Defining the Statistical Estimation
Problem:
lllustration using point treatment data
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What’s special about causal inference?

 Data + statistical assumptions= statistical
inference

— Conclusions about an underlying population
distribution

* Data + statistical assumptions + causal
assumptions (non-testable) = causal inference

— Conclusions about how the underlying population
distribution would change if conditions changed

* Eg- if we changed the way treatment was assigned
See J. Pearl Tutorial JSM-09: http://bayes.cs.ucla.edu/jp_home.html



A Roadmap for Causal Inference

. Specify a Question, Causal Model, and its link
to the Observed Data

2. Specify the Causal Quantity of Interest
3. Assess Identifiability

4. Commit to a Statistical Model and Target

Parameter of the Observed Data Distribution

. Estimate the Chosen Parameter of the
Observed Data Distribution

. Interpret Results



Defining the Statistical
Estimation Problem

. Specify a Question, Causal Model, and its link

to the Observed Data

2. Specify the Causal Quantity of Interest
3. Assess ldentifiability
4. Commit to a Statistical Model and Target

6.
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Parameter of the Observed Data Distribution

. Estimate the Chosen Parameter of the

Observed Data Distribution
Interpret Results
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Example: Abacavir and Cardiovascular
Disease

* Analysis of observational data from several
cohorts suggested abacavir use associated
with increased risk of myocardial infarction

among treated HIV-infected population
— Other analyses found no evidence of such an
association....

 Example of a causal question: Does use of
abacavir (ABC) increase risk of myocardial
infarction (MI)?



Specifying a Causal Model

 (Causal Model is a way to represent background
knowledge about the system you want to study

e Example:

— What factors affects physicians’ decisions to prescribe
abacavir?

— What are major determinants of myocardial infarction
in this population?
 We will introduce Structural Causal Models (SCM)
as a formal way to represent this knowledge

— Unify structural equation, causal graph, and
counterfactual frameworks




Structural Causal Models: Motivation

* Provide a framework in which we can

1. Rigorously express causal assumptions
— These are different from statistical assumptions

2. Define causal questions

3. Evaluate whether the data and assumptions
together are sufficient to answer those
guestions

* Once we have succeeded in defining our
guestion as a parameter of the observed data
distribution (steps 1-4), we are back in the world
of standard statistics (step 5)

— Step 5 (estimation) is still a very hard problem




Definition: Structural Causal Model

1. Endogenous variables X = { X1, ..., X}

— Variables that are meaningful for the scientific
qguestion, or about which you have some scientific
knowledge

e E.g. We often (but not always) know the time ordering
of these variables

* Includes all the variables you measure (or are
considering measuring)

* Might also include some variables you do not/cannot
observe

— Affected by other variables in the model
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Definition: Structural Causal Model

2. Exogenous variables (Errors)
U={U,...U;}
— Not affected by other variables in the model

— All the unmeasured factors not included in X that
go into determining the values that the X variables

take
— We denote the distribution of these factors P,
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Definition: Structural Causal Model

3. Functions F' = {fxl,..-,fXJ}

— The functions F define a set of structural
equations for each of the endogenous variables

— For each endogenous variable in X;, we specify its
parents Pa(X;): Endogenous variables that may
affect the value of X;

XJ — fXj (Pa(X])7UXJ)7] — 17"'7J
PCL(XJ') g X\XJ

— One option: include in Pa(X;) all variables that
temporally precede X;




Structural Causal Model

* Given an input u, the functions F deterministically
assign a value to each of the endogenous variables

 Our model says that (U,X) is generated by

1. Drawing a multivariate U from a specific probability
distribution P,

2. Deterministically assigning X by plugging U into the
set of functions F

— A given input u gives us a specific realization x



SCM Encode Causal Assumptions

* Assumptions about how the variables X were
generated in the system we want to study

 What factors does “Nature” (or the
“experiment” that generated the data in the
system we want to study) consult when
assigning a value to these variables?

— What do we know about factors that determine
whether an individual gets an MI?

— What do we know about factors that affect
whether a patient is prescribed abacavir?



Example: Abacavir and Cardiovascular
Disease

* Question: Does use of abacavir (ABC) increase
risk of myocardial infarction (Ml)?

* |In order to introduce concepts and notation, for
now we assume a simplified single time point
data structure:

— A: treatment with ABC at the start of follow up

— W: patient covariates measured prior to decision
whether to treat with ABC

e Cardiovascular risk factors, renal disease, intravenous drug
use....

— Y: an indicator that a patient experiences an Ml by the
end of the study



Example: SCM for Point Treatment

e X={W, A, Y}
— W=CHD Risk Factors,... 1.
— A=ABC use 2
— Y= M '
* Errors: U=(U,,,U,,Uy) ~P,
3.
e Structural equations:
W = fw(Uw)
A = fa(W,Ua) 4.
Y = fy(W, A Uy)

7/29/12

e (U,X) generated by:

Draw U from P,

Generate W as a
deterministic function of
UW

Generate A as a

deterministic function of
W and U,

Generate Y as a
deterministic function of

W, A, U,
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Non-Parametric Structural Equation
Models

* The structural equations do not restrict the
functional form of the causal relationships they
specify

— Ex: A=f,(W,U,) vs. A=B,+B,LDL+B,HTN+...+U,

— If you have real knowledge about the functional form
of a structural equation, you can incorporate it

* Similarly, we do not impose unsupported
assumptions on the error distribution

* The use of non-parametric structural equation
models allows us to respect the limits of our
knowledge
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Assumptions on the SCM (1):

Exclusion Restrictions

* We make assumptions by leaving X variables
out of a given parent set

— Excluding a variable from Pa(X;) assumes it does
not directly affect what value X; takes

— Leaving a variable in Pa(Xj) just means it might
affect what value X; takes

Xj — fXj (PCL(XJ'), UXj),j — 1, vous J
Pa(Xj) C X\ X
— One option: include in Pa(X;) all variables that
temporally precede X
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Assumptions on the SCM (2):
Independence Assumptions

* Independence assumptions restrict the
allowed distributions for P,
* Ex. Assume U, is independent of U,

— Corresponds to saying that A and Y share no

common causes outside other than those included
in X

— When might this be reasonable?
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More on assumptions to come...

* Assumptions (at least on P;) will be necessary if we want
to make causal inferences with observational data

— We will come back to this when we talk about identifiability
 Qur goals

1. Whenever possible, restrict our assumptions to those
supported by our knowledge

2. When we have to make more questionable
assumptions

Make them explicitly so that we can evaluate them better
and keep our interpretations honest

Limit them to (causal) assumptions that do not change the
statistical model



Structural Causal Model

e Defines set of allowed distributions for (U,X)

* Specifically, this is the set of possible
distributions P, , defined by

— All the joint distributions P, compatible with any
independence assumptions

— All the specifications of the functions F=(f,: j)
compatible with any exclusion restrictions
« We will call this model 2M7¥

— Each distribution included in the model is indexed by
a specific distribution P, and specific functions F



Structural Model Defines a Graph

e Connect parents to W = fW(UW)
children with an arrow A — fA(W UA)
Y

— Makes the asymmetry of
the equations explicit Y = fy (W, A, Uy)
* Each endogenousX - ___
variable has an error (U) -~ __--- >Uy €= ==~ EREN

\

e Correlations between \

errors encoded in Yy,
dashed lines/double \“/\/

headed errors. A >
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Alternative Representation

* Include as a node any Z = fz(Uz)
unmeasured common
cause of at least 2 of the X W= fw(Z,Uw)
variables A= fa(Z,W,Upy)

— Doesn’t have to represent a
specific variable that you Y = fy(Z,A, W, Uy)
understand well ,

— Just an alternative way to
express there may be such a
variable (or variables)

 The remaining errors will
be independent

— Customarily omitted from
the graph A >
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Defining a Target Causal Quantity

e Recall our motivation:

experimental conditions under which we observe
a system # experimental conditions we are most

interested in

* The process of translating our background
knowledge into a SCM required us to be specific
about our knowledge of existing experimental
conditions

* The process of translating our scientific question
into a target causal parameter requires us to be
specific about our ideal experimental conditions




Defining a Target Causal Quantity

e Step 1. Decide which variable or variables we
want to intervene on

— “Exposure” or “Treatment”

— We are interested in a system that modifies the way
these variables are generated

— For now focus on one variable at a single time point

 Lots of times you are interested in intervening on more than
one variable/time point

 We will get to that

— We refer to this variable as the intervention variable,
and typically use “A” to represent it



Defining a Target Causal Quantity

* Step 2. Decide what kind of intervention you are
interested in

— For now, we will focus on “static” interventions

* Interventions that deterministically set A equal to some
fixed value(s) of interest

— There are other options

* E.g.dynamic interventions: Set A in response to the values
of other variables

* Step 3. Specify an outcome (or outcomes)

— Again, we’ll focus on a single outcome at a single time
point for now
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Example: Abacavir and Cardiovascular
Disease

* Question: Does use of abacavir (ABC) increase
risk of myocardial infarction (Ml)?

nat is the intervention variable?

1. W
2. What is the intervention?
3. What is the outcome?
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Counterfactuals

* Y, for an individual is the value that variable Y
would have taken for that individual if that
individual had received treatment A=a

IH

— “Counterfactual” because the individual may not
have actually received treatment A=a

— Also referred to as “Potential Outcomes”



Counterfactuals can be derived from
the SCM

 Structural equations are autonomous

— Changing one function does not change the other
functions

— This means we can intervene on part of the system
and see how changes are transmitted through the rest
of the system

* If we want to make inferences about data
generated by the same system under different
conditions, we have to know which parts of the
system will change and which parts will stay the

Same



Interventions on the SCM

 The autonomy of structural equations means that we
can make a targeted modification to the set of

equations in order to represent our intervention of
interest

* EX. Intervene on the system to set A=1
— Replace f, with constant function A=1

v ~ v N
Uy Uy Ua Uy
\A —>Y / ' \A —Y /

A = fa(Ua) A=1

Y = fv(A,Uy) Y =f(1,Uy)



Counterfactuals derived from SCM

* Y (u)is defined as the solution to the equation f,
under an intervention on the system of equations
to set A=a (with input U=u)

— We can think of u as the background factors of each
subject
— Y (u) is a realization
* Itisimplied by Fand u

* P,and Finduce a probability distribution on Y,

just astheydoonY

— Y =Y, (U) is the post-intervention (or counterfactual)
random variable



Defining a target causal quantity

1. Decide which variable we want to “intervene

)

on
2. Decide what intervention we are interested in

Steps 1 and 2 define our counterfactuals of interest
(and our SCM defines a model for the distribution

of these counterfactuals)

3. Specify what parameter of the distribution of
these counterfactuals we are interested in...
(our target causal quantity)
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Example: Defining the target causal

guantity
* Endogenous variables: ¢ Structural equations
X=W, A, Y W= fw(Uw)
:'\;\izCBHCDuzlzk factors A = FA(W,Un)
Cvewm Y = fy(W, A Uy)

* Errors: U=(U,,U,,Uy)~P,

Full Data: X% = (W, (Y, :a € A)) ~ Fx where A
refers to treatment levels of interest (eg {0,1})
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Example: Average Treatment Effect

* How would expected outcome have differed if
everyone in the population had been treated
vs. if no one in the population had been
treated?

— This is a common target of inference.
— This is what many RCTs are trying to estimate....

Er, (Y1 — Yo)
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Examples: Other counterfactual
parameters

» Causal Relative Risk Er, (Y1)/EFr, (Yo)
 Causal Odds RatioEFX (Yl)/(:" . EFX (Yl))

Ery(Y0)/(1 = Ery (Y0))

* May be interested in a causal effect within
certain strata of the population...

EFX (Yl — Y()|V), Vcw
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Marginal Structural Models

* Specify a (working) model for E(Y,) or E(Y,]|V)
e Useful when interested in

— Dose response curves for multi-level/continuous
exposures

— Effect modification by multi-level covariates
* EX. A: Abacavir dose EFX (Ya) — m(&w)

Y: Renal function m(a|B) = By + B1a

B(Fy|m) = argmin Ep, > (Y, —m(alB))’
Llac A i




Specify the Observed Data

* Simple Abacavir Example: Observed data for a
given subject: O=(W,A)Y)
— Baseline covariates W= CHD risk factors
— Exposure A= ABC Use
— Qutcome Y= MI

* Later in this course, we will address missing
data, longitudinal data, right censoring and
time to event outcomes...



Linking the Observed Data to the SCM

* Defining the statistical estimation problem
requires specifying the link between
endogenous variables X and the observed

data O

— In other words, we specify how the observed
data were generated by the data generating
system encoded in our SCM

* For our simple example, O=X



Linking the Observed Data to the SCM

* We observe a sample of size n of the random
variable O
— For now we will work with independent samples
— The framework is not restricted to this

* We assume our observed data were generated
by sampling n times from the data generating
system specified in our causal model

* This gives us ni.i.d. copies O,,0,,...,0, drawn
from true probability distribution P,



The Statistical Model

e The model M7 (set of possible distributions
for U,X) implies a model (set of possible
distributions) for O

 We refer to this set of possible distributions as
the statistical model M

* The true distribution P, of O is an element of

M
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The Statistical Model

e Often, a model that respects the limits of our
knowledge puts no restrictions on the set of

allowed distributions for O
 |In this case our statistical model is non-
parametric

* We need to respect this fact when we frame
the statistical estimation problem
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Overview: Identifiability

* Are the assumptions in our model sufficient to
express our target causal quantity (a parameter of
the full data distribution) as a parameter of the
distribution P, of the observed data?

— Can we write W' (P, o) = W(P,) for some parameter
mapping W?
* Lots of work (across many disciplines) has gone into
identifiability problems
— In the SEM framework
— In the missing data framework
— In the causal graph framework




ldentifiability for Point Treatment

* Focus today on identifiability for the effect of
a single intervention (point treatment) when
baseline covariates have been measured

 We will focus on one identifiability result:
— “G-computation formula”
 Holds under

— Randomization assumption
— Backdoor criterion



Example: Identifiability Problem
¢« SCM M7
— X=(W,A)Y); U=(U,U,,U,)~P,; F

— No exclusion restrictions or independence
assumptions

* Observe: O=(W,A,Y)~P,

* Statistical model M is non-parametric

* Target: WH(Py y)=E;(Y;-Y,)

* Can we write W*(P ;) as a parameter of P?
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ldentifiability of Point Treatment Effects
under the Randomization Assumption

 Randomization Assumption (RA):

Y, L AW
* |dentifiability Result
Py(Y=ylA=a, W =w) = Pp, (Yo =ylA=a, W =w)

(by definition of counterfactuals)
=P FX( — y‘W — w)
(under RA)
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ldentifiability of Point Treatment Effects
under the Randomization Assumption

* If the Randomization Assumption Y, | A|W
holds then:
Ep, Y (W =w)=Ey(Y|A=0a,W =w)
* This gives us the G-computation formula

Er, (Y, ZED YIA=a,W =w)Py(W = w)

\,l\ Y }

WPy x o) W(P,)
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Positivity Assumption

Need E(Y|A=a,W=w) to be well-defined for all
possible values (a,w)

In non-parametric model, each treatment of
interest must occur with some positive
probability for each possible covariate history

Let g ,(a| W) denote P (A=a| W)
Positivity assumption:
inf W) > 0 P-a.e.
inf go(a|W) a.e



Our initial model assumptions are not
sufficient. Now what?

* WF(P,,) is not identified under M7

— |If we are honest with ourselves about the limits of
what we know, this happens a lot!

* Options
— Go get some more data/background research
— Give up
e But.... Lots of questions require a timely “best

guess” to inform ongoing decisions...

— Goal: Get the best answer you can and be honest
and transparent when interpreting results
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Our initial model assumptions are not
sufficient. Now what?

* WF(P,,) is not identified under M7
— We know which additional assumptions would
serve to identify W*(P )

* We will use M7 to refer to the original SCM +
these additional assumptions

* This gives us a way to proceed, while keeping
separate our real knowledge and our wished
for identifiability assumptions

— Useful in the interpretation stage!



Commit to statistical model and target
parameter of the observed data

e The causal model M7 implies a statistical model
M for the distribution of the observed data O~P,

— Preference for statistical model implied by M7 vs.
M7 (ensures that at least statistical estimation
problem that respects the limits of our knowledge)

 |dentifiability result provides us with a target
parameter of the observed data distribution (or

estimand) W(P,)
* The statistical estimation problem is now
defined
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Greenland and Pearl. Causal Diagrams. Technical Report R332. June 2006.
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— Chapters 1, 3 & 4.1-4.4 recommended as more formal background on graphs and
identifiability. Chapter 7 on link to potential outcome framework.
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