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LECTURE FIVE

Longitudinal Data: TMLE
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Observed Data Structure

We observe n i.i.d. copies of a longitudinal data structure

O = (L(0),A(0), . . . , L(K ),A(K ),Y = L(K + 1)),

where A(j) denotes a discrete valued intervention node, L(j) is an
intermediate covariate realized after A(j − 1) and before A(j),
j = 0, . . . ,K , and Y is a final outcome of interest.

For example, A(j) = (A1(j),A2(j)) could be a vector of two binary
indicators of censoring and treatment, respectively.
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Factorization of Likelihood

The probability distribution P0 of O can be factorized according to the
time-ordering as

P0(O) =
K+1∏
k=0

P0(L(k) | Pa(L(k)))
K∏

k=0

P0(A(k) | Pa(A(k)))

≡
K+1∏
k=0

Q0,L(k)(O)
K∏

k=0

g0,A(k)(O)

≡ Q0g0,

where Pa(L(k)) ≡ (L̄(k − 1), Ā(k − 1)) and Pa(A(k)) ≡ (L̄(k), Ā(k − 1))
denote the parents of L(k) and A(k) in the time-ordered sequence,
respectively. The g0-factor represents the intervention mechanism: e..g,
treatment and right-censoring mechanism.
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G -computation Formula for Post-Intervention Distribution

Let

Pa(l) =
K+1∏
k=0

Qa
L(k)(̄l(k)), (1)

where Qa
L(k)(̄l(k)) = QL(k)(l(k) | l̄(k − 1), Ā(k − 1) = ā(k − 1)).

This is the so called G -computation formula for the post-intervention
distribution corresponding with the intervention that sets all intervention
nodes Ā(K ) equal to ā(K ) in the NPSEM.
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Let La = (L(0), La(1), . . . ,Y a = La(K + 1)) denote the random variable
with probability distribution Pa, and let Y a be its final component.

Our statistical target parameter is the mean of Y a: Ψ(P) = EPaY a, where
Ψ :M→ IR.

This target parameter only depends on P through Q = Q(P). Therefore,
we will also denote the target parameter mapping with
Ψ : Q = {Q(P) : P ∈M} → IR so that ψ0 = Ψ(Q0).
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Other Target Parameters

We can define target parameter as projection of the true dose-response
curve (EPaY a : a ∈ A) onto a working model {a→ mβ(a) : β}.

We can also define EPdY d as the treatment-specific mean defined by the
G -computation formula for a dynamic treatment d .

Target parameters can then be defined as the projection of the true
dose-response curve (EPdY d : d ∈ D), D a collection of dynamic
treatment rules, onto a working model {d → mβ(d) : β}.
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Similarly, we can define target parameters as summary measures of
conditional dose-response curves (EPd (Y d | V ) : d ∈ D), conditioning on
some baseline-covariates of interest.

Related classes of target parameters can be defined by history-adjusted
marginal structural working models for history adjusted treatment specific
means conditional on a history.

One can also define treatment effects of stochastic interventions, and
intention to treat interventions, and so on.
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A Sequential Regression G -computation Formula

By the iterative conditional expectation rule (tower rule), we have

EPaY a = E . . .E (E (Y a | L̄a(K )) | La(K − 1)) . . . | L(0)).

In addition, the conditional expectation, given L̄a(K ) is equivalent with
conditioning on L̄(K ), Ā(K − 1) = ā(K − 1).
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This yields the following sequential regression G -computation formula:
Compute Q̄a

Y = EQa
Y
Y ≡ E (Y | Ā(K ) = ā(K ), L̄(K )).

Given Q̄a
Y , we compute

Q̄a
L(K) = EQa

L(K)
(Q̄a

Y | L̄(K − 1), Ā(K − 1) = ā(K − 1)).

This process is iterated: Given Q̄a
L(k+1), we compute

Q̄a
L(k) = EQa

L(k)
(Q̄a

L(k+1) | L̄(k − 1), Ā(k − 1) = ā(k − 1)), starting at

k = K + 1 and moving backwards till the final step Q̄a
L(0) = EQL(0)

Q̄a
L(1).
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The Efficient Influence Curve

The pathwise derivative for a path {P(ε) : ε} ⊂ M through P at ε = 0 is
defined by d

dεΨ(P(ε))
∣∣
ε=0

. If for all paths through P, this derivative can
be represented as PD∗(P)S ≡

∫
D∗(P)(o)S(o)dP(o), where S is the

score of the path at ε = 0, and D∗(P) is an element of the tangent space
at P, then the target parameter mapping is pathwise differentiable at P
and its canonical gradient is D∗(P).
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An estimator is efficient if and only if it has influence curve equal to
canonical gradient:

Ψ̂(Pn)−Ψ(P0) =
1

n

n∑
i=1

D∗(P0)(Oi ) + oP(1/
√
n).

The canonical gradient forms a crucial ingredient for the construction of
double robust semiparametric efficient estimators, and, in particular, for
the construction of a TMLE.
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Representation of efficient influence curve of target
parameter as sum of iteratively defined scores of iteratively
defined conditional means
Recall the definition Q̄a

L(k) = E (Y a | L̄a(k − 1)), and the recursive relation

Q̄a
L(k) = EQa

L(k)
Q̄a

L(k+1).

The efficient influence curve is given by D∗ =
∑K+1

k=0 D∗
k , where

D∗
K+1 =

I (Ā(K ) = ā(K ))

g0:K
(Y − Q̄a

K+1),

and

D∗
k =

I (Ā(k − 1) = ā(k − 1))

g0:k−1

{
Q̄a

L(k+1) − EQa
L(k)

Q̄a
L(k+1)

}
,

=
I (Ā(k − 1) = ā(k − 1))

g0:k−1

{
Q̄a

L(k+1) − Q̄a
L(k)

}
, k = K , . . . , 1,

and
D∗

0 = Q̄a
L(1) − EL(0)Q̄

a
L(1) = Q̄a

L(1) −Ψ(Q̄a).
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Formal TMLE algorithm

We assume that Y ∈ [0, 1]. A special case would be that Y is binary
valued with values in {0, 1}.

We already obtained an initial estimator Q̄a
k,n, k = 0, . . . ,K + 1 and gn.

Let Q̄a,∗
K+2,n ≡ Y .

For k = K + 1 to k = 1, we compute

εk,n ≡ arg min
εk

PnLk,Q̄a,∗
k+1,n

(Q̄a
k,n(εk , gn)),

and the corresponding update Q̄a,∗
k,n = Q̄a

k,n(εk,n, gn).

Finally, Q̄a,∗
L(0),n = 1

n

∑n
i=1 Q̄

a,∗
1,n(Li (0)), which is the TMLE of E0Y

a.

JSM Short Course (San Diego, CA) Targeted Causal Inference July 29, 2012 14 / 42



Here Lk,Q̄a
k+1

(Q̄a
k ) is the logistic regression log-likelihood for outcome

Q̄a
k+1:

−I (Ā(k − 1) = ā(k − 1))
{
Q̄a

k+1 log Q̄a
k + (1− Q̄a

k+1) log{1− Q̄a
k}
}
,

and Q̄a
k (εk , g) is the logistic-regression submodel

LogitQ̄a
L(k)(εk , g) = LogitQ̄a

L(k) + εk
1

g0:k−1
, k = K + 1, . . . , 0.
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This choice of loss and submodel does indeed satisfy the generalized
score-condition

d

dεk
Lk,Q̄a

k+1
(Q̄a

k (εk , g))

∣∣∣∣
εk=0

= D∗
k , k = 0, . . . ,K + 1.

Consequently, the TMLE (Q̄a,∗
n = (Q̄a,∗

k,n : k) solves the efficient influence

curve estimating equation PnD
∗(Q̄∗

n , gn) = 0.
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Practical Implementation of the TMLE

Let gn be an estimator of g0.

Firstly, we carry out a logistic regression regressing Y onto
Ā(K ) = ā(K ), L̄(K ).

Subsequently, we use this initial estimator of
Q̄a

Y ,0 = E0(Y | Ā(K ) = ā(K ), L̄(K )) as an off-set in a univariate

logistic regression with clever covariate I (Ā(K ) = ā(K ))/g0:K ,n, and
fit the corresponding univariate logistic regression of Y among the
observations with Ā(K ) = ā(K ). This yields the TMLE Q̄a,∗

Y ,n of

Q̄a
Y ,0 = E0(Y a | L̄a(K )).
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Run a logistic regression of Q̄a,∗
Y ,n onto Ā(K − 1) = ā(K − 1), L̄(K − 1).

Use this initial estimator of Q̄a
L(K) = E (Y a | L̄a(K − 1)) as an off-set

in a univariate logistic regression of Q̄a,∗
Y ,n with clever covariate

I (Ā(K − 1) = ā(K − 1))/g0:K−1,n. The resulting fit Q̄a,∗
L(K),n is the

TMLE of Q̄a
L(K),0 = E0(Y a | L̄a(K − 1)).

This process of subsequent estimation of the next conditional mean,
given the TMLE-fit of the previous conditional mean, is iterated.
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Thus, for any k ∈ {K + 1, . . . , 1}, run a logistic regression of the
previous TMLE fit Q̄a,∗

L(k+1),n onto Ā(k − 1) = ā(k − 1), L̄(k − 1), and

use this fit as an off-set in a univariate logistic regression of Q̄a,∗
L(k+1),n

with clever covariate I (Ā(k − 1) = ā(k − 1))/g0:k−1,n. Let Q̄a,∗
L(k),n be

the resulting logistic regression fit of Q̄a
L(k). This is the TMLE of

Q̄a
L(k),0, k = K + 1, . . . , 1.

Consider now the fit Q̄a,∗
L(1),n at the k = 1-step. This is a function of

L(0). We estimate Q̄a
L(0) with the empirical mean

1
n

∑n
i=1 Q̄

a,∗
L(1),n(Li (0)).
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Here Q̄a,∗
n = (Q̄a,∗

L(k),n, k = 0, . . . ,K + 1) is the TMLE of Q̄a
0 . The last

estimate 1
n

∑n
i=1 Q̄

a,∗
L(1),n(Li (0)) is the TMLE Q̄∗

L(0),n = Ψ(Q̄a,∗
n ) of our

target parameter Q̄a
L(0) = Ψ(Q̄a

0 ).
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Randomized Trials with Time to Event, Right-Censoring,
and Time-Dependent Covariates

Drop-out can be informed by baseline covariates and/or time-dependent
covariates.

Ignoring these covariates in the estimation procedure results in biased
estimators.

Even if drop-out is independent, the TMLE utilizes the covariates by
essentially imputing failure times for the censored observations, without
inducing bias, even if the imputation models are misspecified.
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Simulations

In our simulations we simulate a longitudinal data structure

O = (W (0),A(0),N(1),W4(1),W5(1),A(1)...,
N(K ),W4(K ),W5(K ),A(K ),N(K + 1)).

Here W (0) = (W1(0),W2(0),W3(0),W4(0),W5(0)) are the baseline
covariates, A(0) is the binary baseline treatment randomized with
probability 0.5, N(t) is the indicator of observing a failure time event at
time t, A(t) is the indicator of observing a censoring event at time t, and
W4(t) and W5(t) are the continuous time-dependent covariates.
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In each simulation, 500 simulated data sets with sample size n = 500 were
generated.

The treatment specific survival curve S1(t0) = 0.469 at time point t0 = 3
was estimated for six different estimators, and estimates of bias and MSE
were reported.

All estimators were supplied consistent estimators of the conditional
intensity of the censoring process, and failure-time process, while the
conditional distributions of the time-dependent covariates were estimated
inconsistently by discretizing the continuous covariates W4(t), W5(t),
coding these discretized covariates with binary indicators, and estimating
the conditional distribution of the binary indicators with logistic parametric
regression.
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Informative Censoring

The two time-dependent covariates W4(t) and W5(t) are generated as
follows:

W4(t) = .2A(0) + .5W1(0) − .4W2(0) − .4W3(0) + 2W4(t − 1) + 2W5(t − 1) + U4
W5(t) = .1A(0) + .1W1(0) + .1W2(0) − .4W3(0) + 2W4(t) + 2W5(t − 1) + U5,

where U4 and U5 are i.i.d. N(0, σ = 0.4).

The event indicators, N(t), were generated as Bernoulli-indicators with the
probability defined by the following conditional intensity of time to failure
T :

λT (t) = expit(−3 + .3A(0) + .3W1(0) − .3W2(0) − .3W3(0) + 2W4(t − 1) + 2W5(t − 1)).

The censoring indicators, A(t), were generated as Bernoulli-indicators
with the probability defined by the following conditional intensity for
censoring for the low and high informative censoring case, respectively:

λC (t) = expit(−4 + .8A(0) + .3W1(0) − .3W2(0) − .3W3(0) + .1W4(t) + .1W5(t − 1))
λC (t) = expit(−4 + .8A(0) + .3W1(0) − .3W2(0) − .3W3(0) + 1W4(t) + 1W5(t − 1)).
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Informative Censoring

Low Informative Censoring Scenario
Time Dependent Baseline

TMLE EE IPCW TMLE A-IPCW IPCW
Mean 0.469 0.469 0.486 0.475 0.475 0.475
Mean SD 0.027 0.027 0.041 0.027 0.027 0.040
MSE 0.00070 0.00070 0.00113 0.00076 0.00076 0.00077
Coverage 0.942 0.942 0.986 0.940 0.938 0.996
High Informative Censoring Scenario

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean 0.479 0.470 0.475 0.587 0.585 0.595
Mean SD 0.029 0.035 0.039 0.034 0.034 0.059
MSE 0.00112 0.00440 0.00073 0.01485 0.01453 0.01740
Coverage 0.898 0.898 0.996 0.066 0.074 0.352

Table: Simulation Results For Informative Censoring: Mean of Estimates and
Mean Square Error for All Six Estimators
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Informative Censoring

In our modified simulation, we generated the censoring events for the low
and high informative censoring case as follows:

λC (t) = expit(−4 + .8A(0) + .3W1(0) − .3W2(0) − .3W3(0) − .01W4(t) − .01W5(t − 1)),
λC (t) = expit(−4 + .8A(0) + .3W1(0) − .3W2(0) − .3W3(0) − .1W4(t) − .1W5(t − 1)).
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Informative Censoring

Low Informative Censoring Scenario
Time Dependent Baseline

TMLE EE IPCW TMLE A-IPCW IPCW
Mean 0.470 0.470 0.452 0.469 0.469 0.470
Mean SD 0.027 0.027 0.040 0.027 0.027 0.042
MSE 0.00065 0.00066 0.00105 0.00068 0.00067 0.00077
Coverage 0.960 0.960 0.974 0.956 0.958 1.000
High Informative Censoring Scenario

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean 0.468 0.468 0.174 0.432 0.433 0.396
Mean SD 0.027 0.027 0.026 0.033 0.033 0.067
MSE 0.00068 0.00067 0.08732 0.00251 0.00241 0.00731
Coverage 0.960 0.960 0.000 0.798 0.810 0.836

Table: Simulation Results For Informative Censoring: Mean of Estimates and
Mean Square Error for All Six Estimators
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Independent Censoring

The hazard of censoring was now only a function of time, so that
censoring is independent of the evolving processes, but three different
hazards were considered representing different levels of independent
censoring: no censoring, medium censoring, and high censoring.

In the first scenario every individual was left uncensored. In the second and
third scenario each subject was censored with 20 percent probability
(Medium Censoring Scenario) and 60 percent probability (High Censoring
Scenario), respectively.

JSM Short Course (San Diego, CA) Targeted Causal Inference July 29, 2012 28 / 42



No Censoring Scenario
Time Dependent Baseline

TMLE EE IPCW TMLE A-IPCW IPCW
Mean 0.468 0.468 0.468 0.468 0.468 0.468
Mean SD 0.027 0.027 0.038 0.027 0.027 0.038
MSE 0.00067 0.00068 0.00073 0.00069 0.00069 0.00073
Coverage 0.952 0.952 0.990 0.950 0.950 0.990
Medium Censoring Scenario

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean 0.469 0.470 0.471 0.469 0.469 0.470
Mean SD 0.028 0.028 0.051 0.029 0.029 0.051
MSE 0.00070 0.00072 0.00120 0.00081 0.00081 0.00106
Coverage 0.960 0.960 0.996 0.952 0.952 1.000
High Censoring Scenario

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean 0.474 0.481 0.474 0.467 0.467 0.466
Mean SD 0.044 0.047 0.114 0.043 0.042 0.112
MSE 0.00110 0.00248 0.00712 0.00196 0.00197 0.00496
Coverage 0.988 0.988 0.978 0.940 0.940 0.984

Table: Simulation Results For Independent Censoring: Mean of Estimates and
Mean Square Error for All Six Estimators
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Misspecified models for both censoring and failure times

For the study here we evaluate what happens to the simulation results
when the time dependent covariates, W4, W5, and then both W4 and W5

are removed from the models for the initial estimates of Qn and gn.

This allows us to observe how the different estimators behave when the
initial estimates for Qn and gn are both initially mis-specified.
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Correctly Specifying Initial Models
Time Dependent Baseline

TMLE EE IPCW TMLE A-IPCW IPCW
Mean 0.468 0.468 0.174 0.432 0.433 0.396
Mean SD 0.027 0.027 0.026 0.033 0.033 0.067
MSE 0.00068 0.00067 0.08732 0.00251 0.00241 0.00731
Coverage 0.960 0.960 0.000 0.798 0.810 0.836
Removing W4(t) From Initial Model Specification

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean 0.457 0.455 0.172 0.420 0.421 0.411
Mean SD 0.034 0.063 0.026 0.035 0.036 0.067
MSE 0.00133 0.01211 0.08893 0.00360 0.00359 0.00512
Coverage 0.900 0.900 0.000 0.740 0.740 0.910

Table: Simulation Results For Independent Censoring: Mean of Estimates and
Mean Square Error for All Six Estimators
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Removing W5(t) From Initial Model Specification
Time Dependent Baseline

TMLE EE IPCW TMLE A-IPCW IPCW
Mean 0.459 0.461 0.173 0.411 0.411 0.396
Mean SD 0.034 0.066 0.026 0.038 0.038 0.065
MSE 0.00133 0.01649 0.08840 0.00467 0.00465 0.00725
Coverage 0.920 0.920 0.000 0.640 0.650 0.810
Removing W4(t) and W5(t) From Initial Model Specification

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean 0.462 1.243 0.357 0.405 0.405 0.403
Mean SD 0.616 0.619 0.056 0.038 0.038 0.063
MSE 0.00472 1.02729 0.01415 0.00549 0.00549 0.00604
Coverage 1.000 1.000 0.440 0.590 0.600 0.870

Table: Simulation Results For Independent Censoring: Mean of Estimates and
Mean Square Error for All Six Estimators
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Analysis of Tshepo Study

Our initial analysis of the Tshepo study was based on TMLEs of the causal
effect of the treatment on survival, and corresponding effect-modification
parameters, only adjusting for the baseline covariates.

We extend here this TMLE to account for potential bias due to informative
censoring by time-dependent covariates CD4 and viral load that have an
effect on both time to drop-out and the time to event of interest.

We will directly compare results using this TMLE that only incorporates
the baseline covariates to the TMLE that accounts for time dependent
confounding in the form of informative censoring due to the
time-dependent covariates. Moreover, we will compare these results to
results based on an IPCW estimator and a locally efficient double robust
estimating equation based estimator.
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For the analysis performed here we evaluate the effect modification of
gender on the two cART treatments for two outcomes of interest:

1 Time to death censored by treatment modification or end of study
(DEATH).

2 Time to minimum of virologic failure, death, or treatment
modification censored by end of study (TLOVR).

For each of the two time to event outcomes we will estimate the difference
in additive risk by gender at 36 months after randomization to cART
therapy. We will estimate this parameter using the six estimators examined
in the simulation analysis.
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Prior to doing this analysis we expected that utilizing the time-dependent
covariates should have a small effect on the estimates for the TLOVR
outcome since censoring is independent for this time to event outcome.

On the other hand, the time to death is subject to censoring by time to
treatment modification which is expected to be informed by CD4 and viral
load, so that one might expect a bias reduction for the new TMLE relative
to the previously implemented TMLE that only incorporated the baseline
covariates.
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Results

Risk Difference @ 36 Months
Time Dependent Baseline

TMLE DR-EE IPCW TMLE DR-EE IPCW

Est 20.0% 20.1% 18.3% 18.9% 18.9% 18.3%
SE 5.0% 4.9% 10.3% 4.9% 4.9% 10.3%
p <0.001 <0.001 0.074 <0.001 <0.001 0.074

Table: Gender Effect Modification on TLOVR
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Results

Risk Difference @ 36 Months
Time Dependent Baseline

TMLE DR-EE IPCW TMLE DR-EE IPCW

Est 6.3% 6.5% 5.2% 5.1% 5.1% 5.2%
SE 2.3% 2.3% 12.5% 2.4% 2.4% 12.5%

p-value 0.005 0.004 0.680 0.029 0.030 0.680

Table: Gender Effect Modification on Death

The TD TMLE results indicate that gender does in fact modify the effect
of the drug treatment EFV/NVP and the difference in the effect between
males and females at 36 months is 6.3 percent.
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Figure: Treatment Specific Survival Curves For Men Treated With EFV: TD
TMLE vs TD IPCW
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Concluding Remarks

TMLE provides a template for construction of efficient substitution
estimators.

The basis of TMLE is a loss-function, a submodel for fluctuation, and
a procedure for iteratively minimizing the empirical risk along the
fluctuation model through a current estimator.

The submodel is typically chosen so that its score spans the efficient
influence curve of the target parameter.
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Sequential regression provides a particularly effective way of
representing post-intervention distributions and thereby causal effects.
The TMLE for a sequential regression substitution estimator was
presented above.

The TMLE for a maximum likelihood based substitution estimator
has also been developed, and the above simulation and data analysis
results were for this TMLE. It is harder to implement.

All TMLE are double robust and efficient, but different types of
TMLE can differ in their finite sample performance, and the
sequential regression TMLE might have finite sample advantages by
only estimating what is really needed.

JSM Short Course (San Diego, CA) Targeted Causal Inference July 29, 2012 41 / 42



Course Goals

1 Understand the shortcomings of traditional parametric
regression-based techniques for the estimation of causal effects.

2 Translate a scientific question and background knowledge into a
formal causal model and target causal parameter.

3 Become familiar with the properties and basic implementation of
three distinct estimators of the causal effect of a point treatment:
Maximum Likelihood Substitution Estimator, Inverse Probability
Weighted Estimator, and Targeted Maximum Likelihood Estimators.

4 Be introduced to the ideas behind machine learning approaches as
tools for confronting the curse of dimensionality.

5 Understand the challenges raised by estimation of the causal effect of
longitudinal exposures.

6 Obtain an overview of estimating the causal effect of a longitudinal
exposure in the context of right censoring and time-dependent
confounding.
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