood estimator.

4 Repeat until the incremental “fluctuation” is zero
– Some important cases: 1 step to convergence.

5 Final probability distribution solves efficient influence curve equation

→ T-MLE is double robust & locally efficient
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Targeted Minimum-Loss-Based Estimation (TMLE)
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Example: Tshepo HIV Study

Clinical trial evaluating the long-term efficacy of Efavirenz (EFV)- vs.
Nevirapine (NVP)-based cART among adults in Botswana.

650 individuals randomized to either EFV or NVP.

Outcomes: Time-to-death, virologic failure, and time to loss of
virological response.

Interest in additive treatment effect modification by low/high baseline
CD4 level and gender.

See Chapter 18 of Targeted Learning Book as well as Targeted Maximum

Likelihood Estimation of Effect Modification Parameters in Survival Analysis, Int

J Biostat (2011), OM Stitelman, CW Wester, V De Gruttola, MJ van der Laan.
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Example: Tshepo HIV Study
Initial hazard is purposely misspecified; it does not include treatment
and CD4 level.
TMLE-hazard still identifies that high-CD4 has a strong treatment
effect on survival, while low-CD4 has a small treatment effect.

Figure 6: Time to Viral Failure, Death or Treatment Modification Setting NNRTI
and CD4

30
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Example: Tshepo HIV Study

Causal effect modification by CD4 level and death.
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FDA RCT Study

International, multicenter, double-blind, parallel, placebo controlled
RCT, which aims to evaluate safety based on mortality because of
drug-to-drug interaction. We randomized the patients to receive
either Drug1 or a placebo. All patients received Drug2 concomitantly
as a background therapy.

The primary objective was to determine whether the mortality rates
between patients receiving Drug1 and placebo remained within a 1%
margin or less.

Postmarket data analysis had suggested a harmful interaction.

Robust extraction of covariate information to improve estimation efficiency in

randomized trials, Stat Med (2011), KL Moore, R Neugebauer, T Valappil, MJ

van der Laan.
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Casual Effect of Warfarin (Kaiser Permanente DOR)

Studying the causal effect of Warfarin on time-to-stroke, subject to
right-censoring informed by time-dependent covariates.
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Sentinel Project

FDA initiative.

Building a database with drug use and side effects/safety events.

Requires automated unbiased estimation of effects.
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Abacovir Observational Study

Population: HIV-infected patients on antiretroviral treatment.

Abacavir is a specific antiretroviral drug used to treat HIV.

Analysis of observational data from several cohorts suggested abacavir
use is associated with increased risk of myocardial infarction.

Other analyses found no evidence of such an association.
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Summary

Traditional approaches for prediction/density estimation and effect
estimation are biased

Super Learning allows researchers to combine multiple estimators of
an infinite dimensional parameter into an improved estimator.

Targeted MLE provides bias reduction for efficient plug-in effect
estimation of the target parameter
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Landscape of Estimators of the Parameter of Interest

G-Computation/MLE: Graph-Computation/Maximum Likelihood
Estimation

Estimating-Equation-Based Methods: Inverse-Probability-of-
Treatment Weighted (IPTW) and A-IPTW

TMLE: Targeted Maximum Likelihood Estimation
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Course Companion Text
www.targetedlearningbook.com
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