
Constructing SSA the Easy Way

Michael Bebenita
University of California, Irvine

November 2, 2009

Abstract

Static Single Assignment (SSA) form has become ubiquitous in
compilers as an intermediate program representation. The use of SSA
simplifies many compiler optimizations and makes the life of compiler
writers easier. Many techniques exist to convert programs into SSA
form, many of which I find unnecessarily difficult. In this paper I will
present a simple technique to convert programs in and out of SSA
form.

1 Introduction

Every advanced compiler class dedicates quite a bit of time on Static Single
Assignment form, or simply SSA [2]. This is because it has now become ubiq-
uitous in compilers as an intermediate program representation. The strength
of SSA lies in the fact that it simplifies many compiler optimizations by
guaranteeing that variables are only assigned once. SSA also simplifies the
maintenance of Use-Definition chains since each Use has only one Definition.
Converting programs into SSA form is generally not possible without a little
magic. Magical φ instructions are used to merge program states in situations
where it’s impossible to determine the last assignment to a variable. SSA
based compilers convert programs into SSA form, perform a series of opti-
mizations and then convert back out of SSA in later phases in the compiler.
There are various ways to build SSA, some of which I find unnecessarily com-
plicated. I’m a big fan of simplicity, so I would like to present my favorite
algorithm to construct SSA and then convert back from it. This algorithm is

1



essentially a rehashing of Aycock’s SSA construction algorithm [1] but using
forwarding pointers instead.

2 Intermediate Representation

In SSA form, each variable is assigned only once. Additional assignments
to a variable result in redefinitions of that variable, usually notated using
subscripts. Since variables can only hold one value, it is useful to eliminate
the concept of a variable, and instead refer to them as values. Below an
example program is shown both in the original form and its SSA equivalent.
SSA values are subscripted, and each definition receives a new SSA value.
The beginning of the loop body receives two sets of values: those flowing
through the entry into the loop, and those looping around. To select between
the two sets φ instructions are inserted. These abstract instructions can
identify the last executed basic block, and can thus select the appropriate
value.

i← 0;
x← 0;
repeat

z ← x;
x← y;
y ← z;
i← i+ 1;

until i < 100 ;
print(i, x, y, z);

Original Program

i0 ← 0;
x0 ← 0;
repeat

i1 ← φ(i0, i2);
x1 ← φ(x0, x2);
y1 ← φ(y0, y2);
z1 ← φ(z0, z2);
z2 ← x1;
x2 ← y1;
y2 ← z1;
i2 ← i1 + 1;

until i < 100 ;
print(i2, x2, y2, z2);

Program in SSA Form

Table 1: Original and SSA representations of an example program. Here
φ instructions are used to select between the values flowing through the
beginning of the loop, and those looping around.

2



Function resolve

input: an instruction i

if i.forward 6= null then
i.forward← resolve(i.forward);
return i.forward;

end
return i;

Function forward

input: an instruction i that will be forwarded to j
requires i.forward = null;

i.forward← j

Figure 1: Instructions must be resolved using the resolve(i) function when-
ever they are referenced. This allows us to replace an instruction i with any
other instruction j by forwarding i to j using the forward(i,j) function.

3 Instruction Forwarding

Many optimizations and algorithms need to replace one SSA value with an-
other. This requires that we know all uses of a definition. This is usually
done by maintaining Definition-Use chains, and updating all uses whenever
a definition is changed. Maintaining these data structures can become cum-
bersome. An alternative approach is to use forwarding pointers. If an SSA
instruction i is replaced by another instruction j, i is forwarded to j. Each in-
struction has a forwarding pointer, if this pointer is not null, the instruction
is logically replaced with the forwarded instruction. The chain of forwarding
pointers must be followed whenever an instruction is accessed. The current
value of an instruction i is accessed using a call to resolve(i). The resolve
function ensures that the entire forwarding chain is not followed every time,
this is done by shortcutting to the end of the forwarding chain. Instruction
forwarding has a lot of ramifications throughout the compiler. Special care
must be taken to make sure that instructions are always resolved before used.
The pseudo code of the resolve and forward is shown in Figure 1.

3



4 State Vectors

The SSA construction algorithm tracks the flow of data through the control
flow graph. Usually the only dataflow that is tracked is though method local
variables, but it’s also possible and much more complicated to track arbi-
trary memory access. This is because it is difficult to observe all accesses to
memory due to aliasing. This requires aggressive escape analysis to identify
the dynamic scope of pointers and alias analysis to discover if multiple ways
exist to access the same memory location.

Method local variables, or for that matter anything you choose to track
dataflow for, can be represented as a state vector, {v0, v1, v2, ..., vn}. At each
program location, a state vector indicates which SSA values are located in
which local variables. State vectors can be evolved using abstract interpre-
tation of instructions in the original program. Local variable assignments
update the state vector, reads from local variables select the last written
value for a given variable in the state vector. This is the way in which linear
sequences of SSA instructions are generated. To generate SSA for arbitrary
control flow graphs we construct SSA for each individual basic block, and
then merge state vectors.

4



E0 E1 E2

A0 A1 A2

B0 B1 B2 C0 C1 C2

D0 D1 D2

E0 E1 E2

Entry	  State	  Vector

Exit	  State	  Vector

(a)

E0 E1 E2

2 1 E2

A0 A1 A2

4 A2 A1

B0 B1 B2

B1 B1 B2

C0 C1 C2

10 C0 11

D0 D1 D2

14 D1 D2

E0 E1 E2

15 17 17

Entry	  State	  Vector

Exit	  State	  Vector

0:	  ADD	  E0	  +	  E1

1:	  SUB	  0	  +	  E1

2:	  ADD	  (1)	  +	  E2

SSA	  InstrucAons	  
Evolving	  Entry	  State

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

(b)

Figure 2: Phases of the SSA construction algorithm. Empty state vectors
are introduced in (a), followed by construction of linear SSA for each basic
block, (b).

5 SSA Construction

The SSA construction algorithm, Algorithm 3, starts off by constructing
entry state vectors for each of the basic blocks in the control flow graph.
Each of these vectors are initially filled with SSA values acting as place-
holders or parameters for a given basic block (Figure 2a). SSA instructions
are then constructed in a linear fashion by mutating a copy of the entry
state vector using abstract interpretation (Figure 2b). This is what the
constructSSA(entryState, block) function does, it mutates the entryState,
fills the block with SSA instructions, and returns the evolved state vector at
the end of the basic block. It is important to note that at this point in the

5



algorithm, SSA instructions only reference other SSA instructions appearing
in the same basic block. The third phase of the algorithm links the entry
and exit states of basic blocks. If a basic block has only one predecessor, the
SSA instructions in the successor block are forwarded to the SSA instruc-
tions in the predecessor block, otherwise they are forwarded to φ instructions
that that merge the incoming SSA instructions from all the predecessor basic
blocks, Figure 5. The last phase of the algorithm optimizes away φ instruc-
tions whose operands are all the same. Instruction forwarding and resolution
is what really makes this algorithm tick, and in my view it’s quite elegant.

E0 E1 E2

2 1 E2

A0	  -‐>	  18 A1	  -‐>	  19 A2	  -‐>	  20

4 A2 A1

B0 B1 B2

B1 B1 B2

C0 C1 C2

10 C0 11

D0	  -‐>	  21 D1	  -‐>	  22 D2	  -‐>	  23

14 D1 D2

E0 E1 E2

15 17 17

Block	  Parameters
Forwareded	  to	  Phi	  Instruc@ons

Phi	  Instruc@ons	  
Inserted	  for	  State	  Merging

0:	  ADD	  E0	  +	  E1

1:	  SUB	  0	  +	  E1

2:	  ADD	  (1)	  +	  E2

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

21:	  PHI	  (B1,	  10)

22:	  PHI	  (B1,	  C0)

23:	  PHI	  (B2,	  11)

18:	  PHI	  (2,	  15)

19:	  PHI	  (1,	  17)

20:	  PHI	  (E2,	  17)

Entry	  State	  Forwarded	  to	  
Predecessor's	  Exit	  State

Figure 3: Entry and exit states are merged. Each block’s entry state is
forwarded to the predecessor’s exit state, or to φ functions that merge all
predecessor’s states if more than one exists.

6



Algorithm 3: SSA Construction

input: a set of basic blocks blocks

↪→ fill basic blocks with SSA instructions
for block ∈ blocks do

entryState← createStateV ector()
block.entryState← entryState;
exitState← constructSSA(entryState, block);
block.exitState← exitState;

end

↪→ link exit and entry states
for block ∈ blocks do

for vi ∈ block.entryState do
values← {};
for predecessor ∈ block.predecessors do

values.append(predecessor.exitState[i]);
end
if values.length = 1 then

forward(vi, values.first())
else if values.length > 1 then

phi← createPhi(values);
forward(vi, phi);
block.prepend(phi);

end

end

end

↪→ simplify phis
for block ∈ blocks do

for phi ∈ block do
if phi.areAllResolvedOperandsEqual() then

forward(phi, phi.firstResolvedOperand());
block.remove(phi);

end

end

end

7



i0 ← 0;
x0 ← 0;
repeat

i1 ← φ(i0, i2);
x1 ← φ(x0, y1);
y1 ← φ(y0, z1);
z1 ← φ(z0, x1);
i2 ← i1 + 1;

until i < 100 ;
print(i2, y1, z1, x1);

Figure 4: Copy propagation applied to the example in Table 1. A cyclic
dependency develops in the φ instructions due to the parallel move set {x1 ←
y1, y1 ← z1, z1 ← x1}.

6 SSA Deconstruction

Converting out of SSA form requires the introduction of moves into the pre-
decessor blocks of φ instructions. At this point, variables are reintroduced
into the program, every SSA value receives a variable. In order to elimi-
nate φ instructions, moves are introduced in predecessor blocks, Figure 6.
The semantics of φ instructions require that they are executed in parallel.
Therefore the moves that are pushed into predecessor blocks must all exe-
cute in parallel. Because of SSA value dependencies, a topological ordering
must be computed to ensure the parallel evaluation of moves executed in a
sequential way. Cyclic dependencies may also occur after copy propagation,
as is the case if we apply copy propagation to the example in Table 1. A
cyclic dependencies develops in the loop body because of the parallel move
set {x1 ← y1, y1 ← z1, z1 ← x1}. To break this cycle we must introduce a
temporary variable as show in a more general case in Figure 6a and Figure 6b.

8



3:	  PHI	  (1,	  2)

4:	  PHI	  (3,	  2)

3	  <-‐	  1

3	  <-‐24	  <-‐	  3

4	  <-‐	  2

Moves	  are	  Pushed	  Into	  
Predecessor	  Blocks

Figure 5: Eliminating φ instructions by introducing moves in predecessor
blocks. The semantics of φ instructions require that they are all executed in
parallel, therefore dependencies must be respected and a topological order
must be computed. Here, in the left predecessor block we must make sure
the variable 3 is not overwritten before it’s assigned to variable 4.

1 2

3 4

5

(a)

2 5

34

1 T

14

42

2T

(b)

Figure 6: Cyclic dependencies and topological sorting of parallel moves. A
graph of moves is show in (a), where each edge represents a move instruction.
Each node can have at most one incoming edge, and many outgoing edges.
A topological ordering is computed in (b) where the cycle is also broken by
introducing a temporary variable, T.

6.1 Critical Edges

A critical edges in a control flow graph connects a block with multiple suc-
cessors to a block with multiple predecessors, as shown in Figure 6.1. In
such cases, eliminating φ instructions by pushing moves up into a prede-
cessor block, across a critical edge, creates side effects. Alternate control
flow paths leaving the predecessor block also experience the assignments and
they shouldn’t. The solution is to split critical edges by inserting empty

9



basic blocks. This provides a safe place for assignments and side effects are
prevented.

B

C D

A

Cri'cal	  Edge

B

C D

A

Cri'cal	  Edge	  Spli2er	  Block

Spli%er

Figure 7: Critical edge splitting, an empty block is inserted in order to
provide a safe place for the insertion of moves.

References

[1] J. Aycock and N. Horspool. Simple generation of static single-assignment
form. Lecture Notes in Computer Science, pages 110–124, 2000.

[2] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. Effi-
ciently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Sys-
tems, 13(4):451–490, 1991.

10


