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Outline: Longitudinal Data

1. Repeated point treatment data structures

2. Estimating the effects of intervening on more
than one node

— New causal quantities
Cumulative treatment effects
 Longitudinal Marginal Structural Models
* Right censoring
 Direct Effects
*  Dynamic regimes

— New ldentifiability Result/Estimands

— New Estimators
. Maximum Likelihood Substitution
* Inverse Probability of Treatment Weighted



Example: Abacavir and Cardiovascular
Disease

* Analysis of observational data from several
cohorts suggested abacavir use associated
with increased risk of myocardial infarction

among treated HIV-infected population
— Other analyses found no evidence of such an
association....

* Example of a causal question: Does current
use of abacavir (ABC) increase risk of
myocardial infarction (Ml)?



Notation for Longitudinal Data

e L(t)= covariates at time t, t=1,..., K+1

— The time-varying equivalent of W

— As usual, a node can be multi dimensional
* Y(t)= outcome at time t, t=1,... K+1

— Sometimes defined as a subset of L(t)

— Alternative: Y measured only at the end of follow
up, sometimes defined as a subset of L(K+1)

* A(t)=exposure/treatment at time t, t=1,...,K



Example: Effect of current abacavir use
on Ml risk

 Monthly Data (Time in month increments)

e A(t)=Indictor current abacavir use at start of
month

* Y(t)=Indicator M| during month

e L(t)=Covariates in prior month
— Other Drugs, Lipids, DM, HTN...

— This can include summaries of patient history up
to start of the month, including past CHD

* O(t)=(L(t),A(t),Y(t)), t=1,...,K



Example: Effect of current abacavir use
on Ml risk?

* Structural Causal Model/Graph for a single
time point?

L(t) — fL(t)(UL(t))
A(t) — fA(t)(L(t)7 UA(t))
Y(t) = fy@)(L(1), A(t), Uy )

L(t): Covariates

T

A(t): Current use ABC —> Y(t): Ml
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Example: Effect of current abacavir use
on Ml risk?

 Counterfactual outcomes: Ya(t)(t), t=1,...K
—Y,(t): counterfactual Ml status if used abacavir at
time t
— Y, (t): counterfactual Ml status if did not use
abacavir at time t

* Possible target causal quantity
— E(Y,(t)-Yo(t) [ Y(t-1)=0)
— Difference in risk of (new) CHD at time t if did vs.
did not use abacavir
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Example: Effect of current abacavir use
on Ml risk?

 For a given time point, the data are analogous to
the (W,A,Y) data we have been discussing

— We can consider this as a repeated point treatment
data structure

* Allows us to use Model, Data, Identifiability
Result, and Estimators previously introduced

— Can use TMLE package to estimate the time point
specific effect, averaged over all time points

* Cross-Validation and inference need to respect
repeated measures data structure

— Specify patient ID as unit of independence



Cumulative effects of longitudinal
treatments?

 What if we want to know about the effects of
cumulative exposure to abacavir?

— Alternative target parameter that investigates the
effect of extended abacavir use patterns?

* Need to go beyond repeated point treatment
formulation

— SCM that incorporates time-varying covariates and
time-varying treatment

— Counterfactual outcomes indexed by interventions on
more than one treatment node



Notation for longitudinal data

* Over-bars used to refer to the history of a
variable



SCM for Longitudinal Data

* A common SCM: Assumes each variable may
be affected by all preceding variables

— je. Parents(X)= all variables that temporally
precede X

L(1) = fra)(Ut,)

A1) = fa)(L(1),Uaq))

L(t) = fre(A A(t — 1), L(t—1),UL(t)),t:2,...,K—I-1
At) = faw (At —1),L(t),Uaw)),t = 2,..., K
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Simplified Abacavir Example

* Say we measure
— CHD risk factors (including lipids) at t=1 and t=2
— Abacavir use at t=1 and t=2
— Qutcome= LDL cholesterol at t=3
— Assume no deaths, censoring, or missing data for now

* We are interested in the difference in expected
LDL at t=3 if
— all subjects had used abacavir at t=1 and t=2
versus
— no subjects had used abacavir at t=1 and t=2



Abacavir Example:
Longitudinal Causal Graph

L(1): CVD risk X L(2): CVD risk

factors at t=1 factors at t=2 \
A(1): ABC A(2): ABC use Y(3) .
use at t=1 —> At 22 o

A
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Counterfactuals indexed by
longitudinal exposures

* Original SCM * Modified SCM, intervening
on abacavir use at times 1
and 2?

L(1) = fr(y(Ur,)

A(l) — fA(l)(L(1)7 UA(l))

L(2) = fr)(L(1), A(1),UL>)

A(2) = fae)(A(1),L(2),Uaz))

Y = fy(L(2),A(2),Uy)
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Counterfactuals indexed by
longitudinal exposures

* Original SCM * Modified SCM, intervening
on abacavir use at times 1
and 2

L(1) = fry(UL,) L(1) = fray(Ur,)

A1) = fa)(L(1),Uaqy) A(1) = a(1)

L(2) = fL(2)(L(1)>A(1)a UL(Z)) L(Q) — fL(Q)(L(l)va(l)v UL(Z))

A(2) ( (2) = a(2)
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Counterfactuals indexed by longitudinal

exposures
* Modified SCM/Graph
L(1) = fray(UL,) |
A(1) = a(1) L(1) — L(2)
L(2) = fr2)(L(1),a(1),Ur2) a(1) a(2) ~y
A@2) = a(2) T A
Y = 1y (L2),a(2), Uy) | :

* Defines counterfactual outcome intervening on

ABC use at two time points:
Intervention on counterfactual

Ya(l),a(Q) — exposure history
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Example causal target quantity

* Denote the distribution of the corresponding
counterfactual outcomes F,

Ya = Ya1)a2)

{Y;:a € A} ~ Fx, where A = {00,01,10,11}

 Example: Target counterfactual parameter
E(Ya=1 — Ya=0)

— Difference in expected LDL if all subjects had
versus had not used abacavir at t=1 and t=2



Defining target causal quantity using a
Longitudinal Marginal Structural Model

* Example: How does cumulative time exposed
to abacavir affect LDL at the end of the study?

— Ex. Worklng MSM E( ) 6() + 61 Za

 How does this effect differ dependmg on
baseline renal function (V)?
— Ex. Working MSM

K K
E(YalV) = Bo+B1 ) a(t) + B2V + S5V x Y _a(t)
=1 t—1
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Survival Data

So far, we have focused on a continuous
outcome, measured at the end of the study on

everybody (assumed no death or censoring/
LTFU)

Now let’s return to the original outcome: Ml
— Restrict population to those without history of Ml
— Interested in time to first Ml

T= time of first Ml
Y(t)=I(t<T)



Examples of target causal quantities

with survival outcome

 Example: How does counterfactual (discrete)
hazard of MI vary as a function of cumulative
abacavir exposure since study enrollment?

PFX (Ya(t) — 1|Ya(t — 1) — O)
 Example of MSM we could use to define the

target quantity?
logit (Pp, (Ya(t ) =1|Yz(t —1) =

-

N—"

N—"
|

ﬂo+ﬂlt+622a +53t><za
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What about censoring?

* So far, we have assumed no censoring/loss to
follow up

— All subjects followed until min(K+1,T)
* |n practice, of course, this is implausible

— Abacavir example- data are gathered as part of
(several) clinical cohorts

» Patients transfer to other clinics, drop out of care...

— Loss to follow up ubiquitous in both observational
and RCT datasets



Incorporating censoring

* We can incorporate censoring in the SCM as a
set of an additional X nodes in our graph (with
their own structural equations)

e Define C as time when leave the cohort
— Censoring time
e C(t)=I(C>t)

— Indicator still in follow up at time t



Example of an SCM with censoring

 For example, if assume temporal ordering for
a given t: L(t), A(t), C(t), Y(t)
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Defining a target causal quantity in the
presence of censoring

* Can now think of intervening not only on
exposure/treatment at multiple time points,
but also intervening on censoring/loss to
follow up

* Example: What is the effect of cumulative
abacavir exposure on hazard of Ml if all loss to
follow up from the cohort had been
prevented?
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Defining a target causal quantity in the
presence of censoring

* Counterfactuals of interest defined by
intervening on two types of nodes:

— Exposure (abacavir use up till time t)

— Censoring (stay in cohort up ftill time t)
Yd,ézo(t) acAt=1,.. K
Fort=1,...,. K
L(t) = fL(t)( L(t—1),A(t—1)=a(t—1),C(t—1)=0,Urw)
A(t) ( )
C(t)
Y (t) = fY(t)<I_/( ), A(t) = a(t),C(t) = 0,Uy )
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Example of target causal quantities

with survival outcome and censoring
e Discrete counterfactual hazard:

P(Ya oo(t) = 1|Ya eeo(t — 1) = 0)

e Again, can pose a (working) MSM for how this
varies as a function of time and cumulative
exposure

P(Yze=0(t) = 1|Yg,e=0(t — 1) = 0) = m(a, t|8)
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Additional target causal quantities:
Effect Mediation

* |Interventions on more than one node can also be
used to study effect mediation

— Ex: How much of the effect of abacavir (A) on Ml (Y) is
due to changes in inflammatory biomarker (Z)?
* Define counterfactual outcome setting the levels
of both treatment (A) and intermediate (2): Y,

— By fixing level of intermediate, effect of treatment on
outcome cannot be mediated via changes in

intermediate 7
a 1

=Y

> A
\‘ —




Effect Mediation Target Causal

Quantities
* Controlled Direct Effect: E(Y,,-Y,,)

— Definition, identification and estimation results
follow directly from those for longitudinal
exposures

* Other effect mediation parameters involve
nested counterfactuals

— Z,: counterfactual value of intermediate under
treatment level a

— Natural Direct Effect: E(Y;, -Y,, )
— Indirect Effect: E(Y,, =Y, )



Additional target causal quantities:
Effects of Dynamic Regimes

e Static regime: Set each intervention node equal
to some constant

— Irrespective of subject characteristics
— Ex: Always use abacavir

 Dynamic regime: A subject-responsive strategy
for assigning treatment

— Assign a value to each intervention node based on
some known function of the observed past
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Effects of Dynamic Regimes

* Ex. Dynamic regime

— Always use abacavir unless a contraindication (Cl)
develops, in which case switch to other drug

— Ex: set Abacavir use at time t according to rule d,(CI(t)):
d,(CI(t)) =1if CI(t) =0
=0if CI(t) =1
* Effects of dynamic regimes can be defined
analogously to effects of static treatment regimens

- Ex: B(Yg(t) — Y5(1)),
where d = d1(CI(1)),ds(CI(2)),...,d:(CI(t))



Dynamic Marginal Structural Models

* Dynamic regime might also be indexed by some
threshold 0

— Ex. Don’t use abacavir (ie use alternative such as
tenofovir) unless renal function falls below some value
0, in which case switch to abacavir

— Ex. set Abacavir use according to rule dg4(Cl):
do(RF(t)) =0 if RF(t) > 6
=1if RF(t) <6
e MSM can be used to summarize how expected
counterfactual outcome varies as a function of 6

-Be B(Yy,) = m(0]5)



ldentifiability for longitudinal
exposures

 What causal assumptions are sufficient for our target
causal quantity to be identified as a parameter of the
observed data distribution?

1. Requires new assumptions (beyond the RA)

2. Results in new target statistical parameters (estimands)
3. And thus requires new estimators

* Back to our simplified example for illustration
— Effect of Abacavir use at t=1 and t=2 on LDL at t=3
— Measure CHD risk factors at t=1 and t=2
— Assume no deaths, censoring, or missing data



ABC Example: SCM/Graph

I
L(1): CVD risk L(2): CVD risk
factors at t=1 > factors at t=2
A(1): ABC A(2): ABC use Y: LDL at
use at t=1  att=2 =3

| |

( ) fL(t)( ( }) A(t - 1)7 UL(t)vt — 17273
( ) fA(t)( ( )7A(t_1)7UA(t))vt:172
Y C L(3)
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ABC Example: Target Parameter
and Observed Data

* Target causal parameter Er, (Ya=1 — Ya—o)

 Observed data: ni.i.d. copies of
O=(L,AY)~ P

 Under what conditions can we write our

target causal quantity as a parameter of the
observed data distribution?
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ldentifiability for the effects of
multiple interventions

* What do we need for identifiability in this case?

* Intuition: Sequentially Randomized Trial

— At each time point, randomize A(t) within strata of
(some subset of) covariates and treatment observed
up until then

— In this case, at each time point the effect of A(t) on
future nodes is identified

 We know we measured enough of the past the estimate the
effect of intervening on that node

— We can estimate the effect of setting each A(t)
sequentially
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ldentifiability for multiple

Interventions
* Sequential Randomization Assumption

Yo LAQ@)|L(E) =1(t), At — 1) = a(t — 1)
for all [ and @

— If A(t) is randomly assigned at each time point, given
the observed past, this will hold
* Counterpart to the Randomization Assumption
for a single intervention

— Graphical counterpart to backdoor
criterion="“sequential back door criterion”

* (see eg Pearl, Causality, p. 352)



ldentifiability Result

* Under the Sequential Randomization
Assumption:

WF(Py y0): Target causal quantity

P<Ya:y):

l

> (1t

=a,L =1

| ,
Lt)=I1t)|At—-1)=a(t—1),L(t—1)=1(t—1))

)

7/29/12

W(P,): Target statistical parameter/estimand
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Example: Longitudinal G-computation
Formula

I v
L(1) > L(2) > Y= LDL(3)

A(1) > A(2)

E(Y|A(1) =1, A(2) = 1, L(1) = I(1), L(2) = 1(2))x
E(Yu)_l(l)z%m( PEL(I2)( )l ) ( ): | ( ): (1), L(2) = 1(2)) )
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Positivity Assumption

* In order for W(P,) to be defined (in a non-parametric
model), need each treatment compatible with a
regime of interest to occur with some positive
probability for each possible covariate history

inﬁ\go(a(t)]fl(t —~1)=a(t—1),L(t)) >0 —a.e.
ac
e Positivity violations are common

— Some types of patients may develop absolute
indications or contraindications for some
treatments

* Ex. g(ABC(t)=1|Contraindication(t))=0

— Can also have lack of support in finite samples due
to chance



Responding to Positivity Violations

* One Option: Realistic Treatment Rules

— Type of dynamic regime: assign treatment based
on observed past

— Positivity assumption for a dynamic regime:
inf go(d(t)|A(t—1)=d(t—1),L(t)) >0 — a.e.
deD

Realistic rules avoid positivity violations by

only assigning treatment values for which
there is adequate support in the data

— Ex: Treat with ABC unless a contra-indication
develops
* g(ABC(t)=d,(Contraindication(t)) | Contraindication(t))=1




Classes of Estimator of the Target
Parameter W(P,)

e Likelihood of the Observed Data

K+1

L) =|[ Jo(Liy VA -1, - »)[ [ s( A0 1AG - 1),L(n))
\t=1 kt=1 }

! |
Maximum Likelihood Inverse Probability Weighted
(Substitution) (Estimating Equation)
\ J
|

Targeted Maximum Likelihood (Substitution)
Augmented- Inverse Probability Weighted (Estimating Equation)

Efficient (in Non/Semi-Parametric Model) and Double Robust
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Overview: Maximum Likelihood
Substitution Estimator

* Our target statistical parameter W(P,) is only a

function of the Q factors of the observed data
likelihood

— Conditional distributions of the non-intervention
covariates (including the outcome) given their
parents
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Overview: Maximum Likelihood

Substitution Estimator
U (Fy) =

PY =ylA=a,L=1)
zl-: ( [T P(L(t) = 1(t)|A(t — 1) = a(t — 1), L(t — 1) = I(t — 1)) )
1. Estimate these conditional distributions

2. Plugin the resulting estimates to get an
estimate of W(P,)

* |n practice- often use Monte Carlo simulation
to average w.r.t the distribution of the
covariates evaluated at the treatment history

of interest
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Implementation of Maximum Likelihood
Substitution Estimator

1. Estimate the conditional distribution of each
covariate L(t) given its parents (past covariates

and treatment)
e Recall: L(t) may itself be a high dimensional
vector
— Multiple covariates measured at time point t
— Can factorize L(t) into multiple conditional
distributions
e Common approach relies on a series of
parametric regression models

— logistic regression, linear regression, etc, with
parametric assumptions on the distribution of the

errors



Implementation of Maximum Likelihood

Substitution Estimator

* Simple ABC Example

Estimate the distribution of CHD risk factors at
time 1 using the empirical distribution

Estimate the conditional distribution of risk
factors at time 2 given baseline risk factors and
Abacavir use at time 1

Estimate the conditional distribution of the
outcome LDL (or, depending on the target
parameter, just the expectation) given ABC use
at times 1 and 2 and risk factors at times 1 and 2



Implementation of Maximum Likelihood
Substitution Estimator

2. Use these estimates to “simulate
counterfactual covariate histories over time”

setting A(t)=a(t) for t=0,...,K
— Draw L(1) from the empirical

— Draw L(2) from estimate of the conditional

distribution of L(2) given A(1) and L(1),
setting A(1)=a(1) and L(1)= drawn value....

— Etc.. until L(K+1)
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Implementation of Maximum Likelihood

Substitution Estimator

3. Repeat many times for each treatment
history of interest to get estimate of the
distribution of counterfactual outcome under
that treatment history

Example: estimate the distribution of final LDL
under intervention to always set abacavir use
equal to 1 and under intervention to always set
abacavir use equal to 0

Or under some other intervention on abacavir
use
For example, according to a dynamic rule...



Generalizations of Maximum
Likelihood Substitution Estimator

 To incorporate time-to-event outcome with
right censoring:
— Q factors of the likelihood condition on t<T, C(t)=0
— Evaluate setting A(t)=a(t) and C(t)=0

* To estimate parameters of working marginal
structural model:

— Regress simulated counterfactual outcomes on
the treatment history used to generate them

according to the specified marginal structural
model
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Limitations of Maximum Likelihood
Substitution Estimator

* Point treatment: Relies on doing a good job
estimating the conditional distribution of Y
given AW

* Longitudinal: Relies on doing a good job
predicting the distribution of each covariate at
each time point, given past covariates and
past treatment/exposure

OLIL(t -1, At -1):t=1,... K +1
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Limitations of Maximum Likelihood
Substitution Estimator

* |f we had sufficient knowledge to specify
parametric models for the all the Q factors of

the likelihood then this approach would be
great

— Just maximum likelihood estimation- efficient
* However, we essentially never have such
knowledge

* Reliance on misspecified parametric models is
an even bigger problem with longitudinal data




Limitations of Maximum Likelihood
Substitution Estimator

 We can treat this as a series of prediction
problems

— Use loss-based learning/ cross validation/ super

learner to aim for optimal estimates of each
conditional distribution while respecting the non-
parametric model

— Density estimation is hard, but there are tricks we
can use....
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Limitations of Maximum Likelihood
Substitution Estimator

* However- even the best tools do not ensure
that we will do a good job at estimating our
target parameter

— The right bias variance tradeoffs for the purposes
of estimating each conditional distribution will be

the wrong bias variance tradeoffs for our lower
dimensional target parameter

— Again, our causal effect estimate will be overly
biased
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Classes of estimator of the Target
Parameter W(P,)

e Likelihood of the Observed Data

K+1

L) =|[ Jo(Liy VA -1, - »)[ [ s( A0 1AG - 1),L(n))
\t=1 kt=1 }

! |
Maximum Likelihood Inverse Probability Weighted
(Substitution) (Estimating Equation)
\ J
|

Targeted Maximum Likelihood (Substitution)
Augmented- Inverse Probability Weighted (Estimating Equation)

Efficient (in Non/Semi-Parametric Model) and Double Robust
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Overview: Longitudinal IPTW
Estimator

* The inverse probability (of treatment) weighted

estimator (IPTW) provides an alternative
approach

* Based on estimating the conditional distributions
of the intervention nodes

— How was the exposure assigned/censoring
determined in the current data?

— “Treatment mechanism”

* Not a substitution estimator. Instead, defined as
the solution to an estimating equation



Intuition: Longitudinal IPTW Estimator

* Confounding is analogous to biased sampling

* |f exposure were randomly assigned at each
time point, probability of exposure would be
independent of past history

* [nstead, because exposure assignment
depends on a subject’s history, some
covariate and exposure combinations are
over-represented in our sample and others
are under-represented

— Compared to what would have been seen in a
hypothetical randomized trial



Intuition: Longitudinal IPTW Estimator
* IPTW:

— Up-weight subjects with under-represented
covariate and exposure combinations

— Down weight over-represented covariate and
exposure combinations
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Example: Intuition Behind
Longitudinal IPTW Estimator

* |f ABC use were randomly assigned at each time
point, subjects with higher and lower CHD risk
would be equally likely to be treated with ABC

* |Instead, say subjects with renal disease
preferentially get treated with ABC

— Subjects with renal disease treated with ABC over-
represented in our sample

* Those subjects who have this covariate/treatment
combination get smaller weights

— Subjects without renal disease treated with ABC
under-represented in our sample

* Those subjects who have this covariate/treatment
combination get bigger weights



Implementation: Longitudinal IPTW

1. Estimate treatment mechanism

— Distribution of intervention nodes given the observed
past for each time point t=1,...,K:

g( AN 1At -1),L(1))
e ABC Example: Estimate the probability of
being treated with abacavir in a given
month given covariate CHD risk factor and

abacavir treatment history up till that
month



Implementation: Longitudinal IPTW

2. For each subject and time point, estimate the
oredicted probability of the subject receiving
nis observed exposure at that time point

— Given that subject’s covariate and treatment history

—_ For i=1,--,n; t=1)"'IK g(Al(l') |Zl(t — 1),Zl(t))

e ABC Example:

— For time points treated with abacavir, predicted
probability of being treated given observed past

— For time points not treated, predicted probability of
not being treated given observed past



Implementation: Longitudinal IPTW

3. Estimate the predicted probability of a subject
having his observed treatment history

—  Product of time point-specific predicted probabilities
K
[Te(a 1A -1).Li(n)
t=0

 Weight is inverse of this predicted probability (for

subjects with observed treatment

history=treatment history of interest)
1

ﬁg(Ai(t) | At - 1),Zi(t))

t=0




Implementation: Longitudinal IPTW

4. Take weighted average of observed outcome across
the population

| — - \
B = 3| e,
\Hg(Al(f) | A;(f - 1),Li(t))

 Subjects who did not receive the treatment history of
interest get weights=0

 Subjects who did receive the treatment history of
interest get weights inversely proportional to their
predicted probability of receiving their observed
treatment history given their observed past



IPTW Estimator for a Longitudinal

Marginal Structural Model
* Target causal quantity: E(Y>) = m(Zz 1 5)

- B m(alB) =B, +B, Y at)

* |IPTW estimator solves the estimating equations
associated with the following estimating function:

hA) (¥ - m(A1p) |
H (A L(1),A(t - 1))

— hisa user supplied non-null function of treatment history

— If we believe our MSM, choice of h affects efficiency, not
consistency
— If our target parameter is defined using a working MSM, choice

of h defines the projection
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IPTW Estimator for a Longitudinal
Marginal Structural Model

. d
* One choiceof h: h(4) = %m(Alﬁ) g(A)
— As in point treatment case, appealing because
* |t lets us solve for B using standard software

* |f there is no confounding, estimator reduces to
standard least squares estimator

* Can improve efficiency by stabilizing weights

* |PTW Estimator is solutionin B to:
—d -
=li g(Ai)—ﬁm(Ai |[5)
s ﬁ (A, ()| Li(t),Ai(t - 1))
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IPTW Estimator for a Longitudinal
Marginal Structural Model

 Fit weighted regression of observed outcome Y on

observed treatment history according to model
m(A |l B)
 With stabilized weights 3(A)
K

_ §(Al. )1 At - 1),Zi(t))

SW, =

t

* For example of IPTW estimator of MSM parameter
for time to event outcome with right censoring, see
Chapter 24 in Targeted Learning Book
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nen go(a(t)|A(t — 1) = a(t — 1)L(t))

Positivity Assumption

Stabilized weights allow weaker ETA:
go(a®)|A(t — 1) = a(t — 1))

< X0 — Qe

Relies on model m(A1B) to smooth over sparse
areas of A
But when target parameter is defined using a
working MSM, use of stabilized weights
changes the target parameter

See Neugebauer&vdL 2007



Limitations of IPTW

* |nefficient
* Susceptible to bias arising from positivity
violations/near violations

— In other words, tends to behave badly in the
presence of strong confounding



Limitations of IPTW

* Have to do a good job estimating treatment/
censoring mechanism

— Again... data adaptive methods are an option

— But...

» Covariates may be strong predictors of A, but not be
confounders

e At a minimum, do not blindly include all predictors of
treatment assignment

— The data adaptive fit of P(A=a|W) is not targeted
at the parameter of interest...



Third Class of Estimator: Double

robust efficient estimators
* Implementation requires estimating both g
and Q components of the likelihood
* Consistent if either is estimated consistently
e Efficient if both are estimated consistently

A double robust estimator that is also a
substitution estimator: TMLE

— Details and data example for longitudinal TMLE
coming up next
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