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LECTURE 3.5

Super learner
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Road map - Estimation

SUPER LEARNER
The first step in our estimation procedure is an initial estimate of the 
relevant part Q0 of P0  using the machine learning algorithm super 

learner.

ES
TI

M
AT

IO
N

TARGETED MAXIMUM LIKELIHOOD ESTIMATION 
With an initial estimate of the relevant part of the data-generating 

distribution obtained using super learning, the second stage of TMLE 
updates this initial fit in a step targeted towards making an optimal 
bias-variance tradeoff for the parameter of interest, now denoted 

Ψ(Q0), instead of the overall probability distribution.
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Effect Estimation vs. Prediction

Both effect and prediction research questions are inherently estimation
questions, but they are distinct in their goals.

Effect: Interested in estimating the effect of exposure on outcome
adjusted for covariates.

Prediction: Interested in generating a function to input covariates and
predict a value for the outcome.

An estimator is an algorithm that can be applied to any empirical
distribution to provide a mapping from the empirical distribution to the
parameter space.
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Estimation in Misspecified Parametric Models

In most observational studies, standard practice for prediction and effect
estimation involves assuming a parametric statistical model and using
maximum likelihood estimation (MLE) to estimate the parameters in that
statistical model.
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The goal

What we want is an automated algorithm to semiparametrically estimate
E0(Y | A,W ) (and P0(A = 1 |W )).

In the computer science literature, this is called machine learning.

In statistics these methods are often referred to as data-adaptive.

However, the essential point is that there are semi-parametric methods
that also aim to “smooth” the data and estimate this regression function.
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A problem

If the true data-generating distribution is very smooth, a misspecified
parametric regression might beat a semiparametric estimator.

This is frustrating!

We want to create a smart semiparametric estimator that is consistent,
but in some cases it may “lose” to a misspecified parametric estimator
because it is more variable.
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A problem

There are many different potential algorithms we can implement to
estimate E0(Y | A,W ).

However, how are we to know which one to use a priori?

We cannot bet on a misspecified parametric regression, but we have a
problem that one particular algorithm is going to do better than the other
candidate estimators.
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SPPARCS Prediction Example

Background: Standard practice for mortality risk score prediction relies
heavily on regression in parametric statistical models.

Methods: Using observational data from the Study of Physical
Performance and Age-Related Changes in Sonomans (SPPARCS), we
generate a function for mortality risk prediction with a machine learning
ensembling method.

Results: The super learner for predicting death (risk score) outperformed
all single algorithms in the collection of algorithms, although its
performance was similar to several of the included algorithms.
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Background

Previous studies of elderly populations in the United States have indicated
that

gender,

smoking status,

heart health,

physical activity,

education level,

income, and

weight

are among the important predictors of mortality in elderly populations.

Prediction functions for mortality have been generated in an elderly
Northern California population aged 65 and older (Rose et al. 2011) and
for nursing home residents with advanced dementia (Mitchell et al. 2010).
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Background

Standard practice for risk score prediction relies heavily on regression
in parametric statistical models, assuming a functional form that is
not known.

Since we typically know very little about how the data were generated,
the use of parametric statistical models presents a challenge.
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Background

Recent medical and epidemiologic studies for prediction have
employed newer methods such as random forest and neural networks.

Researchers are then left with questions such as, “When should I use
random forest instead of standard regression techniques? When
should I use neural networks?”
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Background

Austin et al. Logistic regression had superior performance compared with
regression trees for predicting in-hospital mortality in patients hospitalized
with heart failure. J Clin Epidemiol. 2010; 63(10):1145–55.

Peng et al. Random forest can predict 30-day mortality of spontaneous
intracerebral hemorrhage with remarkable discrimination. Eur J Neurol.
2010;17(7):945–50.
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Background

Ensembling methods allow researchers to implement multiple
algorithms with an a priori benchmark regarding how to arrive at the
final algorithm.

Investigators therefore do not need to decide beforehand whether to
forgo one technique in favor of another; they can use several by
incorporating cross-validation.
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Data

O = (W ,Y ), where W is a vector of covariates and Y the outcome
death.

Note that A has become one of the Wi ’s since we are focusing on a
prediction question.

One assumes the actual data as observed in practice can be
represented as n i.i.d. observations of the random variable O ∼ P0.

The regression function E0(Y |W ), or P0(Y = 1 |W ) if Y is binary,
is our function of interest for prediction.

We want the best estimator of this regression function that respects
true knowledge about the way the data were generated.
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Data

The observational cohort data included 2,066 persons aged 54 and
over who were residents of Sonoma, CA and surrounding areas in
Northern California.

Enrollment began in May 1993 and concluded in December 1994 with
follow-up continuing for approximately 10 years.

Covariates included self-rated health status, leisure-time physical
activity, history of cardiac events, and chronic health conditions at
baseline, among others.
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SPPARCS Data Summary

Observational sample (n=2,066) of persons over the age of 54.

Outcome Y was death occurring within 5 years of baseline.

Covariates W = {W1, . . .W13} included self-rated health score and
physical activity.
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SPPARCS Data

Table: Selected Characteristics of SPPARCS Data (n = 2, 066)

Variable No. %

Death (Y ) 269 13
Female (W1) 1,225 59
Met minimum physical activity level (W2) 1,460 71
Cardiac event prior to baseline (W3) 356 17
Chronic health condition at baseline (W4) 918 44

... ... ...
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Methods

Super Learner (van der Laan, Polley, and Hubbard; 2007)

Allows researchers to use multiple algorithms to outperform a single
algorithm in non-parametric and semi-parametric statistical models that
are based on actual knowledge.

The term algorithm is used very loosely to describe any mapping from the
data into a predictor.
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Methods

We define our parameter of interest, Q0 = E0(Y |W ), as the minimizer of
the expected squared error loss:

Q0 = arg minQE0L(O,Q),

where L(O,Q) = (Y − Q(A,W ))2. E0L(O,Q), which we want to be
small, evaluates the candidate Q, and it is minimized at the optimal choice
of Q0. We refer to expected loss as the risk.
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Super Learner

SPPARCS Data: Super Learner

Suppose a researcher is interested in using several different algorithms to
estimate E0(Y |W ).

We can use these algorithms to build a library of algorithms consisting of
all weighted averages of the algorithms.

One of these weighted averages might perform better than one of the
algorithms alone. It is this principle that allows us to map a collection of
algorithms into a library of weighted averages of these algorithms.
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Methods

It might seem that the implementation of such an estimator is
problematic, since it requires minimizing the cross-validated risk over

an infinite set of candidate algorithms (the weighted averages).

The contrary is true.

Super learner is not more computer intensive than the “cross-validation
selector” (the single algorithm with the smallest cross-validated risk).

Only the relatively trivial calculation of the optimal weight vector
needs to be completed.
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SPPARCS Data: Super Learner

Fit each algorithm on the training 
set for each V fold. For example, 
in fold 1, our training set could be 
blocks 1-9, where block 10 will be 
the validation set.  Each 
algorithm is fit on blocks 1-9. In 
fold 2, our training set might be 
blocks 1-8 and block 10 with 
block 9 serving as the validation 
set, and so on. At the end of this 
stage you have V fits for each 
algorithm.

Split the SPPARCS data into V mutually 
exclusive and exhaustive blocks of equal or 
approximately equal size.  Here V = 10.

 

Start with the SPPARCS data 
and a collection of M algorithms. 
In this analysis M = 12.

For each algorithm, predict the outcome Y using 
the validation set in each fold, based on the 
corresponding training set fit for that fold.  At the 
end of this step you have a vector of predicted 
values Dj, j=1 ,…, M for each algorithm.

Compute the estimated CV MSE for each 
algorithm using the predicted values Dj 
calculated from the validation sets.

Calculate the optimal weighted combination of 
M algorithms from a family of weighted 
combinations indexed by the weight vector α.  
This is done by performing a regression of Y on 
the predicted values D to estimate the vector α. 
This calculation determines the combination that 
minimizes the CV risk over the family of 
weighted combinations.

Fit each of the M algorithms on the 
complete data set. These fits 
combined with the estimated 
weights form the super learner 
function that can be used for 
prediction.

To obtain predicted values for the 
SPPARCS data, run the data 
through the super learner function.
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ECOG: Research Proposal

Investigator: Dr. Robert Gray, Eastern Cooperative Oncology Group, Dana-Farber Can-
cer Institute & Harvard School of Public Health

Below is an example of the types of research questions we can answer with our Super Learn-
ing and Targeted Maximum Likelihood methodology in your datasets. We look forward to
collaborating with you to identify research questions of interest to you and your study group.

Q̄SL,n = 0.461Q̄bayesglm,n + 0.496Q̄gbm,n + 0.044Q̄mean,n

Eastern Cooperative Oncology Group (ECOG) E4494: The E4494 cancer trial is
a lymphoma study of CHOP plus rituximab therapy (R-CHOP) versus CHOP alone at
induction and a second ranomization of maintenance rituximab versus observation based on
intermediate response to the initial treatment. The clinical outcome of interest was time till
death. The E4494 trial posed challenges for interpretation due to the interaction between
the induction and maintenance therapies. The weighted analysis that was employed in the
original article was di�cult for the clinical community to understand or accept, leaving some
doubt in the results. Our collaborators at ECOG believe that it would be of great interest
to apply our Super Learning and Targeted Maximum Likelihood Estimation (SL-TMLE)
methodology to estimate the treatment e↵ect of the induction R-CHOP versus CHOP in the
absence of maintenance therapy.

With super learning, cross-validation is used to select from a variety of candidate esti-
mators for prediction to compute a super learner which outperforms each of the candidate
estimators (van der Laan et al., 2007). TMLE is a generic tool that can be applied to any
data structure, thus including missingness, right-censoring, non-compliance, and sequentially
randomized trials (van der Laan and Rubin, 2006). With TMLE, we can estimate marginal
e↵ects, such as the treatment e↵ect, adjusted for covariates. The procedure is both double
robust and e�cient. The use of these two methods combined as SL-TMLE yields maximal
bias reductions and increases in e�ciency in many practical situations. We can also target
many parameters that were previously unavailable and adjust for e↵ect modification across
a large number of factors.

The second question posed by this study, maintenance rituximab versus observation, has
also left our collaborators unsatisfied. On the basis of the published results, maintenance
rituximab has been considered to be without therapeutic merit if patients received R-CHOP
induction. Is that true for all patients or do a subset benefit? Another curious fact about
the e↵ect of maintenance rituximab after CHOP alone is that the highly significant time
to disease progression does not correlate with survival benefit. This is most unusual in
di↵use large B-cell lymphoma, where (particularly in older patients) the time to disease
progression and overall survival curves are nearly superimposable. Is there anything more
in the data indicating which patients benefit from maintenance rituximab? Why don’t we
see a survival advantage, or is there such an advantage in a subset of patients? There is
also a tissue microarray available on a subset of these patients. Beyond gaining e�ciency
of the treatment e↵ect estimates based on the measured patient characteristics, this allows

1
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SPPARCS Data: Super Learner

Fit each algorithm on the training 
set for each V fold. For example, 
in fold 1, our training set could be 
blocks 1-9, where block 10 will be 
the validation set.  Each 
algorithm is fit on blocks 1-9. In 
fold 2, our training set might be 
blocks 1-8 and block 10 with 
block 9 serving as the validation 
set, and so on. At the end of this 
stage you have V fits for each 
algorithm.

Split the SPPARCS data into V mutually 
exclusive and exhaustive blocks of equal or 
approximately equal size.  Here V = 10.

 

Start with the SPPARCS data 
and a collection of M algorithms. 
In this analysis M = 12.

For each algorithm, predict the outcome Y using 
the validation set in each fold, based on the 
corresponding training set fit for that fold.  At the 
end of this step you have a vector of predicted 
values Dj, j=1 ,…, M for each algorithm.

Compute the estimated CV MSE for each 
algorithm using the predicted values Dj 
calculated from the validation sets.

Calculate the optimal weighted combination of 
M algorithms from a family of weighted 
combinations indexed by the weight vector α.  
This is done by performing a regression of Y on 
the predicted values D to estimate the vector α. 
This calculation determines the combination that 
minimizes the CV risk over the family of 
weighted combinations.

Fit each of the M algorithms on the 
complete data set. These fits 
combined with the estimated 
weights form the super learner 
function that can be used for 
prediction.

To obtain predicted values for the 
SPPARCS data, run the data 
through the super learner function.
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ECOG: Research Proposal

Investigator: Dr. Robert Gray, Eastern Cooperative Oncology Group, Dana-Farber Can-
cer Institute & Harvard School of Public Health

Below is an example of the types of research questions we can answer with our Super Learn-
ing and Targeted Maximum Likelihood methodology in your datasets. We look forward to
collaborating with you to identify research questions of interest to you and your study group.

Q̄SL,n = 0.461Q̄bayesglm,n + 0.496Q̄gbm,n + 0.044Q̄mean,n

Eastern Cooperative Oncology Group (ECOG) E4494: The E4494 cancer trial is
a lymphoma study of CHOP plus rituximab therapy (R-CHOP) versus CHOP alone at
induction and a second ranomization of maintenance rituximab versus observation based on
intermediate response to the initial treatment. The clinical outcome of interest was time till
death. The E4494 trial posed challenges for interpretation due to the interaction between
the induction and maintenance therapies. The weighted analysis that was employed in the
original article was di�cult for the clinical community to understand or accept, leaving some
doubt in the results. Our collaborators at ECOG believe that it would be of great interest
to apply our Super Learning and Targeted Maximum Likelihood Estimation (SL-TMLE)
methodology to estimate the treatment e↵ect of the induction R-CHOP versus CHOP in the
absence of maintenance therapy.

With super learning, cross-validation is used to select from a variety of candidate esti-
mators for prediction to compute a super learner which outperforms each of the candidate
estimators (van der Laan et al., 2007). TMLE is a generic tool that can be applied to any
data structure, thus including missingness, right-censoring, non-compliance, and sequentially
randomized trials (van der Laan and Rubin, 2006). With TMLE, we can estimate marginal
e↵ects, such as the treatment e↵ect, adjusted for covariates. The procedure is both double
robust and e�cient. The use of these two methods combined as SL-TMLE yields maximal
bias reductions and increases in e�ciency in many practical situations. We can also target
many parameters that were previously unavailable and adjust for e↵ect modification across
a large number of factors.

The second question posed by this study, maintenance rituximab versus observation, has
also left our collaborators unsatisfied. On the basis of the published results, maintenance
rituximab has been considered to be without therapeutic merit if patients received R-CHOP
induction. Is that true for all patients or do a subset benefit? Another curious fact about
the e↵ect of maintenance rituximab after CHOP alone is that the highly significant time
to disease progression does not correlate with survival benefit. This is most unusual in
di↵use large B-cell lymphoma, where (particularly in older patients) the time to disease
progression and overall survival curves are nearly superimposable. Is there anything more
in the data indicating which patients benefit from maintenance rituximab? Why don’t we
see a survival advantage, or is there such an advantage in a subset of patients? There is
also a tissue microarray available on a subset of these patients. Beyond gaining e�ciency
of the treatment e↵ect estimates based on the measured patient characteristics, this allows
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SPPARCS Data: Super Learner

Fit each algorithm on the training 
set for each V fold. For example, 
in fold 1, our training set could be 
blocks 1-9, where block 10 will be 
the validation set.  Each 
algorithm is fit on blocks 1-9. In 
fold 2, our training set might be 
blocks 1-8 and block 10 with 
block 9 serving as the validation 
set, and so on. At the end of this 
stage you have V fits for each 
algorithm.

Split the SPPARCS data into V mutually 
exclusive and exhaustive blocks of equal or 
approximately equal size.  Here V = 10.

 

Start with the SPPARCS data 
and a collection of M algorithms. 
In this analysis M = 12.

For each algorithm, predict the outcome Y using 
the validation set in each fold, based on the 
corresponding training set fit for that fold.  At the 
end of this step you have a vector of predicted 
values Dj, j=1 ,…, M for each algorithm.

Compute the estimated CV MSE for each 
algorithm using the predicted values Dj 
calculated from the validation sets.

Calculate the optimal weighted combination of 
M algorithms from a family of weighted 
combinations indexed by the weight vector α.  
This is done by performing a regression of Y on 
the predicted values D to estimate the vector α. 
This calculation determines the combination that 
minimizes the CV risk over the family of 
weighted combinations.

Fit each of the M algorithms on the 
complete data set. These fits 
combined with the estimated 
weights form the super learner 
function that can be used for 
prediction.

To obtain predicted values for the 
SPPARCS data, run the data 
through the super learner function.
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cer Institute & Harvard School of Public Health

Below is an example of the types of research questions we can answer with our Super Learn-
ing and Targeted Maximum Likelihood methodology in your datasets. We look forward to
collaborating with you to identify research questions of interest to you and your study group.
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Eastern Cooperative Oncology Group (ECOG) E4494: The E4494 cancer trial is
a lymphoma study of CHOP plus rituximab therapy (R-CHOP) versus CHOP alone at
induction and a second ranomization of maintenance rituximab versus observation based on
intermediate response to the initial treatment. The clinical outcome of interest was time till
death. The E4494 trial posed challenges for interpretation due to the interaction between
the induction and maintenance therapies. The weighted analysis that was employed in the
original article was di�cult for the clinical community to understand or accept, leaving some
doubt in the results. Our collaborators at ECOG believe that it would be of great interest
to apply our Super Learning and Targeted Maximum Likelihood Estimation (SL-TMLE)
methodology to estimate the treatment e↵ect of the induction R-CHOP versus CHOP in the
absence of maintenance therapy.

With super learning, cross-validation is used to select from a variety of candidate esti-
mators for prediction to compute a super learner which outperforms each of the candidate
estimators (van der Laan et al., 2007). TMLE is a generic tool that can be applied to any
data structure, thus including missingness, right-censoring, non-compliance, and sequentially
randomized trials (van der Laan and Rubin, 2006). With TMLE, we can estimate marginal
e↵ects, such as the treatment e↵ect, adjusted for covariates. The procedure is both double
robust and e�cient. The use of these two methods combined as SL-TMLE yields maximal
bias reductions and increases in e�ciency in many practical situations. We can also target
many parameters that were previously unavailable and adjust for e↵ect modification across
a large number of factors.

The second question posed by this study, maintenance rituximab versus observation, has
also left our collaborators unsatisfied. On the basis of the published results, maintenance
rituximab has been considered to be without therapeutic merit if patients received R-CHOP
induction. Is that true for all patients or do a subset benefit? Another curious fact about
the e↵ect of maintenance rituximab after CHOP alone is that the highly significant time
to disease progression does not correlate with survival benefit. This is most unusual in
di↵use large B-cell lymphoma, where (particularly in older patients) the time to disease
progression and overall survival curves are nearly superimposable. Is there anything more
in the data indicating which patients benefit from maintenance rituximab? Why don’t we
see a survival advantage, or is there such an advantage in a subset of patients? There is
also a tissue microarray available on a subset of these patients. Beyond gaining e�ciency
of the treatment e↵ect estimates based on the measured patient characteristics, this allows
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Algorithm RE R2

SuperLearner - 0.201
glmnet 1.01 0.195
gbm 1.01 0.195
bayesglm 1.01 0.195
gam 1.01 0.194
glm 1.01 0.194
polymars 1.05 0.159
earth 1.06 0.157
ipredbagg 1.09 0.131
randomForest 1.12 0.105
rpart 1.15 0.078
mean 1.25 0.000
nnet 1.44 -0.150
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Predicted Values
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Example Discussion

Super learner outperformed all algorithms in the collection of algorithms,
although its performance was similar to several of the algorithms.

Even when the result is a negligible improvement relative to the best
algorithms in the collection, the super learner provides a tool to run many
algorithms and return a prediction function with the best (or equal)
cross-validated MSE, avoiding the need to commit to a single algorithm.
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Oracle Properties

We now introduce the concept of the oracle selector, which is the best
estimator given the K algorithms in the library of algorithms. The oracle
selector chooses the algorithm with the smallest risk under P0, the true
probability distribution of the random variable O. However, the oracle
selector is unknown since it depends on both the observed data and P0.
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Oracle Properties

Theory shows that that the cross-validation selector performs as well as
the oracle selector, up to a second order term. The loss function must be
bounded, and then we will perform asymptotically as well as the algorithm
selected by the oracle selector. The number of algorithms in the library
can grow with sample size.
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More examples

To study the super learner in real data examples, we collected a number of
publicly available data sets.

sample sizes ranged from 200 to 654 observations

number of covariates ranged from 3 to 18

all 13 data sets have a continuous outcome and no missing values
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Finite sample performance

60 Eric C. Polley et al.

which is close to the optimal R2 (results not shown, see Polley and van der Laan,
2010).

3.3.3.2 Data Analysis

To study the super learner in real data examples, we collected a number of publicly
available data sets. Table 3.3 contains descriptions of the data sets, which can be
found either in public repositories or in textbooks, with the corresponding citation
listed in the table. Sample sizes ranged from 200 to 654 observations, and the num-
ber of covariates ranged from 3 to 18. All 13 data sets have a continuous outcome
and no missing values.

The collection of prediction algorithms included the applicable algorithms from
the univariate simulations along with the algorithms listed in Table 3.4. These al-
gorithms represent a diverse set and should allow the super learner to work well in
most practical settings. For comparison across data sets, we kept the collection of
algorithms fixed for all data analyses.

In order to compare the performance of the k prediction algorithms across diverse
data sets with outcomes on different scales, we used the relative mean squared error,
which we denote RE for relative efficiency. The denominator is the mean squared
error of a linear statistical model:

RE(k) =
MSE(k)

MSE(lm)
, k = 1, . . . ,K.

The results for the super learner, the discrete super learner, and each individual algo-
rithm can be found in Figure 3.4. Each point represents the 10-fold cross-validated
relative mean squared error for a data set and the plus sign is the geometric mean

Table 3.3 Description of data sets, where n is the sample size and p is the number of covariates.
All examples have a continuous outcome.

Name n p Source

ais 202 10 Cook and Weisberg (1994)
diamond 308 17 Chu (2001)
cps78 550 18 Berndt (1991)
cps85 534 17 Berndt (1991)
cpu 209 6 Kibler et al. (1989)
FEV 654 4 Rosner (1999)
Pima 392 7 Newman et al. (1998)
laheart 200 10 Afifi and Azen (1979)
mussels 201 3 Cook (1998)
enroll 258 6 Liu and Stengos (1999)
fat 252 14 Penrose et al. (1985)
diabetes 366 15 Harrell (2001)
house 506 13 Newman et al. (1998)

JSM Short Course (San Diego, CA) Targeted Causal Inference July 29, 2012 34 / 39



Finite sample performance

JSM Short Course (San Diego, CA) Targeted Causal Inference July 29, 2012 35 / 39



Finite sample performance

The super learner outperforms the discrete super learner, and both
outperform any individual algorithm.

Among the individual algorithms, the Bayesian additive regression trees
performs the best, but over-fits one of the data sets with a relative mean
squared error of almost 3.0.
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Screening

In high dimensional data, it is often beneficial to screen the variables
before running prediction algorithms.

Screening algorithms can be coupled with prediction algorithms to create
new algorithms in the library.

For example:

We may consider and algorithm using all features and an algorithm on
the subset of only clinical variables. These two algorithms are
considered unique algorithms.

Another screening algorithm involves testing the pairwise correlations
of each variable with the outcome and ranking the variables by the
corresponding p-value.

An additional screening algorithm involves running the glmnet
algorithm and selecting the variables with non-zero coefficients.
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The free lunch

There is no point in painstakingly trying to decide what estimators to
enter in the collection; instead add them all.

The theory supports this approach and finite sample simulations and
data analyses only confirm that it is very hard to over-fit the super
learner by augmenting the collection, but benefits are obtained.

Indeed, for large data sets, we simply do not have enough algorithms
available to build the desired collection that would fully utilize the
power of the super learning.
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Additional References

The super learner is a generalization of the stacking algorithm
(Wolpert 1992, Breiman 1996) and has optimality properties that led
to the name “super” learner.

LeBlanc & Tibshirani (1996) discussed the relationship of stacking
algorithms to model-mix algorithms (Stone 1974) and predictive
sample-reuse methods (Geisser 1974).

We refer to Chapter 3 in Targeted Learning for more comprehensive
references.

Rose, Fireman, van der Laan. Nested case-control risk score
prediction. In: van der Laan, Rose. Targeted Learning: Causal
Inference for Observational and Experimental Data. New York, NY:
Springer, 2011:239-245.

Rose. Mortality risk score prediction in an elderly population using
machine learning. Am J Epid, in press.
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