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Abstract 

 In an effort to investigate mechanical response in hydrated soft tissues of human 

diarthrodial joints to physiological levels of loading, a method to simulate three-

dimensional (3D) contact between opposing cartilage layers has been developed and is 

presented here. The method utilizes the linear biphasic theory to represent soft hydrated 

tissues as a continuum, solid modeling techniques to generate 3D models of tissue 

layers, penetration of opposing tissue layers to approximate contact loads, and the finite 

element method to solve the governing biphasic equations for the 3D response of the 

contacting tissue layers. Kinematic information describing a joint articulation is 

measured while the cartilage layers are deformed under physiological loads. The joint is 

disarticulated, allowing the soft tissue layers to relax, to ascertain the geometric 

properties of the cartilage layers via stereophotogrammetry (SPG). Solid models of the 

relaxed layers are generated and representations of the joint are assembled using the 

previously collected kinematic data. Contacting cartilage layers in the resulting joint 

model will overlap; the magnitude and distribution of the overlap is calculated using the 

solid modeler and called “proximity data”. Proximity data is assumed to represent 

deformation of the contacting surfaces and is translated via the biphasic governing 

equations into boundary conditions for finite element analysis. Since the tissues are 

multi-phase materials, a method for partitioning the total load between phases is 

developed. Values for time-dependent quantities such as stress, strain and fluid velocity 

are then calculated via a 3D biphasic finite element analysis. In this study, results for 



 viii 

canonical geometric configurations are compared with results from independent 

biphasic contact analyses to show that the proximity method yields a good 

approximation to contact. 
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Chapter 1: Introduction 

 Diarthrodial joints in the human body are capable of supporting high levels of 

mechanical load over the span of decades. However, degenerative joint diseases affect 

millions of people every year, preventing them from carrying out normal everyday 

activities. In order to battle diseases such as osteoarthritis (OA), we must first 

understand how diarthrodial joint components behave and interact with one another in 

response to physiological levels of load under both healthy and pathological conditions. 

These interactions are both chemical and mechanical, making them difficult to interpret. 

Researchers have been pondering these interactions, and how they relate to total joint 

function, for almost a hundred years. While much has been learned in this time-span, it 

has been the recent advent of high performance computers that has allowed us to begin 

to simulate joint mechanics and investigate the underlying details of the problem. This 

thesis combines many of the research techniques that have been recently developed into 

a method to study the mechanics of diarthrodial joints. 

 In our efforts to accurately represent diarthrodial joint mechanics we have 

developed or incorporated methods to measure joint geometry and kinematics, represent 

the tissues as continua, construct 3D solid models of tissue layers, solve the continuum 

problems using finite element methods, and visualize the time-dependent results. Recent 

advances in medical imaging, such as stereophotogrammetry (destructive) [6] and high 

resolution MRI (non-destructive), allow us to generate accurate geometric models of 

biological structures. Studies on the mechanical and material properties of biological 
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materials, specifically cartilage, have yielded accurate constitutive models, such as the 

biphasic [18] and triphasic [14] theories. These models can be used in conjunction with 

the geometric representations to quantify the mechanics of soft tissues through both 

analytical and numerical procedures. The numerical methods are constantly improving 

as the ability to do large-scale computing becomes more viable. These components lead 

to complete and accurate models of diarthrodial joints that can be used in numerous 

ways, such as computer simulated or computer aided surgery, prosthetic design, or 

investigation of degenerative joint diseases. Unfortunately, the type of high 

performance computing necessary to fully implement some of these investigative 

techniques still has limited availability. The study presented here is motivated by the 

immediate need for computationally feasible techniques that can be widely used to 

study the 3D mechanical response of  soft tissue layers in contact in diarthrodial joints. 

 The soft tissue layers of diarthrodial joints are only a few millimeters thick, yet 

they can support the types of loads that are generated during physical activities, such as 

running, for the life-span of a person. Human-engineered materials can support similar 

levels of load, but not for the duration of time (decades) that physiological materials 

can. This is partly due to the fact that cartilage is a living material and can replenish 

itself, but is more directly due to the mechanical properties of hydrated tissues. 

Specifically, the multi-phase nature of cartilage and the corresponding lubrication 

mechanisms [19] make cartilage one of the most efficient bearing materials known. 

While biological materials have been mathematically represented using various 

continuum models and constitutive laws, the appropriate laws must reasonably 
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represent the physical behavior of the material. For the present application the biphasic 

theory of Mow et al. [18] will be used as it has been shown to be robust and accurate for 

analytical and numerical analyses of diarthrodial joint cartilage mechanics. In this initial 

study, which is focused on the method to define loads on contacting biphasic layers, the 

linear form of the biphasic theory is used. The method can be extended to nonlinear 

theories in future studies. 

 In order to perform any analysis of cartilage, geometric models are needed. The 

methods in this study are tested using simple canonical geometric models, but will also 

apply to more complicated physiological models derived from stereophotogrammetry or 

other imaging technologies, such as MRI. This is important, for in order to draw 

clinically relevant conclusions from our analyses we must have models based on real 

joint structures. In parallel efforts, SPG (and other) data generated by our collaborators 

at the Orthopedic Research Laboratory at Columbia University is being used to 

construct accurate 3D models of diarthrodial joints and their tissue layers which can 

then be subjected to 3D biphasic analysis. Once accurate solid models have been 

generated and solved they can be used in numerous ways (visualization, prosthetic 

design, finite element analysis, etc.) to aid clinicians in their treatment of patients. 

 Finite element analysis is a field that has grown rapidly in recent years. As 

computers become more powerful, researchers develop computational tools and become 

more capable of analyzing complex structures and in turn engineering better products 

and unlocking physical mysteries. In biomedical engineering, numerical methods such 

as finite element analysis has given researchers a better understanding of the inner 
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mechanical workings of the human body. Specific to this study, much progress has been 

made in the analysis of soft tissues using the biphasic theory. Various finite element 

formulations have been developed and implemented [28; 29; 30; 4; 5; 10] for different 

situations, such as large deformation and biphasic contact. In a later chapter, the two 

formulations that are used in this study will be presented. 

 One of the more computationally demanding and fundamental aspects of 

diarthrodial joint analysis is the continuum contact that exists between the weight 

bearing soft tissue layers of a joint. The mechanical behavior of diarthrodial joints is 

dictated by this contact as forces are transmitted from one side of the joint to the other 

through the soft tissue layers, such as cartilage and menisci. Numerical analyses of three 

dimensional, multi-phase contact models are complicated and, as previously mentioned, 

computationally demanding. In an effort to simulate diarthrodial joint function, while 

avoiding some of the computational demands of fully 3D contact analysis, a method 

will be presented here that approximates the soft tissue contact mechanics by utilizing 

available geometric data and the biphasic theory to replace opposing tissue layers with 

surface tractions that embody the contact conditions on one layer. In this way, the size 

and complexity of the problem is reduced to a series of biphasic analyses on individual 

3D tissue layers, making it easier to analyze the mechanical state of soft tissues in 

physiological situations. This will hopefully lead to insights into diarthrodial joint 

function under physiological conditions. 

 Chapter 2 will provide a summary of the linear biphasic theory for soft hydrated 

tissues and the finite element formulations of the theory that are used in this study. 
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Chapter 3 describes the method for simulating diarthrodial joint contact using proximity 

data. Chapter 4 presents validation examples for the method, where axisymmetric 

problems are analyzed in 3D using proximity data and compared with the solution 

computed from an independent 2D contact analysis. In these examples parameters such 

as material properties and joint congruency are varied to show that the method works 

for a wide range of problems. Finally, Chapter 5 draws conclusions about the method 

and makes recommendations for future work. 
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Chapter 2: Mathematical and Computational Models of 

Biphasic Soft Tissues 

2.1 Structure and Composition of Articular Cartilage 

 The articular cartilage that lines the diarthrodial joints of the human body is a 

matrix of biological materials, including collagen fibers (15 to 22% of the wet weight), 

proteoglycans (4 to 7%), interstitial fluid (60 to 85%) and others [17; 21; 20]. These 

constituents can be classified as either solid or fluid, allowing the overall tissue to be 

characterized as a two-phase continuum. The solid constituents, mainly collagen and 

proteoglycan aggregates, compose a matrix that is arranged in such a way as to make 

articular cartilage structurally stable. Near the articular surface the collagen fibers tend 

to be arranged parallel to the surface, in the middle zone of cartilage the collagen is 

randomly oriented, and in the deep zone the fibers are aligned perpendicular to the 

subchondral bone. The large proteoglycan aggregates are restrained within this matrix 

and the interstitial water is able to flow in and around the solid constituents. Figures 2.1 

and 2.2 depict cartilage as it is described above on the micro (10-7 - 10-4 m) and ultra 

(10-8 - 10-6 m) scales, respectively [20]. 
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Figure Chapter 2: .1 Organization of the collagen matrix of articular cartilage. 
Figure adapted from Mow et. al [20] 
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Figure Chapter 2: .2  Ultra-scale (10-8 - 10-6 m) cartilage depiction 
Figure adapted from Mow et. al [20] 

 From the above descriptions of the structure of articular cartilage, one can 

conclude that it is a structurally anisotropic material. Cartilage is also know to be 

inhomogenous. The content of both the collagen and the interstitial fluid decrease with 
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depth while the proteoglycan content increases towards the deep zone [20]. Finally, due 

to the large magnitude of loading (several times body weight in knees and hips [20]) 

that cartilage experiences in weight bearing joints, it is known that large deformation 

exists in cartilage. All of these facts must be taken into consideration when developing a 

mathematical model of the mechanical behavior of cartilage. 

2.2 Mathematical Formulations: Linear Biphasic Theory with Contact 

Boundary Conditions 

 As just discussed, articular cartilage is composed of multiple phases, is 

structurally anisotropic and is inhomogenous, making it a difficult material to model 

mathematically. In this study, the linear biphasic theory [18] is used to model cartilage, 

which will be approximated as being isotropic and homogenous. However, nothing will 

be done to preclude the inclusion of an anisotropic or inhomogenous model in future 

studies. The governing equations of the linear biphasic theory for hydrated soft tissues 

are presented in this section. The biphasic theory assumes that the tissue is a continuum 

consisting of an incompressible solid and an incompressible, inviscid fluid phase. It is 

the drag created by the relative movement of the fluid through the solid matrix that 

gives the tissue its viscoelastic properties. In the following equations, the superscripts s 

and f refer to the solid and fluid phases, respectively. 

 From a consideration of mass conservation for a fixed spatial volume the 

continuity equation for the mixture is derived: 

 φ f vi
f +φ svi

s( ), j = 0 , (2.1) 
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where φα, α=s,f, is the solid or fluid content, vα, α=s,f, is solid or fluid velocity and the 

comma (,) denotes spatial differentiation. There are momentum equations for each 

phase: 

 σ ij, j
α + Πi

α = 0;  α = s, f , (2.2) 

where the body force term, Π i
α , is related to the relative flow of the fluid and solid 

phases, and σα is the stress in the α phase. Finally, energy conservation leads to the 

following set of constitutive equations, one for each phase and one for the body force: 

 σ ij
s = −φ s pδij + σ ij

E  (2.3) 

 σ ij
f = −φ f pδ ij  (2.4) 

 Π i
s = −Π i

f = pφ,i
s + K vi

f − vi
s( )  (2.5) 

where σ ij
E = Cijklεkl

s  is the elastic part of the solid stress due to deformation (the familiar 

Hooke’s Law from elasticity), p is pressure, and K is the diffusive drag coefficient, 

which is related to the tissue permeability, κ, by the expression [15]: 

 K =
φ f( )2

κ
. (2.6) 

The fourth-rank tensor, C, can admit any type of material symmetry, isotropic or 

anisotropic. While the continuum is assumed to be isotropic here, there is recent 

evidence suggesting that a transversely isotropic model is more appropriate for articular 

cartilage [7; 9]. Also, κ is assumed to be constant in this study, although it could be 

assumed to be dependent upon the solid strain [11]. Nothing will be done in the 
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following chapters to preclude the use of an anisotropic material model or strain-

dependent permeability with the method being developed.  

 To solve biphasic boundary-initial value problems, we must also have boundary 

and initial conditions. They are as follows: 

 ui
s = u i

s  on  Γui
s  (2.7) 

 vi
α = v i

α   on  Γvi
α ;    α = s, f  (2.8) 

 σ ij
αnj = ti

α = t i
α   on  Γt i

s ;    α = s, f  (2.9) 

where (¯) indicates a prescribed value of ( ). These conditions correspond to prescribed 

solid displacement (us), solid or fluid velocity (vα, α=s,f), and solid or fluid traction (tα, 

α=s,f), respectively. Note from the constitutive relation (2.4) that the prescribed fluid 

traction in Eqn. (2.9) is  t i
f = φ f p ni . The problems to be solved in this study arise from 

the contact between two biphasic tissue layers. Therefore, in addition to the above 

boundary conditions there are also the boundary conditions between two contacting 

biphasic bodies, denoted with superscripts A and B, [12] which are important for this 

study: 

 vi
sAni

A + vi
sBni

B = 0 , (2.10) 

 φ fAvi
fA +φ sAvi

sA( )niA + φ fBvi
fB +φ sBvi

sB( )niB = 0 , (2.11) 

 pA − pB = 0 , (2.12) 

 σ ij
EA

n j
A −σ ij

EB

nj
B = 0 . (2.13) 

Physically the boundary conditions (2.10) - (2.13) represent two kinematic conditions, 

continuity of normal solid velocity and continuity of normal relative flow, and two 
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kinetic conditions, continuity of pressure and continuity of normal elastic traction, 

respectively. 

 The finite element method [13; 32] may be used to solve the above equations 

over complicated spatial domains by discretizing the domain into smaller parts 

(elements) over which unknown field variables are approximated, thus approximating 

the equations over these smaller domains. The result is a system of equations (linear 

first order equations for the linear biphasic problem) that can be solved for the unknown 

values of the field variables at the FE nodes. Special types of FE formulations, such as 

penalty and mixed methods, are required to obtain accurate results for problems 

containing constraints and multiple field variables, as the above biphasic equations do. 

Such formulations for these biphasic equations of soft hydrated tissues have been 

developed within our group [28; 29; 30]; the two that will be used in this study are 

discussed below. 

2.3 Finite Element Formulations of the Biphasic Governing Equations 

2.3.1 Mixed Velocity-Pressure Formulation 

 The mixed velocity-pressure (v-p) formulation is characterized by the 

elimination of fluid velocity in the governing equations. This is done by manipulating 

equations (2.1) - (2.5) while assuming that the mixture is saturated, i.e. φ f + φs = 1 and 

thus φ,i
f = −φ,i

s . The fluid constitutive equation, (2.4), and the diffusive drag equation, 

(2.5), are substituted into the fluid momentum equation, (2.2), to arrive at; 
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 vi
f − vi

s( ) = −κ
φ f p,i . (2.14) 

The fluid velocity is eliminated by noting that the continuity equation, (2.1), can be 

expressed as; 

 φ f vi
f +φ svi

s + φ fvi
s −φ fvi

s( )( )
,i
= 0 . (2.15) 

For a saturated mixture Eqn (2.15) can be rewritten using equation (2.14) as 

 vi
s −κ p,i( ),i

= 0  . (2.16) 

Next, the diffusive drag equations, (2.5), can be rewritten using Eqn (2.14) and (2.6) as: 

 Π i
s = −Π i

f = pφ,i
s + K vi

f − vi
s( ) = pφ, i

s − φ f p,i , (2.17) 

Using this result with the constitutive relations (2.3) and (2.4) makes the momentum 

equations, (2.2); 

 
−φ s p,i + σ ij, j

E − φ f p,i = 0

−φ f p,i + φ f p,i = 0
 . (2.18) 

The first equation in (2.18) may be simplified, while the second equation is trivial. 

 This results in a system of equations that has solid velocity and pressure (a 

vector and a scalar) as field variables, as opposed to other methods that have solid and 

fluid velocities (two vectors) as their field variables. This velocity-pressure type of 

formulation has been used in mixture problems (for both soil mechanics and 

biomechanics) by [26; 23; 24; 31; 16]; the variation of it that is presented here was 

developed by Almeida [1; 5; 4; 3; 2]. These formulations have been shown to give 

accurate results and are also useful in reducing the number of degrees of freedom, and 
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thus computational demand, for a given problem by replacing the vector fluid velocity 

with the scalar pressure as a field variable. 

 The field variables in the governing equations are now solid displacement 

(velocity) and pressure. Therefore, the boundary conditions (2.7) - (2.9)  must be altered 

as follows: there are no longer any conditions on the fluid velocity; pressure may be 

prescribed as an essential condition; and the prescribed fluid traction is replaced by a 

prescribed fluid flux, Q . The boundary conditions are given by the following: 

 Q = − κ p,i( )ni = φ
f vi

f − vi
s( )ni   on  ΓQ  (2.19) 

 ui
s = u i

s  on  Γui
s  (2.20) 

 vi
s = v i

s  on  Γvi
s  (2.21) 

 p = p   on  Γp  (2.22) 

 σ ij
Totnj = ti

Tot = t i
Tot  on  Γti

s  (2.23) 

As before, (¯) indicates a prescribed quantity. The superscript Tot refers to total values 

(e.g. σ ij
Tot = σ ij

s +σ ij
f ). For contact analyses, the contact boundary conditions (2.10) - 

(2.13) would also need to be rewritten. However, since these boundary conditions will 

not be used for this v-p formulation, they are not rewritten here. 

 For the v-p formulation, a weighted residual statement is formed from the 

altered versions of the continuity equation, (2.16), and the linear momentum equations, 

(2.18), as well as the natural boundary conditions, (2.19) and (2.23): 
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wi σ ij , j
E − p,i( )dΩ

Ω
∫ + q vi

s −κ p,i( ),i
dΩ

Ω
∫

+ wi ti
Tot − t i

Tot( )dΓ
Γt

∫ − q Q + κ p,i( )ni( )dΓ
ΓQ

∫ = 0,
 (2.24) 

where Ω is the spatial volume, Γt is a traction boundary and ΓQ is a flow boundary. The 

weighting functions wi (vector) and q (scalar) are arbitrary, admissible functions. 

Application of the Divergence Theorem will reduce the order of differentiation on the 

following three integrals: 

 

wiσ ij, j
E  dΩ = wiσ ij

En j  dΓ
Γ
∫

Ω
∫ − w i , j( )σ ij

E dΩ
Ω
∫

wi p, i dΩ
Ω
∫ = wi pni  dΓ

Γ
∫ − wi,i p dΩ

Ω
∫

qκ p, ii dΩ
Ω
∫ = qκ p, ini  dΓ

Γ
∫ − q,iκ p,i  dΩ

Ω
∫

 (2.25) 

Noting that the total boundary, Γ, is comprised of the sub boundaries, ΓQ, Γt, Γp, Γv
s 

(Γ = ΓQ + Γt + Γp + Γv s ) Eqn (2.25) is substituted into (2.24) and boundary terms are 

canceled to obtain the v-p weak form: 

 

w i, j( )
σ ij

E dΩ
Ω
∫ − wi,i p dΩ

Ω
∫ − qvi, i

s  dΩ
Ω
∫ − q,iκ p,i  dΩ

Ω
∫

− wit i
Tot dΓ

Γt

∫ − qQ  dΓ
ΓQ

∫ = 0
 . (2.26) 

 For the finite element method, the domain Ω is subdivided into elements and the 

weak form (2.26) is rewritten as a sum over these elements in matrix/vector form; 

 

{
n
∑ ∇w( )sym

T C ∇u( )sym  dΩ
Ωn

∫ − ∇w( )sym
T mT  p dΩ

Ωn

∫ − q ∇v s( )sym
m dΩ

Ωn

∫

− ∇q( )κ ∇p( ) dΩ
Ωn

∫ − wTt Tot dΓ
Γt

∫ − qQ  dΓ
ΓQ

∫ }= 0
, (2.27) 
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where m represents the Kronecker delta and σE has been substituted for in terms of the 

solid strain, εs = ∇us( ) sym, where ( )sym denotes the symmetric part of the gradient of 

solid displacement (us). Interpolations for the field variables and weighting functions 

are defined in the following forms: 

 us = Ndn
s ;     vs = Nvn

s ;    p = N ppn , (2.28) 

 w = Nwn;     q = N pq n . (2.29) 

where the N and Np are shape functions and d, vn, pn, wn and qn are vectors of nodal 

quantities. In the same form, interpolations for the gradients of w, v, u, p and q are 

derived: 

 

∇us( )sym = ∇N( )symdn
s = Dεdn

s ;   ∇v s( )sym = ∇N( )symvn
s =Dεvn

s

   ∇p = ∇N p( )pn = D ppn

∇w( ) sym = ∇N( )symw n = Dεw n;    ∇q = ∇N p( )qn =D pqn

. (2.30) 

Substituting Eqns. (2.28) - (2.30) into the finite element weak form, Eqn. (2.26), and 

pulling the nodal coefficients of the weighting functions and the field variables out of 

the integrals gives 

 

{
n
∑ wn

T Dε
TC Dε  dΩ

Ωn

∫  dn
s −w n

T mDε( )TN p  dΩ
Ωn

∫  pn

−qn
T N p

T mDε( ) dΩ
Ωn

∫  vn
s − qn

T D p
Tκ D p dΩ

Ωn

∫  pn

−w n
T NTt Tot dΓ
Γ

t s

∫ − q n
T N p

TQ  dΓ
ΓQ

∫ }= 0

. (2.31) 

From (2.31) element matrices can be identified as 

 a = mDε( )TN p ∂Ω
Ωn

∫  (2.32) 
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 kn = Dε
TCDε  dΩ

Ωn

∫  (2.33) 

 k p = Dp
Tκ D p dΩ

Ωn

∫  (2.34) 

 fn
Tot = NT  t Tot dΓ

Γ
t s

∫  (2.35) 

 fQ = N pQ  dΓ
ΓQ

∫  (2.36) 

which gives the resulting matrix form: 
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 (2.37) 

Note that the overall matrices (comprised of the previously defined element matrices) in 

(2.37) are symmetric. 

 The spatially discretized form of the v-p formulation was derived and shown 

here to point out the field variables that are involved, as they will come into play while 

deriving the proximity method in the next chapter. Note from (2.37) that the solid 

velocity (vs) and pressure (p) are the field variables and therefore may be applied as 

essential boundary conditions. The natural boundary conditions are in the forcing terms 

on the right hand side of (2.37) and are total traction (fTot) and flux (fQ). In the next 

chapter a method will be derived which translates proximity data for a geometric model 

into an essential pressure boundary condition and a total traction natural boundary 

condition. These boundary conditions will then be used in the preceding v-p finite 
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element formulation to arrive at results that are comparable to a full 3D biphasic contact 

analysis. 

 The implementation of the v-p formulation that is used in this work utilizes a 10-

node tetrahedral finite element to solve the above matrix equations. A representative 

element is depicted below. This is a mixed formulation and therefore a linear pressure 

field (nodes 1,3,4 & 2) and a quadratic velocity field (nodes 1-10) are imposed over the 

element. This means that the shape functions defined earlier in Eqns. (2.28) - (2.30) are 

linear for pressure (Np) and quadratic for solid displacement/velocity (N). 
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Figure Chapter 2: .3  10-node tetrahedral element 
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2.3.2 Mixed-Penalty Contact Formulation 

 In order to validate results from the v-p with proximity boundary conditions 

analyses, an independent biphasic contact analysis is needed. In this way, it can be 

verified that the solutions from the proximity method are accurate and in agreement 

with valid contact solutions. For the present study, the mixed-penalty biphasic contact 

formulation of Donzelli [8] is used. This formulation has been shown to converge to the 

correct contact solution and is therefore an appropriate choice for comparison with the 

methods derived in this thesis. 

 This formulation includes the contact boundary conditions of Eqns. (2.10) - 

(2.13) in the formation of it’s weighted residual statement. The contact conditions are 

enforced via Lagrange multipliers and an accurate contact solution is derived. The 

implementation of this formulation that is used in the present study is two dimensional. 

Therefore, all validations will be done using axisymmetric problems that can be solved 

in both two and three dimensions. 
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Chapter 3: Methods for Using Proximity Data in Diarthrodial 

Joint Contact Analysis 

 In the biphasic finite element formulation of Chapter 2, applied loads are 

partitioned between the solid and fluid phases and defined in terms of applied tractions 

(Eqn. (2.9)), applied pressure (Eqn. (2.22)), or applied fluid flux (Eqn. (2.19)). In the 

present analysis, the load should also approximate the contact loads between two 

biphasic layers. However, the phase partitioning of a total applied load cannot be 

determined experimentally. In this chapter, a method is developed for determining the 

load partition which utilizes penetration data (proximity data) for contacting biphasic 

layers that is determined from stereophotogrammetry (SPG). This method then provides 

the correct biphasic boundary conditions for the  finite element analysis. 

3.1 Joint Modeling and Proximity Data from Stereophotogrammetry 

 Proximity data is defined in the following manner [27]. Kinematic data for a 

diarthrodial joint articulation is collected at quasi-static positions while the joint is still 

intact. During the articulation, the applied tendon and ligament forces result in 

deformation of the soft tissues of the joint. The joint is then disarticulated to reveal the 

articular cartilage surfaces. When the joint is dissected, the soft tissues that were 

deformed during the articulation relax (this will be referred to as the “undeformed” 

state). Stereophotogrammetry (SPG) is then used to measure the surface geometry of 

the undeformed cartilage layers and the underlying bone surfaces, providing 
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mathematical representations of the upper and lower tissue surfaces. When these 

surfaces are mathematically reassembled in space using the kinematic data from the 

articulation, the undeformed tissue layers will inter-penetrate due to the relaxation of 

the cartilage after dissection. This penetration is quantified using solid modeling 

techniques within commercial solid modeling software and is assumed to be a measure 

of the total articular cartilage deformation that occurred during the joint articulation. 

Therefore, the penetration, or proximity, data can be used to calculate estimates of solid 

strain or solid traction using the constitutive laws of Chapter 2. This will be utilized 

below to calculate a load partition in biphasic materials. 

 The SPG data gives surface representations for the cartilage layers of a joint. For 

finite element analysis these surface representations must be converted into solid 

models for which 3-D finite element meshes can be generated. Commercial solid 

modeling packages are used to create these solid models using algorithms described by 

O’Bara et. al [22] for converting SPG data into solid models. Once the 3-D solid is 

complete, Finite Octree© [25] is used to generate meshes of solid 10-node tetrahedral 

elements. These meshes are used with the v-p finite element formulation described in 

Chapter 2 and the proximity boundary conditions to be described below to produce 

realistic mechanical analyses of diarthrodial joints. 

3.2 Load Partitioning in Biphasic Materials 

 As previously discussed, to correctly apply loading boundary conditions in 

biphasic analyses it is necessary to partition the load between the two phases. A method 
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is described below for calculating the partition between biphasic layers in contact using 

the biphasic governing equations of Chapter 2 and proximity data . 

3.2.1 Definition of Biphasic Load Partitioning Factor, φ* 

 In order to quantify how a load is divided between the volume phases, a load 

sharing parameter, φ*, is defined over a contact interface. This parameter indicates the 

percentage of the total stress that is carried by the solid phase of the tissue (a φ* value of 

1 indicates that the load is fully supported by the solid phase). The parameter is defined 

in terms of normal surface tractions (Eqns. 1.9) as: 

 ti
sni = σ ij

s nin j = φ
*σ ij

Totalnin j  (3.1a) 

 ti
fni = σ ij

f nin j = 1− φ*( )σ ij
Totalninj  (3.1b) 

where  n is a surface unit normal, and the total stress normal to the surface is; 

 σ ij
Totalnin j = σ ij

s ninj + σ ij
f nin j = −pnini +σ ij

Enin j . (3.2) 

 To quantify φ*, consider the following manipulation of Eqns. (3.1) & (3.2). 

Solving Eqn. (3.2) for pressure, p, gives: 

 pnini = σ ij
Enin j −σ ij

Totalnin j . (3.3) 

Substituting (3.3) into the constitutive equation for the solid stress, (2.3), yields 

 σ ij
s nin j = φ

fσ ij
Enin j +φ

sσ ij
Totalnin j . (3.4) 

Solving Eqn. (3.1) for φ* and utilizing Eqns. (3.3) and (3.4) gives the following equation 

for φ*: 
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 φ* =
σ ij

s nin j
σ ij

Totalnin j
= φ s + φ f σ ij

Eninj
σ ij

Totalninj

# 

$ 
% 

& 

' 
(  . (3.5) 

Using Eqn. (3.5) in conjunction with proximity data, the parameter φ* can be calculated 

as next described. 

3.2.2 Derivation of Elastic Stress from Proximity Data 

 To calculate φ* in Eqn. (3.5), the normal elastic stress due to deformation of the 

solid phase, σE, which appears on the right hand side of Eqn. (3.5), will be calculated 

from the proximity data. Following classical continuum mechanics, the elastic stress is 

related to the solid strain, ε s; 

 σ ij
E = Cijklεkl

s →σ ij
Eninj = Cijklεkl

s nin j , (3.6) 

which in turn is related to the deformation of the solid phase by: 

 ε ij
s =

1
2
ui, j
s + uj,i

s( ) ≡ u( i, j)s , (3.7) 

where the comma (,) denotes differentiation, and the standard definition of the 

symmetric part of gradient is used on the right hand side of Eqn. 3.7 for notational 

convenience. 

 The SPG data and solid modeling operations yield the “total” proximity for a set 

of opposing layers which must be appropriately divided between the layers. If two 

bodies are in contact, their surface normals will be equal and opposite across the contact 

surface (see Figure 3.1); 

 ni
A = −ni

B = ni . (3.8) 
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Figure Chapter 3: .1 Surface normals on contacting bodies 

Once apportioned to a layer, the proximity is assumed to be equal to the solid 

deformation of that layer. With these assumptions the following expressions hold; 

 gi
A = ui

sA = αgi
Total (3.9a) 

 gi
B = ui

sB = (1 −α )gi
Total  (3.9b) 

 gi
Total = ui

s A + ui
s B = ui

sTotal , (3.9c) 

where A and B denote the two opposing bodies, gi is the Cartesian component of the 

proximity vector (note that the proximity vector is by definition normal to the surface), 

and α is the proximity partitioning parameter representing the fraction of the proximity 

ascribed to side A. With these definitions and Eqns. (3.6) and (3.7), σE can be 

calculated. However, the parameter α  must first be determined. 

 To calculate α, the contact boundary condition corresponding to continuity of 

normal elastic traction (Eqn. (2.13)) is used. This contact condition states that the 

normal component of the elastic portion of the solid stress is continuous between two 

contacting biphasic bodies, A and B, 

 σ ij
EA

nin j = σ ij
EB

nin j  . (3.10) 



 24 

Equation (3.6) defines the part of the solid stress due to deformation for a linear 

isotropic solid phase. Substituting this definition and Eqn. (3.7) into (3.10) yields: 

 1
2
Cijkl

A uk ,l
s A + ul, k

s A( )ninj = 12Cijkl
B uk, l

s B + ul ,k
s B( )ninj . (3.11) 

Finally, assuming that the proximity can be divided between layers and that the layer 

proximity is equal to the layer deformation, Eqns. (3.9) can be substituted into Eqn. 

(3.11), and the parameter α can be solved for: 

 α =
Cijkl

B ninig(k ,l)
Total

Cijkl
A ninig(k ,l )

Total + Cijkl
B ninig(k ,l)

Total   . (3.12) 

 With this parameter, the elastic stress on each tissue layer can be calculated 

using Eqns. (3.6), (3.7) & (3.9). Referring back to Eqn. (3.5) for the parameter φ*, the 

total normal surface traction, σ ij
Totnin j , must be calculated next. 

3.2.3 Derivation of Total Stress from Proximity Data 

 To calculate the total normal surface traction, it is first observed from biphasic 

contact finite element analyses (see Chapter 4) that the distributions of all normal 

traction quantities, including total traction, over the contact area can be normalized to 

the same distribution as the penetration data for short periods of time (1/10s of 

seconds). This observation leads to the expression: 

 σ ij
Totalnin j = γgi

Ani , (3.13) 

where γ is a proportionality constant between total traction and penetration 

distributions. In joint testing, the total force vector on a joint is likely to be known. 

Therefore, the total traction must be defined in terms of the total applied force, FTotal; 
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 σ ij
Totalnin j  dΓ

Γ c
∫ = Fi

Total , (3.14) 

where Γc  is the contact surface. Equation (3.14) follows from considering that the 

kinematic data is collected at quasi-static positions; therefore the joint must be in static 

equilibrium (no motion) for each position used during collection of the data. Using 

Eqns. (3.13) and (3.14) γ can be calculated from the known proximity data and total 

force magnitude as: 

 γgini  dΓ
Γ c
∫ = Fi

Total → γ =
Fi
Total

gini  dΓ
Γ
c
∫

  , (3.15) 

assuming that γ is constant in space over the contact surface (this assumption will be 

validated in Chapter 4 using biphasic contact solutions). Eqn. (3.13) can then be used to 

calculate the normal total traction at any point on the contact surface. 

 The derivations in Sections 3.2.2 and 3.2.3 give the necessary equations to 

calculate φ*, defined by Eqn. (3.5). However, to quantify φ*, numerical methods are 

needed to perform the necessary differentiation and integration over the complex 3D 

surfaces found in diarthrodial joints. 

3.3 Numerical Algorithm for φ* Calculation 

 In the development of the proximity method, proximity data has been treated as 

a continuous function, but it is actually calculated point-wise over a fixed grid imposed 

upon a model surface. To evaluate the expressions that were presented in the last 

section, continuous functions must be fit through the proximity data. These functions 
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can then be integrated and differentiated as needed (Eqns. (3.1) - (3.15)). This will be 

accomplished by using the shape functions of the 10-node tetrahedral meshes that will 

be used for finite element analysis of the concerned tissue layers. Therefore the loaded 

model surface is discretized into 6-node triangles (for instance, the face defined by 

nodes 1, 2 & 3 in Figure 3.2) 
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Figure Chapter 3: .2 v-p 10-node tetrahedral element 

Using standard finite element 6-node shape functions for a face, continuous proximity 

functions can be derived as 

 gi = Naς ia
a=1

6

∑ ,   i = 1,2 , (3.16) 

where ζia are the nodal values of the proximity components and Na are quadratic finite 

element shape functions which can be defined in global (Cartesian) or local (triangular) 
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coordinates. The quadratic 6-node shape functions in triangular, or area, coordinates 

are: 

 

N1 = 2ξ1 −1( )ξ1
N2 = 2ξ2 −1( )ξ2
N3 = 2ξ3 − 1( )ξ3
N4 = 4ξ1ξ2
N5 = 4ξ2ξ3
N6 = 4ξ1ξ3

, (3.17) 

where ξi ,  i =1,3  are the triangular coordinates. For a full discussion of finite element 

shape functions, area coordinates, and numerical integration see [13; 32]. 

 In the present implementation all of the following calculations are done at every 

finite element node on the loaded surface. However, since the final values of φ* have 

small deviations over the contact surface, a scheme for choosing a subset of optimally 

located points could be derived, improving the overall efficiency of the calculations. 

3.3.1 Calculation of Elastic Stress from Proximity Data 

 Assuming frictionless contact between the opposing tissue layers, components 

of stress that are tangential to the contact surface can be ignored. It is therefore 

convenient to define a tangent-normal coordinate system (t1,t2,n) for each element which 

has a face on the loaded contact surface (see Figure 3.3). 
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Figure Chapter 3: .3 Tangent-normal coordinate system for an element 

Using this tangent-normal system, the stress-strain law (Eqn. (3.6)) for an isotropic 

solid can be written: 
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, (3.18) 

where λ and µ are Lame’s constants. The expression for the normal elastic stress 

component can be obtained from Eqn. (3.18); 

 σnn
E = λε t1t1

s + λε t2t2
s + 2µ + λ( )λε nn

s  . (3.19) 

In order to calculate the normal elastic stress component in Eqn. (3.19), the three strains 

on the right hand side are needed. These will be derived from the solid deformation in 

the tissue, assumed here to be proportional to the proximity data (Eqns. (3.9)). 
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Following Section 3.2.2, the proximity layer partitioning factor, α, is used to apportion 

the proximity data between opposing layers. 

 The calculation of α, Eqn. (3.12) requires data from both contacting tissue 

layers, and thus introduces a level of complexity that may not be necessary if the 

intention is to create a model and solution for only one of the layers. Therefore, in the 

present analysis Eqn. (3.12) is reduced to one dimension in order to get a simplified 

expression for α; 

 α =
Cijkl

B ninig(k ,l)
Total

Cijkl
A ninig(k ,l )

Total + Cijkl
B ninig(k ,l)

Total →α =
1

1 +
HA

A

HA
B

# 

$ 
% & 

' 
( 

 , (3.19) 

where HA is the aggregate modulus and is defined as: 

 HA = 2µ + λ( ) . (3.20) 

The solid strain, Eqn. (3.7), can now be calculated from the interpolated proximity data, 

Eqn. (3.16), and the parameter α.. 

 Since the proximity data is only defined over the contact surface, and not below 

the contact surface, a procedure to calculate the normal component of strain in Eqn. 

(3.19) is needed. For this method, the normal strain at the contact surface will be 

approximated by calculating the change in tissue layer thickness divided by the original 

tissue layer thickness at each finite element node on the contact surface: 

 εnn
s =

δh
h0

=
gnn
h0

. (3.21) 

Just as the solid modeler was used to calculate the penetration between contacting tissue 

layers, it can also be used to calculate the undeformed tissue layer thickness, h0. 
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 Finally, in order to complete the normal elastic stress calculation, the in-plane 

tangential components of solid strain are needed. These strain components can be 

calculated using the finite element shape functions presented in Eqn. (3.17). The layer 

apportioned proximity data is, again, assumed to be the solid displacement. Therefore, 

using the standard method of calculating finite element strains [13; 32], as was done in 

the v-p formulation of Chapter 2, the tangential components of strain can be calculated: 

 εs =
1
J
∇N ξ( )( )sym dn

s =
1
J
Dε ξ( )ςn  (3.22) 

where J is the Jacobian determinant and is calculated as: 

 J =
∂t1
∂ξ1

∂t2
∂ξ2

−
∂t2
∂ξ1

∂t1
∂ξ2

 . (3.23) 

The matrix Dε used to calculate the in-plane strains can be either two dimensional (for a 

three dimensional problem) or one dimensional (for a two dimensional problem) as the 

in-plane strains are only calculated on a surface of the overall model, one dimension 

lower than the total dimensionality of the problem. 

3.3.2 Calculation of Total Stress from Proximity Data 

 To calculate the normal total traction from proximity data, the proportionality 

constant, γ, must be calculated via Eqn. (3.15) (see Section 3.2.3). The magnitude of the 

total force is the square root of the sum of the squares of it’s components: 

 FTotal = Fi
Total( )2

i=1

3

∑ . (3.24) 
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To perform the integral in the denominator of Eqn. (3.15) a 3-point numerical 

integration rule [13; 32] will be used with the 6-node triangular mesh on the contact 

surface. This results in: 

 ginidΓ = Nadiani
a =1

6

∑
i=1

2

∑
# 

$ 
% & 

' 
dΓ

Γ c
∫ = Na ξb( )diani

a=1

6

∑
# 

$ 
% & 

' 
Wb J

b=1

3

∑
Γ c
∫ , (3.25) 

where Na ξb( )  are the finite element shape functions evaluated at the numerical 

integration stations, Wb are the weights for the 3-point rule and J  is the determinant of 

the Jacobian matrix. 

 With these two equations the parameter γ can be calculated, and in turn, the total 

normal traction at any point on the contact surface. Combined with the previous 

calculation for the normal elastic traction, φ* can be calculated pointwise over the 

contact surface. Using φ*, nodal values for pressure and total traction (v-p elements) or 

solid and fluid traction (mixed-penalty elements) can be calculated through the use of 

Eqns. (3.1) - (3.5) and applied as boundary conditions for analysis. These boundary 

conditions will be appropriate for approximating biphasic contact, as will be 

demonstrated in the next chapter.  
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Chapter 4:  Validation Examples: Axisymmetric Contact 

Problems 

 In order to validate the proximity method presented in the last chapter, 

axisymmetric models that can be analyzed with both biphasic finite element 

formulations discussed in Chapter 2 (2D mixed-penalty contact and 3D velocity-

pressure with the proximity derived boundary conditions) are used. The goal of this 

chapter is to demonstrate that the proximity method gives comparable results to those 

seen in an independent biphasic contact analysis and to demonstrate the accuracy of the 

following assumptions, made during development of the method: 

• the layer-partitioned proximity is a good measure of normal 

displacement, and therefore solid strain, in a contact problem. 

• the assumptions made in calculating the normal elastic traction and the 

normal total traction result in accurate calculations of the traction values. 

For the present application, the above assumptions are made for the short time 

response of biphasic tissues. It is these physiologically relevant times that are 

important for the type of diarthrodial joint analysis that this method is intended 

to be used for. 

4.1 Axisymmetric Validation Model Description 

 The method will be validated for the short-time response of a canonical problem 

whose geometry and properties approximate those of the human shoulder. In the 
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canonical joint problem, depicted in Figure 4.1, two biphasic layers, shown as the 

shaded areas, are attached to rigid bodies, representing the subchondral bone. A force is 

applied in the axial (z) direction to the upper rigid layer over a linear 0.1 second ramp, 

then held constant for the remaining 0.1 second over which this validation analysis is 

conducted. This type of loading is chosen to simulate a time frame that is representative 

of a physiological time that a joint would be at a single static position during an 

articulation. 
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Figure Chapter 4: .1 Canonical Joint Model Configuration 
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 The configuration is analyzed for four geometric cases, where the congruency, 

curvature and tissue thickness are varied so that their effects on the proximity results 

may be observed. The congruency is defined as: 

 1
R1
−
1
R2

=
1

congruency
, (4.1) 

where values for R1 and R2 for the four cases are given in the Table 4.1. 

Case Name R1 (mm) R2 (mm) w (mm) h1 (mm) h2 (mm) F (N) 

G1 323.0 ∞ 15.0 1.0 1.0 75.0 

G2 650.0 ∞ 15.0 1.0 1.0 75.0 

G3a 25.0 26.0 15.0 1.0 1.0 75.0 

G3b 25.0 26.0 15.0 0.75 1.5 75.0 

Table Chapter 4: .1 Canonical Joint Dimensions 

 For each validation case, a 2D contact analysis is first performed using the 

biphasic contact finite element analysis of Donzelli [10]. Three dimensional 

representations of these axisymmetric configurations are then constructed using the 

solid modeler with the dimensions given above. In these validation cases, the solid 

modeler is used to interpenetrate the opposing tissue layers. It is therefore necessary to 

define the maximum value of penetration in order to generate the 3D proximity data. 

For this study, the calculated axial displacement of the upper rigid body (see Figure 4.1) 

from the 2D contact analysis is applied within the solid modeler to the 3D solid model 

of layer 1, allowing it to rigidly penetrate the model of layer 2. This approximates the 

stereophotogrammetry process, where the joint kinematics are measured for the rigid 
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bones. Proximity data is then calculated within the solid modeler for each layer exactly 

as it would be for models defined via SPG. 

 Three sets of isotropic material properties (see Table 4.2) are chosen for the 

tissue layers of Figure 4.1, from which three material configurations are selected for 

analysis (see Table 4.3). 

Material HA (MPa) λ  (MPa) φ s ν  κ  (m4/Ns) 

M1 (Rigid) 6905 338.9 0.25 0.05 3.0x10-18 

M2 (Biphasic 1) 0.56 0.0294 0.25 0.05 1.7x10-15 

M3 (Biphasic 2) 0.20 0.01053 0.17 0.05 5.0x10-15 

Table Chapter 4: .2 Canonical Joint Material Property Sets 

Material Configuration Layer 1 / Layer 2 

MC1 M1 / M2 

MC2 M2 / M2 

MC3 M2 / M3 

Table Chapter 4: .3 Canonical Joint Material Configurations 

 The previously defined geometric configurations in Table 4.1 and the material 

configurations in Table 4.3 are combined to give the following 12 analysis cases: 
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Analysis Case Geometric & Material Configurations 

A1 - A3 G1 & MC1 G1 & MC2 G1 & MC3 

A4 - A6 G2 & MC1 G2 & MC2 G2 & MC3 

A7 - A9 G3a & MC1 G3a & MC2 G3a & MC3 

A10-A12 G3b & MC1 G3b & MC2 G3b & MC3 

Table Chapter 4: .4 Canonical Joint Analysis Cases 

These cases are defined such that the effects of joint congruency, tissue layer curvature 

and tissue layer thickness on the accuracy of the proximity method can be investigated. 

Each analysis case is run with the 2D biphasic contact software and the calculations of 

Chapter 3 are done in two dimensions on the same meshes using the numerical methods 

that are outlined in Section 3.3 in order to validate the bulleted points at the beginning 

of this chapter. Case A12 is also completed with the 3D proximity software, in order to 

compare the overall results to the contact solutions. 

 4.2 Finite Element Configurations 

 The geometric models defined in Figure 3.1 and Table 3.1 are discretized into 

finite element meshes for both the 2D contact analyses and the 3D proximity analyses. 

Representative meshes for geometric case G3b are shown below. 
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Figure Chapter 4: .2 Representative FE Meshes of Canonical Joint Model for 2D 

Contact (left) and 3D Proximity (right) Analyses 

The meshes shown in Figure 4.2 have 884 elements and 9,083 free d.o.f. (2D case, 

shown on the left) and 5,817 elements and 26,071 free d.o.f. (3D case, layer 2, shown 

on the right). In the 3D analysis, the tissue-bone interface is modeled as rigid and 

impermeable. Each of the analysis cases defined in Table 4.4 was run on a Sun Ultra 

Sparc workstation. 

4.3 Results 

 In this section, results for a representative cross-section of the analysis cases of 

Table 4.4 will be presented. These cases demonstrate the types of results that are seen 

for all of the analysis cases. In order to validate the method presented in Chapter 3, plots 

of solid displacement and apportioned proximity data, elastic part of the solid stress, 

and total stress for the 2D contact analyses and the 3D proximity analyses will be 

presented for comparison. Final values of φ* are tabulated for the 2D and 3D analyses 

and the error introduced from the proximity method is calculated. Full field results for 
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two of the cases in Table 4.4 will be presented in order to demonstrate the agreement in 

the overall solution and to demonstrate the usefulness of the proximity method. 

4.3.1 Two-dimensional Validations 

 Following the development of the proximity method given in Chapter 3, the first 

quantity to be calculated is the layer apportioned proximity data. The plots in Figure 4.3 

show a comparison of the total proximity data, the layer assigned proximity data and the 

normal displacement at the contact surface calculated with the biphasic contact code, 

for a representative number of the analysis cases. For the cases that use material 

configuration MC1, only results for Layer 2, the deformable layer of Figure 4.1, are 

shown. 
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Figure Chapter 4: .3 Normal displacement, total proximity, and layer assigned 

proximity vs. radial position at t=0.1s 

The symbols in the Figs. 4.3 are the nodal values of tissue deformation calculated by the 

2D contact code. The solid lines are the total proximity and the proximity that has been 

reduced by the layer apportioning factor, α (Eqn. (3.19)). It can be seen from these plots 

that the cases in which Layer 2 (Figure 4.1) is flat, R2=∞, the layer assigned proximity 

can almost exactly predict the normal displacement from the contact analyses. In the 

cases where both layers are curved (more typical of real joint analysis) the proximity 

method does not perform as well for predicting the normal displacement. This is 

because of the initial smaller separation of the layers, or the greater congruency of the 

model. When the tissue layers of these models deform the initial separation is quickly 

filled in, resulting in a greater contact area. The contact area in the proximity method is 

static, and cannot account for this effect. However, the layer assigned proximity data 

does still follow the general trends of the contact displacements for these cases and, as 

will be shown below, can still produce acceptable results for the various stress 

calculations that are needed. 

 Figures 4.4 are a comparison of the normal component of elastic solid stress for 

the two methods along the contact surface. The symbols are calculated nodal values 

from the 2D contact code and the solid lines are the values calculated via the proximity 

method using the displacements shown in Figure 4.3 (Eqns. (3.6) - (3.12)).  
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Figure Chapter 4: .4 Normal elastic stress for contact and proximity analyses vs. radial 

position at the contact surface at t=0.1s 

The plots of Figure 4.4 show that while the displacement results of Figure 4.3 were not 

always ideal, the normal elastic stress calculation still produces accurate results. 

However, the effect of underestimating the contact surface can still be seen in these 

plots. The biphasic contact analyses produce a tensile stress near the edge of the contact 

surface, but the proximity method is unable to predict any values outside of the contact 

area as the proximity data is not defined outside of this surface. While this may be a 

concern for the full-field results presented later in the chapter, the φ* calculation, which 

is performed over the contact surface should not be effected. 

 Finally, to complete the φ* calculation, values for the normal total traction are 

needed. Figure 4.5 shows line plots of these values calculated over the contact surface 

for both methods. The symbols represent the values from the contact code, the solid 

lines are the values calculated by the proximity method. 
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Figure Chapter 4: .5 Normal total stress for contact and proximity analyses vs. radial 

position at the contact surface at t=0.1s 

Once again, as with the other plots, the effect of underestimating the contact area is 

seen. For the normal total traction the result is an elevated peak stress in the proximity 

method as the same total load that is applied in the contact analysis is being supported 

by a smaller surface in the proximity method. However, the proximity method is again 

able to closely follow the trends displayed by the contact analysis. 

 With the quantities shown in the above plots, final values of φ* can be 

calculated. Table 4.5 summarizes the values from both methods on the two tissue layers. 

The error between the two methods is also tabulated. 
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 A1 A2 A3 A4 A5 A6 

2D  Layer1 NA 0.312 0.303 NA 0.300 0.293 

3D  Layer1 NA 0.324 0.293 NA 0.324 0.318 

% Error - 3.7% 3.3% - 7.4% 7.8% 

2D  Layer2 0.329 0.303 0.243 0.294 0.293 0.213 

3D  Layer2 0.308 0.324 0.222 0.324 0.271 0.194 

% Error 3.3% 6.4% 8.6% 9.3% 7.5% 8.9% 

 

 A7 A8 A9 A10 A11 A12 

2D  Layer1 NA 0.292 0.287 NA 0.273 0.261 

3D  Layer1 NA 0.326 0.322 NA 0.254 0.284 

% Error - 10.4% 10.9% - 6.9% 8.1% 

2D  Layer2 0.297 0.292 0.204 0.315 0.332 0.183 

3D  Layer2 0.312 0.267 0.187 0.333 0.304 0.214 

% Error 4.8% 8.6% 8.3% 5.4% 8.4% 14.5% 

 

Table Chapter 4: .5 Average φ* values for 2D contact and 3D proximity analysis cases 

The average error in Table 4.5 is 7.6%. Given the assumptions that were made in 

Chapter 3, this is an acceptable amount of error. Again, it can be seen that the error for 

the cases with a flat Layer 2 is lower than the more congruent cases. This appears to be 

the major contributor to any error that is introduced by the proximity method. By 

comparing cases A7-A9 with cases A10-A12 it can be seen that the change in tissue 
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thickness did not have any significant effect on the results. The same is true when 

comparing the different material models. For example, comparison of case A8 and case 

A9 shows that using different materials for each of the layers in the same model did not 

increase the error in the φ* calculation. While the calculations have proven to be 

adequate, the full field response of a problem must be investigated to gauge the true 

usefulness of the proximity method. 

4.3.2 Comparison of 2D and 3D Results 

 To demonstrate the similarities in derived quantities such as stress and strain, 

full field results are presented in this section for both the 2D biphasic contact code and 

the 3D proximity method for analysis case A12 of Table 4.4. 

 The first quantity investigated is the strain is the z-direction. Figure 4.6 shows 

contour plots of this strain for both tissue layers, completed by both analysis methods.  
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Figure Chapter 4: .6 2D (upper) and 3D (lower) normal solid strain for analysis case 

A12 

 The next quantity is the solid strain on the r-z face. This is the plane of 

symmetry that is seen facing outward in the following figure. 
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Figure Chapter 4: .7 2D (upper) and 3D (lower) solid strain on z-r face for analysis 

case A12 
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 Figures 4.6 & 4.7 show that the strain results give good agreement in both 

magnitude and the pattern of the strain distributions. As was seen in the line plots 

above, the effect of the smaller contact area can be seen in Figures 4.6 & 4.7. Near the 

outer limit of the radial direction, where the strain values approach zero, the 2D contact 

solution holds it’s non-zero values of strain over a greater distance, while the strain in 

the 3D proximity solution dies off before it reaches the periphery of the model. This is a 

direct result of the smaller contact area. Despite this, the results still look very similar, 

and it can be seen how these types of visualizations could be of use to researchers trying 

to understand the three dimensional response of biphasic soft tissues to physiological 

loading. 
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Chapter 5: Summary and Conclusions 

 In this thesis a method for approximating biphasic tissue contact has been 

developed and implemented. This method reduces the computational complexity of 

three dimensional contact analysis by replacing contacting bodies with appropriate 

surface tractions. These surface tractions are derived from proximity data, which is 

calculated from geometric data for the biphasic tissues, obtained, for example through 

stereophotogrammetry, and solid modeling techniques. The linear biphasic theory is 

used to convert the proximity data into traction boundary conditions for finite element 

analysis of the individual layers. Results were presented for canonical joint problems 

that are axisymmetric and can be completed in both two and three dimensions. These 

results show good agreement between the proximity method and biphasic contact 

analysis and give confidence to carry forward with physiological problems where 

complex models derived from stereophotogrammetry are used.  

 The validation examples demonstrate that the proximity method gives a good 

approximation to biphasic contact over early response times. The assumption that 

proximity data can be used as an approximation to surface deformation from contact 

analysis proved to be accurate. This led to an acceptable calculation of normal elastic 

traction using strain-displacement and stress-strain laws. The method of balancing the 

total applied force with the total normal traction by integrating over the contact surface 

also proved to be adequate. This all led to accurate calculations of the load partitioning 

factor, φ*. There are some obvious shortcomings with the proximity method, but the 
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qualitative and quantitative properties of the three dimensional analyses completed with 

the proximity method show that it is capable of being used by researchers to gain 

insight into diarthrodial joint mechanics while full three dimensional contact is being 

developed. One of the attractive properties of the proximity method is it’s ability to 

reduce the computational resources needed to do three dimensional contact analysis. 

The proximity method will always hold this advantage over full 3D contact analysis, 

which is important for those who don’t have access to large scale computing resources. 

Further, once 3D contact analysis is developed, the present method can also be 

validated on 3D diarthrodial joint cases using SPG and joint kinematic data. This will 

perhaps show the proximity method to be a viable (as well as computationally 

advantageous) alternative to 3D contact over some range of analysis times or certain 

specific geometric or material cases. 

 The most apparent shortcoming for the method is that it cannot completely 

predict the contact areas in opposing tissue layers. This is due to the physics of biphasic 

contact problems. As the tissues come into contact they deform outward at the edge of 

contact and therefore generate an even larger contact surface. The proximity data is 

derived by allowing the bodies to rigidly interpenetrate, not accounting for deformation 

of the contact surface. The end result is that the applied load (which is accurately 

calculated via static equilibrium) acts over a smaller area, increasing the levels of stress 

and strain under the contact surface. However, these elevated values are not significant, 

as shown in Section 4.3.2, and the results remain very similar. These slightly elevated 
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strains are also predictable and should be taken into account when analyzing soft tissues 

with this method. 

 There are a few ways in which the method can be extended in the future. First, 

the calculations can be made more efficient , and perhaps, made more accurate. It can 

be seen from the plots in Chapter 4 that the φ* parameter loses resolution near the 

periphery of the contact area. A scheme for picking optimal sample points in the interior 

of the contact face and averaging their calculated results could give a more accurate 

calculation of φ*. Also, the one dimensional approximation of α given in Eqn. (3.19) 

could be eliminated and the entire multi-dimensional (2D or 3D) calculation could be 

done. The total proximity, gTotal, would have to be differentiated, but this could be done 

with the same methods used to differentiate the layer-assigned proximity given in Eqn. 

(3.22). These calculations will be more accurate, but more time consuming, and thus it 

should be emphasized that for the present implementation, both of these simplified 

calculations have proven adequate to produce results that are in good agreement with 

the biphasic contact results. 

 An intriguing extension of the method is to problems in which the proximity 

boundary conditions are “swept” over a tissue layer to simulate full joint articulation. 

There are a few technical issues that need to be addressed before this would be possible. 

First, it needs to be verified that removing a proximity-derived load from a tissue layer 

results in the tissue layer returning to it’s original, undeformed state in a predictable 

manner. This is necessary as the load will at one instant be applied to a portion of the 

tissue surface and will not at the next instant in time. Also, a geometric modeling 
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technique to identify the entire area of the articulating surface that may be in contact at 

some point during the analysis must be developed. This is necessary for mesh 

refinement and also for the application of analysis attributes. 

 Another extension of the method will be to non-linear problems and other types 

of finite element formulations (mixed-penalty and hybrid, for example). As was 

mentioned earlier, the deformations that take place in cartilage are known to be large, 

exceeding the limits of the linear theory. While the linear theory provides accurate 

approximations for low loads, the non-linear theory is needed to fully quantify cartilage 

mechanics. The proximity method should apply equally well to non-linear and linear 

problems. Also, the velocity-pressure formulation was utilized in this study for the three 

dimensional problems, but there will almost certainly be advances in biphasic finite 

element formulations in the future. Following the derivations in Chapter 3 the proximity 

method should similarly apply to these any type of biphasic formulation. 

 With confidence in the method, three dimensional problems where the geometry 

is derived from stereophotogrammetry can now be completed. This class of problems 

will be the first to utilize a robust material model, like the biphasic theory, with accurate 

tissue representations to give a representative picture of the mechanical state of 

hydrated soft tissues under physiological loads. Future work will include a study of 

physiological tissue layers, possibly of the shoulder or knee, using the proximity-

derived boundary conditions. This type of information can eventually aid clinicians in 

their treatment of patients and researchers in their efforts to understand joint mechanics 

and disease. 
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